1
|
Waitzberg D, Guarner F, Hojsak I, Ianiro G, Polk DB, Sokol H. Can the Evidence-Based Use of Probiotics (Notably Saccharomyces boulardii CNCM I-745 and Lactobacillus rhamnosus GG) Mitigate the Clinical Effects of Antibiotic-Associated Dysbiosis? Adv Ther 2024; 41:901-914. [PMID: 38286962 PMCID: PMC10879266 DOI: 10.1007/s12325-024-02783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
Dysbiosis corresponds to the disruption of a formerly stable, functionally complete microbiota. In the gut, this imbalance can lead to adverse health outcomes in both the short and long terms, with a potential increase in the lifetime risks of various noncommunicable diseases and disorders such as atopy (like asthma), inflammatory bowel disease, neurological disorders, and even behavioural and psychological disorders. Although antibiotics are highly effective in reducing morbidity and mortality in infectious diseases, antibiotic-associated diarrhoea is a common, non-negligible clinical sign of gut dysbiosis (and the only visible one). Re-establishment of a normal (functional) gut microbiota is promoted by completion of the clinically indicated course of antibiotics, the removal of any other perturbing external factors, the passage of time (i.e. recovery through the microbiota's natural resilience), appropriate nutritional support, and-in selected cases-the addition of probiotics. Systematic reviews and meta-analyses of clinical trials have confirmed the strain-specific efficacy of some probiotics (notably the yeast Saccharomyces boulardii CNCM I-745 and the bacterium Lactobacillus rhamnosus GG) in the treatment and/or prevention of antibiotic-associated diarrhoea in children and in adults. Unusually for a probiotic, S. boulardii is a eukaryote and is not therefore directly affected by antibiotics-making it suitable for administration in cases of antibiotic-associated diarrhoea. A robust body of evidence from clinical trials and meta-analyses shows that the timely administration of an adequately dosed probiotic (upon initiation of antibiotic treatment or within 48 h) can help to prevent or resolve the consequences of antibiotic-associated dysbiosis (such as diarrhoea) and promote the resilience of the gut microbiota and a return to the pre-antibiotic state. A focus on the prescription of evidence-based, adequately dosed probiotics should help to limit unjustified and potentially ineffective self-medication.
Collapse
Affiliation(s)
- Dan Waitzberg
- Department of Gastroenterology, LIM-35, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Iva Hojsak
- Referral Centre for Pediatric Gastroenterology and Nutrition, School of Medicine, University of Zagreb, Zagreb, Croatia
- University of Zagreb Medical School, Zagreb, Croatia
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - D Brent Polk
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, San Diego, and Rady Children's Hospital, University of California, San Diego, CA, USA
| | - Harry Sokol
- Gastroenterology Department, Saint-Antoine Hospital, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, 184 Rue du Faubourg Saint-Antoine, 75571, Paris Cedex 12, France.
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.
| |
Collapse
|
2
|
Koutouratsas T, Philippou A, Kolios G, Koutsilieris M, Gazouli M. Role of exercise in preventing and restoring gut dysbiosis in patients with inflammatory bowel diseases: A review. World J Gastroenterol 2021; 27:5037-5046. [PMID: 34497433 PMCID: PMC8384738 DOI: 10.3748/wjg.v27.i30.5037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) include a spectrum of chronic inflammatory disorders of the gastrointestinal tract whose pathogenesis is yet to be elucidated. The intestinal microbiome has been studied as a causal component, with certain microbiotic alterations having been observed in subtypes of IBD. Physical exercise is a modulator of the intestinal microbiome, causing shifts in its composition that are partially corrective of those observed in IBD; furthermore, physical exercise may be beneficial in patients with certain IBD subtypes. This review studies the effects of physical exercise on the human gut microbiome while investigating pathophysiologic mechanisms that could explain physical activity’s clinical effects on patients with IBD.
Collapse
Affiliation(s)
- Tilemachos Koutouratsas
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Anastassios Philippou
- Department of Basic Medical Sciences, Laboratory of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - George Kolios
- Department of Medicine, Laboratory of Pharmacology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Michael Koutsilieris
- Department of Basic Medical Sciences, Laboratory of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
3
|
Fredericks E, Theunissen R, Roux S. Short chain fatty acids and monocarboxylate transporters in irritable bowel syndrome. TURKISH JOURNAL OF GASTROENTEROLOGY 2021; 31:840-847. [PMID: 33625995 DOI: 10.5152/tjg.2020.19856] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Gut microbiota ferments indigestible food that rests in the colon to produce short-chain fatty acids (SCFAs) acetate, propionate, and butyrate. Colonic SCFA stimulate the synthesis of serotonin which is central in irritable bowel syndrome (IBS) pathophysiology. Reduced SCFA have been linked to specific IBS symptoms like colonic hyperalgesia and hypersensitivity. SCFA enter the colonocyte mainly via 2 energy-dependent monocarboxylate transporters, MCT1 (SLC16A1) and SMCT1 (SLC5A8). We investigated specific gut microbiota, SCFA concentrations, and monocarboxylate transporter mRNA expression in patients with IBS. MATERIAL AND METHODS A total of 30 IBS patients-15 constipation-predominant (C-IBS) and 15 diarrhoea-predominant (D-IBS)-and 15 healthy controls were recruited. Bacteroidetes and Bifidobacterium species were analyzed using quantitative polymerase chain reaction (qPCR) on stool samples. SCFA concentrations were determined by gas chromatography/mass spectroscopy of stool samples. Monocarboxylate transporter mRNA was quantified by qPCR on colon biopsy specimens. RESULTS Bacteroides was significantly increased in the D-IBS group compared with the C-IBS group and healthy controls. Bifidobacterium was significantly reduced in both IBS groups. SCFA ratios were altered in both IBS groups with a reduction of all 3 measured SCFA in C-IBS and acetic acid in D-IBS. MCT1 and SMCT1 were significantly reduced in C-IBS and D-IBS. CONCLUSION In agreement with findings of previous studies, the microbiota assessed were significantly altered inferring dysbiosis in IBS. SCFA and their ratios were significantly altered in both IBS groups. SCFA transporters, MCT1 and SMCT1 were significantly reduced in both IBS groups, suggesting reduced colonocyte SCFA transfer. SCFA availability and transfer into the colonocytes may be important in IBS pathogenesis and should be prospectively studied.
Collapse
Affiliation(s)
- Ernst Fredericks
- Department of Physiology, Nelson Mandela University School of Science, Port Elizabeth, South Africa
| | - Reza Theunissen
- Department of Physiology, Nelson Mandela University School of Science, Port Elizabeth, South Africa
| | - Saartjie Roux
- Department of Physiology, Nelson Mandela University School of Science, Port Elizabeth, South Africa
| |
Collapse
|
4
|
Gong X, Liu X, Chen C, Lin J, Li A, Guo K, An D, Zhou D, Hong Z. Alteration of Gut Microbiota in Patients With Epilepsy and the Potential Index as a Biomarker. Front Microbiol 2020; 11:517797. [PMID: 33042045 PMCID: PMC7530173 DOI: 10.3389/fmicb.2020.517797] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Objective To explore the structure and composition of the fecal microbiota of patients with epilepsy. Methods Variations in the fecal microbiota between patients with epilepsy and healthy controls (HCs) from the same household were investigated and validated by utilizing 16S ribosomal RNA sequencing in two independent cohorts [exploration cohort (N = 55 patients and N = 46 HCs) and validation cohort (N = 13 patients and N = 10 HCs)]. Results The alpha diversity indexes of the specimens from patients with epilepsy were much lower than those from the HCs (p < 0.05). The structure and composition of the fecal microbiota differed between patients with different clinical prognoses and between patients and HCs (Adonis: p < 0.05). Microbiome alterations in patients with epilepsy included increases in Actinobacteria and Verrucomicrobia and decreases in Proteobacteria at the phylum level and increases in Prevotella_9, Blautia, Bifidobacterium, and others at the genus level [linear discriminant analysis (LDA): 3.5] Patients with drug-resistant epilepsy showed enrichment of bacterial taxa in Actinobacteria, Verrucomicrobia, and Nitrospirae and the genera Blautia, Bifidobacterium, Subdoligranulum, Dialister, and Anaerostipes (Kruskal-Wallis test: p < 0.05). Analysis of gut microbiome indicated predictive ability for disease diagnosis, with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.97 (95% CI, 0.84-0.98). Applying the model to our validation cohort resulted in an AUC of 0.96 (95% CI, 0.75-0.97). Notably, the model could distinguish drug-resistant from drug-sensitive epilepsy (AUC = 0.85, 95% CI: 0.69-0.94). Conclusion Patients with epilepsy exhibit substantial alterations of fecal microbiota composition, and specific gut commensal strains are altered depending on different clinical phenotypes and thus could serve as potential biomarkers for disease diagnosis.
Collapse
Affiliation(s)
- Xue Gong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Chu Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingfang Lin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Aiqing Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Kundian Guo
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Dongmei An
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Hong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Witkowski JM, Bryl E, Fulop T. Should we Try to Alleviate Immunosenescence and Inflammaging - Why, How and to What Extent? Curr Pharm Des 2020; 25:4154-4162. [PMID: 31713479 DOI: 10.2174/1381612825666191111153016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022]
Abstract
With advancing age, immune responses of human beings to external pathogens, i.e., bacteria, viruses, fungi and parasites, and to internal pathogens - malignant neoplasm cells - become less effective. Two major features in the process of aging of the human immune system are immunosenescence and inflammaging. The immune systems of our predecessors co-evolved with pathogens, which led to the occurrence of effective immunity. However, the otherwise beneficial activity may pose problems to the organism of the host and so it has builtin brakes (regulatory immune cells) and - with age - it undergoes adaptations and modifications, examples of which are the mentioned inflammaging and immunosenescence. Here we describe the mechanisms that first created our immune systems, then the consequences of their changes associated with aging, and the mechanisms of inflammaging and immunosenescence. Finally, we discuss to what extent both processes are detrimental and to what extent they might be beneficial and propose some therapeutic approaches for their wise control.
Collapse
Affiliation(s)
- Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Gdansk, Poland
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine and Health Sciences, Department of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
6
|
Zhang F, Ma C, Zhang B, Bi L. Dynamic changes in gut microbiota under the influence of smoking and TNF-α-blocker in patients with ankylosing spondylitis. Clin Rheumatol 2020; 39:2653-2661. [PMID: 32219620 DOI: 10.1007/s10067-020-05032-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/21/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES This study aimed to investigate the relationship among smoking, TNF-α-blocker therapy, and the dynamic changes in gut microbiota in patients with ankylosing spondylitis (AS). METHODS Using a 16S rRNA sequence, 98 fecal samples of 20 AS patients collected after 0, 1, 3 and 6 months of anti-TNF-α treatment and from 20 matched health controls were examined. The variation in composition, abundance, and diversity of gut microbiota was analyzed. The dynamic effects of smoking and treatment on gut microbiota and therapeutic efficacy in AS patients were studied. RESULTS The increased relative abundance of microbiota in AS nonsmokers was g_Comamonas and g_Desulfovibrio, while that in AS smokers was g_Actinomyces, g_Collinsella, g_Lachnospiraceae_UCG-008, and g_Paraprevotella. The relative abundance of gut microbiota showed dynamic variation. The improvement rate of ASDAS in AS nonsmokers was higher than that in AS smokers (2.297 vs 1.736) after anti-TNF-α treatment. The β-diversity of gut microbiota in AS smokers was lower than that in AS nonsmokers and improved with treatment. CONCLUSIONS Both smoking and TNF-α-blocker had significant effects on the composition, relative abundance, and diversity of gut microbiota in AS patients. The AS smokers characteristically shared g_Collinsella and g_Dorea. The relative abundance of gut microbiota revealed high variability and was in dynamic fluctuation during treatment. The response of gut microbiota to anti-TNF-α treatment was found to be heterogeneous and selective. AS nonsmokers showed a greater improvement rate of ASDAS-CRP with treatment than AS smokers did. The AS smokers showed a lower β-diversity of gut microbiota, and improved after treatment. Key Points • Characterized the dynamic variation in gut microbiota in AS patients classified as smokers and nonsmokers during treatment with anti-TNF-α. • Confirmed the interaction between smoking, anti-TNF-α therapy, and gut microbiota.
Collapse
Affiliation(s)
- Fangze Zhang
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, No.126 Xiantai Street, Changchun, 130033, Jilin, People's Republic of China
| | - Cuili Ma
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, No.126 Xiantai Street, Changchun, 130033, Jilin, People's Republic of China
| | - Bin Zhang
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, No.126 Xiantai Street, Changchun, 130033, Jilin, People's Republic of China.
| | - Liqi Bi
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, No.126 Xiantai Street, Changchun, 130033, Jilin, People's Republic of China.
| |
Collapse
|
7
|
Ferguson LR. Inflammatory bowel disease: why this provides a useful example of the evolving science of nutrigenomics. J R Soc N Z 2020. [DOI: 10.1080/03036758.2020.1728345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lynnette R. Ferguson
- Auckland Cancer Society Research Centre and Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|