1
|
Saha S, Ghosh S, Ghosh S, Nandi S, Nayak A. Unraveling the complexities of colorectal cancer and its promising therapies - An updated review. Int Immunopharmacol 2024; 143:113325. [PMID: 39405944 DOI: 10.1016/j.intimp.2024.113325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Colorectal cancer (CRC) continues to be a global health concern, necessitating further research into its complex biology and innovative treatment approaches. The etiology, pathogenesis, diagnosis, and treatment of colorectal cancer are summarized in this thorough review along with recent developments. The multifactorial nature of colorectal cancer is examined, including genetic predispositions, environmental factors, and lifestyle decisions. The focus is on deciphering the complex interactions between signaling pathways such as Wnt/β-catenin, MAPK, TGF-β as well as PI3K/AKT that participate in the onset, growth, and metastasis of CRC. There is a discussion of various diagnostic modalities that span from traditional colonoscopy to sophisticated molecular techniques like liquid biopsy and radiomics, emphasizing their functions in early identification, prognostication, and treatment stratification. The potential of artificial intelligence as well as machine learning algorithms in improving accuracy as well as efficiency in colorectal cancer diagnosis and management is also explored. Regarding therapy, the review provides a thorough overview of well-known treatments like radiation, chemotherapy, and surgery as well as delves into the newly-emerging areas of targeted therapies as well as immunotherapies. Immune checkpoint inhibitors as well as other molecularly targeted treatments, such as anti-epidermal growth factor receptor (anti-EGFR) as well as anti-vascular endothelial growth factor (anti-VEGF) monoclonal antibodies, show promise in improving the prognosis of colorectal cancer patients, in particular, those suffering from metastatic disease. This review focuses on giving readers a thorough understanding of colorectal cancer by considering its complexities, the present status of treatment, and potential future paths for therapeutic interventions. Through unraveling the intricate web of this disease, we can develop a more tailored and effective approach to treating CRC.
Collapse
Affiliation(s)
- Sayan Saha
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Shreya Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Suman Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Sumit Nandi
- Department of Pharmacology, Gupta College of Technological Sciences, Asansol, West Bengal 713301, India
| | - Aditi Nayak
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India.
| |
Collapse
|
2
|
Olkinuora A, Mäki-Nevala S, Ukwattage S, Ristimäki A, Ahtiainen M, Mecklin JP, Peltomäki P. Novel insights into tumorigenesis revealed by molecular analysis of Lynch syndrome cases with multiple colorectal tumors. Front Oncol 2024; 14:1378392. [PMID: 38725616 PMCID: PMC11079657 DOI: 10.3389/fonc.2024.1378392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
Background Lynch syndrome (LS) is an autosomal dominant multi-organ cancer syndrome with a high lifetime risk of cancer. The number of cumulative colorectal adenomas in LS does not generally exceed ten, and removal of adenomas via routine screening minimizes the cancer burden. However, abnormal phenotypes may mislead initial diagnosis and subsequently cause suboptimal treatment. Aim Currently, there is no standard guide for the care of multiple colorectal adenomas in LS individuals. We aimed to shed insight into the molecular features and reasons for multiplicity of adenomas in LS patients. Methods We applied whole exome sequencing on nine adenomas (ten samples) and three assumed primary carcinomas (five samples) of an LS patient developing the tumors during a 21-year follow-up period. We compared the findings to the tumor profiles of two additional LS cases ascertained through colorectal tumor multiplicity, as well as to ten adenomas and 15 carcinomas from 23 unrelated LS patients with no elevated adenoma burden from the same population. As LS associated cancers can arise via several molecular pathways, we also profiled the tumors for CpG Island Methylator Phenotype (CIMP), and LINE-1 methylation. Results All tumors were microsatellite unstable (MSI), and MSI was present in several samples derived from normal mucosa as well. Interestingly, frequent frameshift variants in RNF43 were shared among substantial number of the tumors of our primary case and the tumors of LS cases with multiple tumors but almost absent in our control LS cases. The RNF43 variants were completely absent in the normal tissue, indicating tumor-associated mutational hotspots. The RNF43 status correlated with the mutational signature SBS96. Contrary to LS tumors from the reference set with no elevated colorectal tumor burden, the somatic variants occurred significantly more frequently at C>T in the CpG context, irrespective of CIMP or LINE-1 status, potentially indicating other, yet unknown methylation-related mechanisms. There were no signs of somatic mosaicism affecting the MMR genes. Somatic variants in APC and CTNNB1 were unique to each tumor. Conclusion Frequent somatic RNF43 hot spot variants combined with SBS96 signature and increased tendency to DNA methylation may contribute to tumor multiplicity in LS.
Collapse
Affiliation(s)
- Alisa Olkinuora
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Satu Mäki-Nevala
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Sanjeevi Ukwattage
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Ari Ristimäki
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, HUS, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maarit Ahtiainen
- Department of Pathology, Wellbeing Services County of Central Finland, Jyväskylä, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Science, Nova Hospital, Central Finland Health Care District, Jyväskylä, Finland
- Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- HUSLAB Laboratory of Genetics, HUS Diagnostic Center, HUS, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
3
|
Li D, Zhong C, Yang M, He L, Chang H, Zhu N, Celniker SE, Threadgill DW, Snijders AM, Mao JH, Yuan Y. Genetic and microbial determinants of azoxymethane-induced colorectal tumor susceptibility in Collaborative Cross mice and their implication in human cancer. Gut Microbes 2024; 16:2341647. [PMID: 38659246 PMCID: PMC11057575 DOI: 10.1080/19490976.2024.2341647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The insights into interactions between host genetics and gut microbiome (GM) in colorectal tumor susceptibility (CTS) remains lacking. We used Collaborative Cross mouse population model to identify genetic and microbial determinants of Azoxymethane-induced CTS. We identified 4417 CTS-associated single nucleotide polymorphisms (SNPs) containing 334 genes that were transcriptionally altered in human colorectal cancers (CRCs) and consistently clustered independent human CRC cohorts into two subgroups with different prognosis. We discovered a set of genera in early-life associated with CTS and defined a 16-genus signature that accurately predicted CTS, the majority of which were correlated with human CRCs. We identified 547 SNPs associated with abundances of these genera. Mediation analysis revealed GM as mediators partially exerting the effect of SNP UNC3869242 within Duox2 on CTS. Intestine cell-specific depletion of Duox2 altered GM composition and contribution of Duox2 depletion to CTS was significantly influenced by GM. Our findings provide potential novel targets for personalized CRC prevention and treatment.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, ZJ, China
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, ZJ, China
| | - Chenhan Zhong
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, ZJ, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mengyuan Yang
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, ZJ, China
| | - Li He
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ning Zhu
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, ZJ, China
| | - Susan E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David W Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, USA
- Department of Molecular and Cellular Medicine and Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ying Yuan
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, ZJ, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, ZJ, China
- Cancer Center, Zhejiang University, Hangzhou, ZJ, China
| |
Collapse
|
4
|
Hadji M, Marzban M, Rashidian H, Naghibzadeh-Tahami A, Gholipour M, Mohebbi E, Safari-Faramani R, Seyyedsalehi MS, Hosseini B, Alizadeh-Navaei R, Rezaianzadeh A, Moradi A, ShahidSales S, Najafi F, Moazed V, Haghdoost AA, Rahimi-Movaghar A, Etemadi A, Malekzadeh R, Boffetta P, Weiderpass E, Kamangar F, Zendehdel K, Pukkala E. Opium use and risk of colorectal cancer: a multi-center case-referent study in Iran. Acta Oncol 2023; 62:1661-1668. [PMID: 37934078 DOI: 10.1080/0284186x.2023.2276326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Opium use has been associated with an increased risk of cancers of the lung, oesophagus, and pancreas, and it was recently classified by the International Agency for Cancer Research as carcinogenic to humans. It is not clear whether opium also increases the risk of colorectal cancer (CRC). The aim of our study was to assess the association between various metrics of opium use and the risk of CRC. METHODS This case-referent study from seven provinces in Iran comprised 848 CRC cases and 3215 referents. Data on opium use (duration, amount, frequency) and potential confounders were collected by trained interviewers. Multivariable unconditional logistic regression models were used to measure odds ratios (OR) adjusted for age, gender, province, marital status, family history of CRC-linked cancers, consumption of red meat, fruits and vegetables, body shape, occupational physical activity, and socioeconomic status. RESULTS Regular opium consumption was not associated with the risk of CRC (OR 0.9, 95% confidence interval, CI: 0.7, 1.2) compared to subjects who never used opium. However, frequent opium use more than twice a day was associated with an increased risk of CRC compared to non-users of opium (OR: 2.0, 95% CI: 1.1, 3.8; p for quadratic trend 0.008). CONCLUSION There seems to be no overall association between opium use and CRC, but the risk of CRC might be increased among persons who use opium many times a day.
Collapse
Affiliation(s)
- Maryam Hadji
- Health Sciences Unit, Faculty of Social Sciences, Tampere University, Tampere, Finland
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Marzban
- Department of Public Health, School of Public Health, Bushehr University of Medical Science, Bushehr, Iran
- Clinical Research Development Center, The Persian Gulf Martyrs, Bushehr University of Medical Science, Bushehr, Iran
| | - Hamideh Rashidian
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Naghibzadeh-Tahami
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- Regional Knowledge HUB for HIV/AIDS Surveillance, Research Centre for Modelling in Health, Institute for Future Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahin Gholipour
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Elham Mohebbi
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Safari-Faramani
- Research Center for Environmental Determinants of Health, School of Public Health, Kermanshah Medical Sciences University, Kermanshah, Iran
| | | | - Bayan Hosseini
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- International Agency for Research on Cancer, Lyon, France
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Rezaianzadeh
- Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolvahab Moradi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Farid Najafi
- International Agency for Research on Cancer, Lyon, France
- Research Center for Environmental Determinants of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Moazed
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Akbar Haghdoost
- Regional Knowledge HUB for HIV/AIDS Surveillance, Research Centre for Modelling in Health, Institute for Future Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Afarin Rahimi-Movaghar
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Etemadi
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Farin Kamangar
- Department of Biology, School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD, USA
| | - Kazem Zendehdel
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Biology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Eero Pukkala
- Health Sciences Unit, Faculty of Social Sciences, Tampere University, Tampere, Finland
- Finnish Cancer Registry - Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland
| |
Collapse
|
5
|
dos Santos JTT, Rosa RCA, Pereira ALE, Assunção-Luiz AV, Bacalá BT, Ferraz VEDF, Flória M. Risk for Hereditary Neoplastic Syndromes in Women with Mismatch Repair-Proficient Endometrial Cancer. Genes (Basel) 2023; 14:1999. [PMID: 38002942 PMCID: PMC10671603 DOI: 10.3390/genes14111999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Endometrial cancer (EC) is a prevalent malignancy in women, and those who are proficient in the DNA mismatch repair (pMMR) pathway may have a family history (FH) that meets the criteria for a hereditary neoplastic condition (HNS). This study aimed to estimate the risk of HNS in women with pMMR endometrial tumors by analyzing their FH. To achieve this, we collaborated with a primary study and collected FH information by telephone. The final sample comprised 42 women who responded to the Primary Screening Questionnaire. Their family pedigrees were drawn and categorized according to internationally standardized criteria for the risk of HNS. Results showed that 26 women (61%) were found to be at risk for HNS, with Bethesda criteria being met by 23%, Amsterdam criteria by 15%, and 4% met the attenuated familial adenomatous polyposis criteria. Our results emphasize the importance of FH and the need to encourage healthcare professionals to collect and document FH more frequently, even if it is self-reported. By identifying individuals with HNS, we can improve their outcomes and reduce the burden of cancer in families with a predisposition to cancer.
Collapse
Affiliation(s)
| | - Reginaldo Cruz Alves Rosa
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil; (R.C.A.R.); (A.L.E.P.); (V.E.d.F.F.)
| | - Alison Luis Eburneo Pereira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil; (R.C.A.R.); (A.L.E.P.); (V.E.d.F.F.)
| | - Alan Vinicius Assunção-Luiz
- Ribeirão Preto College of Nursing, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil; (J.T.T.d.S.); (A.V.A.-L.); (B.T.B.)
| | - Bruna Tavares Bacalá
- Ribeirão Preto College of Nursing, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil; (J.T.T.d.S.); (A.V.A.-L.); (B.T.B.)
| | - Victor Evangelista de Faria Ferraz
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil; (R.C.A.R.); (A.L.E.P.); (V.E.d.F.F.)
| | - Milena Flória
- Ribeirão Preto College of Nursing, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil; (J.T.T.d.S.); (A.V.A.-L.); (B.T.B.)
| |
Collapse
|
6
|
Roht L, Laidre P, Tooming M, Tõnisson N, Nõukas M, Nurm M, Estonian Biobank Research Team, Roomere H, Rekker K, Toome K, Fjodorova O, Murumets Ü, Šamarina U, Pajusalu S, Aaspõllu A, Salumäe L, Muhu K, Soplepmann J, Õunap K, Kahre T. The Prevalence and Molecular Landscape of Lynch Syndrome in the Affected and General Population. Cancers (Basel) 2023; 15:3663. [PMID: 37509324 PMCID: PMC10377710 DOI: 10.3390/cancers15143663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Lynch syndrome (LS) is the most frequent genetically pre-disposed colorectal cancer (CRC) syndrome, accounting for 2-3% of all CRC cases. In Estonia, ~1000 new cases are diagnosed each year. This retroactive and prospective study aimed to estimate the prevalence of LS and describe disease-causing variants in mismatch repair (MMR) genes in a diagnostic setting and in the Estonian general population. METHODS LS data for the diagnostic cohort were gathered from 2012 to 2022 and data for the general population were acquired from the Estonian Biobank (EstBB). Furthermore, we conducted a pilot study to estimate the improvement of LS diagnostic yield by raising the age limit to >50 years for immunohistochemistry analysis of MMR genes. RESULTS We estimated LS live birth prevalence between 1930 and 2003 in Estonia at 1:8638 (95% CI: 1: 9859-7588). During the study period, we gathered 181 LS individuals. We saw almost a six-fold increase in case prevalence, probably deriving from better health awareness, improved diagnostic possibilities and the implementation of MMR IHC testing in a broader age group. CONCLUSION The most common genes affected in the diagnostic and EstBB cohorts were MLH1 and PMS2 genes, respectively. The LS diagnosis mean age was 44.8 years for index cases and 36.8 years (p = 0.003) for family members. In the MMR IHC pilot study, 29% had LS.
Collapse
Affiliation(s)
- Laura Roht
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Piret Laidre
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Mikk Tooming
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Neeme Tõnisson
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
- Estonian Biobank, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Margit Nõukas
- Estonian Biobank, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | - Miriam Nurm
- Estonian Biobank, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | | | - Hanno Roomere
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Kadri Rekker
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Kadri Toome
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Olga Fjodorova
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Ülle Murumets
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Ustina Šamarina
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | | | - Liis Salumäe
- Pathology Service, Tartu University Hospital, 50406 Tartu, Estonia
| | - Kristina Muhu
- Estonian Unemployment Insurance Fund, 10142 Tallinn, Estonia
| | - Jaan Soplepmann
- Department of Surgical and Gynecological Oncology, Surgery Clinic, Tartu University Hospital, 50406 Tartu, Estonia
- Department of Hematology and Oncology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Tiina Kahre
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| |
Collapse
|
7
|
Kansikas M, Vähätalo L, Kantelinen J, Kasela M, Putula J, Døhlen A, Paloviita P, Kärkkäinen E, Lahti N, Arnez P, Kilpinen S, Alcala-Repo B, Pylvänäinen K, Pöyhönen M, Peltomäki P, Järvinen HJ, Seppälä TT, Renkonen-Sinisalo L, Lepistö A, Mecklin JP, Nyström M. Tumor-independent Detection of Inherited Mismatch Repair Deficiency for the Diagnosis of Lynch Syndrome with High Specificity and Sensitivity. CANCER RESEARCH COMMUNICATIONS 2023; 3:361-370. [PMID: 36875157 PMCID: PMC9979712 DOI: 10.1158/2767-9764.crc-22-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED Lynch syndrome (LS) is the most common hereditary cancer syndrome. Early diagnosis improves prognosis and reduces health care costs, through existing cancer surveillance methods. The problem is finding and diagnosing the cancer predisposing genetic condition. The current workup involves a complex array of tests that combines family cancer history and clinical phenotypes with tumor characteristics and sequencing data, followed by a challenging task to interpret the found variant(s). On the basis of the knowledge that an inherited mismatch repair (MMR) deficiency is a hallmark of LS, we have developed and validated a functional MMR test, DiagMMR, that detects inherited MMR deficiency directly from healthy tissue without need of tumor and variant information. The validation included 119 skin biopsies collected from clinically pathogenic MMR variant carriers (MSH2, MSH6) and controls, and was followed by a small clinical pilot study. The repair reaction was performed on proteins extracted from primary fibroblasts and the interpretation was based on the MMR capability of the sample in relation to cutoff, which distinguishes MMR proficient (non-LS) from MMR deficient (LS) function. The results were compared with the reference standard (germline NGS). The test was shown to have exceptional specificity (100%) with high sensitivity (89%) and accuracy (97%). The ability to efficiently distinguish LS carriers from controls was further shown with a high area under the receiving operating characteristic (AUROC) value (0.97). This test offers an excellent tool for detecting inherited MMR deficiency linked to MSH2 or MSH6 and can be used alone or with conventional tests to recognize genetically predisposed individuals. SIGNIFICANCE Clinical validation of DiagMMR shows high accuracy in distinguishing individuals with hereditary MSH2 or MSH6 MMR deficiency (i.e., LS). The method presented overcomes challenges faced by the complexity of current methods and can be used alone or with conventional tests to improve the ability to recognize genetically predisposed individuals.
Collapse
Affiliation(s)
- Minttu Kansikas
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Laura Vähätalo
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jukka Kantelinen
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mariann Kasela
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jaana Putula
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anni Døhlen
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pauliina Paloviita
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Emmi Kärkkäinen
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Niklas Lahti
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Philippe Arnez
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sami Kilpinen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Kirsi Pylvänäinen
- Department of Education and Science, Nova Hospital, Central Finland Health Care District, Jyväskylä, Finland
| | - Minna Pöyhönen
- Department of Genetics, HUSLAB, Helsinki University Hospital Diagnostic Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | | | - Toni T. Seppälä
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Faculty of Medicine and Medical Technology, University of Tampere, Tampere, Finland
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Laura Renkonen-Sinisalo
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Anna Lepistö
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Science, Nova Hospital, Central Finland Health Care District, Jyväskylä, Finland
- Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Minna Nyström
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Imyanitov EN, Kuligina ES, Sokolenko AP, Suspitsin EN, Yanus GA, Iyevleva AG, Ivantsov AO, Aleksakhina SN. Hereditary cancer syndromes. World J Clin Oncol 2023; 14:40-68. [PMID: 36908677 PMCID: PMC9993141 DOI: 10.5306/wjco.v14.i2.40] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 02/21/2023] Open
Abstract
Hereditary cancer syndromes (HCSs) are arguably the most frequent category of Mendelian genetic diseases, as at least 2% of presumably healthy subjects carry highly-penetrant tumor-predisposing pathogenic variants (PVs). Hereditary breast-ovarian cancer and Lynch syndrome make the highest contribution to cancer morbidity; in addition, there are several dozen less frequent types of familial tumors. The development of the majority albeit not all hereditary malignancies involves two-hit mechanism, i.e. the somatic inactivation of the remaining copy of the affected gene. Earlier studies on cancer families suggested nearly fatal penetrance for the majority of HCS genes; however, population-based investigations and especially large-scale next-generation sequencing data sets demonstrate that the presence of some highly-penetrant PVs is often compatible with healthy status. Hereditary cancer research initially focused mainly on cancer detection and prevention. Recent studies identified multiple HCS-specific drug vulnerabilities, which translated into the development of highly efficient therapeutic options.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Ekaterina S Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Anna P Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Evgeny N Suspitsin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Grigoriy A Yanus
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Aglaya G Iyevleva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Alexandr O Ivantsov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Svetlana N Aleksakhina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| |
Collapse
|
9
|
Peltomäki P, Nyström M, Mecklin JP, Seppälä TT. Lynch Syndrome Genetics and Clinical Implications. Gastroenterology 2023; 164:783-799. [PMID: 36706841 DOI: 10.1053/j.gastro.2022.08.058] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/29/2023]
Abstract
Lynch syndrome (LS) is one of the most prevalent hereditary cancer syndromes in humans and accounts for some 3% of unselected patients with colorectal or endometrial cancer and 10%-15% of those with DNA mismatch repair-deficient tumors. Previous studies have established the genetic basis of LS predisposition, but there have been significant advances recently in the understanding of the molecular pathogenesis of LS tumors, which has important implications in clinical management. At the same time, immunotherapy has revolutionized the treatment of advanced cancers with DNA mismatch repair defects. We aim to review the recent progress in the LS field and discuss how the accumulating epidemiologic, clinical, and molecular information has contributed to a more accurate and complete picture of LS, resulting in genotype- and immunologic subtype-specific strategies for surveillance, cancer prevention, and treatment.
Collapse
Affiliation(s)
- Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
| | - Minna Nyström
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Science, Nova Hospital, Central Finland Health Care District, Jyväskylä, Finland; Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Toni T Seppälä
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Applied Tumor Genomics Research Programs Unit, University of Helsinki, Helsinki, Finland; Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
10
|
Hereditary Colorectal Cancer: State of the Art in Lynch Syndrome. Cancers (Basel) 2022; 15:cancers15010075. [PMID: 36612072 PMCID: PMC9817772 DOI: 10.3390/cancers15010075] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Hereditary non-polyposis colorectal cancer is also known as Lynch syndrome. Lynch syndrome is associated with pathogenetic variants in one of the mismatch repair (MMR) genes. In addition to colorectal cancer, the inefficiency of the MMR system leads to a greater predisposition to cancer of the endometrium and other cancers of the abdominal sphere. Molecular diagnosis is performed to identify pathogenetic variants in MMR genes. However, for many patients with clinically suspected Lynch syndrome, it is not possible to identify a pathogenic variant in MMR genes. Molecular diagnosis is essential for referring patients to specific surveillance to prevent the development of tumors related to Lynch syndrome. This review summarizes the main aspects of Lynch syndrome and recent advances in the field and, in particular, emphasizes the factors that can lead to the loss of expression of MMR genes.
Collapse
|
11
|
Chen L, Ye L, Hu B. Hereditary Colorectal Cancer Syndromes: Molecular Genetics and Precision Medicine. Biomedicines 2022; 10:biomedicines10123207. [PMID: 36551963 PMCID: PMC9776295 DOI: 10.3390/biomedicines10123207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Hereditary CRC syndromes account for approximately 5-10% of all CRC, with a lifetime risk of CRC that approaches 50-80% in the absence of endoscopic or surgical treatment. Hereditary CRC syndromes can be phenotypically divided into polyposis and non-polyposis syndrome, mainly according to the conditions of polyps. The typical representatives are familial adenomatous polyposis (FAP) and Lynch syndromes (LS), respectively. Over the past few decades, molecular genetics enhanced the discovery of cancer-predisposing genes and revolutionized the field of clinical oncology. Hereditary CRC syndromes have been a key part of this effort, with data showing that pathogenic variants are present in up to 10% of cases. Molecular phenotypes of tumors can not only help identify individuals with genetic susceptibility to CRC but also guide the precision prevention and treatment for the development of CRC. This review emphasizes the molecular basis and prevention strategies for hereditary CRC syndromes.
Collapse
Affiliation(s)
| | | | - Bing Hu
- Correspondence: ; Tel.: +86-18980601278
| |
Collapse
|
12
|
Curtius K, Gupta S, Boland CR. Review article: Lynch Syndrome-a mechanistic and clinical management update. Aliment Pharmacol Ther 2022; 55:960-977. [PMID: 35315099 DOI: 10.1111/apt.16826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lynch syndrome (LS) is an autosomal dominant familial condition caused by a pathogenic variant (PV) in a DNA mismatch repair gene, which then predisposes carriers to various cancers. AIM To review the pathogenesis, clinical presentation, differential diagnosis and clinical strategies for detection and management of LS. METHODS A narrative review synthesising knowledge from published literature, as well as current National Comprehensive Cancer Network guidelines for management of LS was conducted. RESULTS LS tumours are characterised by unique pathogenesis, ultimately resulting in hypermutation, microsatellite instability and high immunogenicity that has significant implications for cancer risk, clinical presentation, treatment and surveillance. LS is one of the most common hereditary causes of cancer, and about 1 in 279 individuals carry a PV in an LS gene that predisposes to associated cancers. Individuals with LS have increased risks for colorectal, endometrial and other cancers, with significant variation in lifetime risk by LS-associated gene. CONCLUSIONS As genetic testing becomes more widespread, the number of individuals identified with LS is expected to increase in the population. Understanding the pathogenesis of LS informs current strategies for detection and clinical management, and also guides future areas for clinical innovation. Unravelling the mechanisms by which these tumours evolve may help to more precisely tailor management by the gene involved.
Collapse
Affiliation(s)
- Kit Curtius
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Samir Gupta
- Section of Gastroenterology, San Diego Veterans Affairs Healthcare System, San Diego, CA, USA.,Division of Gastroenterology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - C Richard Boland
- Division of Gastroenterology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Abstract
Colorectal cancer is the second leading cause of cancer-associated mortality, with a lifetime risk of approximately 4% to 5%. Colorectal cancer develops from the sequential acquisition of defined genetic mutations in the colonic epithelium. Tumorigenesis from normal tissue to cancer occurs largely through 3 pathways: the chromosomal instability pathway, the microsatellite instability pathway, and the sessile serrated pathway. Colorectal cancer incidence and mortality have decreased by approximately 35% since the beginning of screening programs in the 1990s, although other factors such as use of aspirin for coronary disease prevention and decreased smoking rates may also be important. In this review, we discuss the etiology, epidemiology, and histology of colorectal polyps and cancer.
Collapse
|
14
|
Kim JC, Bodmer WF. Genomic landscape of colorectal carcinogenesis. J Cancer Res Clin Oncol 2022; 148:533-545. [PMID: 35048197 DOI: 10.1007/s00432-021-03888-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022]
|
15
|
Kim JC, Bodmer WF. Genotypic and Phenotypic Characteristics of Hereditary Colorectal Cancer. Ann Coloproctol 2021; 37:368-381. [PMID: 34961301 PMCID: PMC8717071 DOI: 10.3393/ac.2021.00878.0125] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
The genomic causes and clinical manifestations of hereditary colorectal cancer (HCRC) might be stratified into 2 groups, namely, familial (FCRC) and a limited sense of HCRC, respectively. Otherwise, FCRC is canonically classified into 2 major categories; Lynch syndrome (LS) or associated spectra and inherited polyposis syndrome. By contrast, despite an increasing body of genotypic and phenotypic traits, some FCRC cannot be clearly differentiated as definitively single type, and the situation has become more complex as additional causative genes have been discovered. This review provides an overview of HCRC, including 6 LS or associated spectra and 8 inherited polyposis syndromes, according to molecular pathogenesis. Variants and newly-identified FCRC are particularly emphasized, including MUTYH (or MYH)-associated polyposis, Muir-Torre syndrome, constitutional mismatch repair deficiency, EPCAM-associated LS, polymerase proofreading-associated polyposis, RNF43- or NTHL1-associated serrated polyposis syndrome, PTEN hamartoma tumor syndrome, and hereditary mixed polyposis syndrome. We also comment on the clinical utility of multigene panel tests, focusing on comprehensive cancer panels that include HCRC. Finally, HCRC surveillance strategies are recommended, based on revised or notable concepts underpinned by competent validation and clinical implications, and favoring major guidelines. As hereditary syndromes are mainly attributable to genomic constitutions of distinctive ancestral groups, an integrative national HCRC registry and guideline is an urgent priority.
Collapse
Affiliation(s)
- Jin Cheon Kim
- Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea.,Laboratory of Cancer Biology and Genetics, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Walter F Bodmer
- Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Mikaeel RR, Young JP, Li Y, Smith E, Horsnell M, Uylaki W, Tapia Rico G, Poplawski NK, Hardingham JE, Tomita Y, Townsend AR, Feng J, Zibat A, Kaulfuß S, Müller C, Yigit G, Wollnik B, Price TJ. Survey of germline variants in cancer-associated genes in young adults with colorectal cancer. Genes Chromosomes Cancer 2021; 61:105-113. [PMID: 34761457 DOI: 10.1002/gcc.23011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) incidence in young adults is rising. Identifying genetic risk factors is fundamental for the clinical management of patients and their families. This study aimed to identify clinically significant germline variants among young adults with CRC. Whole-exome sequencing data of blood-derived DNA from 133 unrelated young CRC patients (<55 years of age) underwent a comprehensive analysis of 133 cancer-predisposition/implicated genes. All patient tumors were evaluated for mismatch repair deficiency (dMMR). Among 133 patients (aged 16-54 years), 15% (20/133) had clinically actionable pathogenic or likely pathogenic (P/LP) variants in at least 1 well established cancer-predisposing gene: dMMR genes (6), MUTYH [bi-allelic (2), mono-allelic (3)], RNF43 (1), BMPR1A (1), BRCA2 (4), ATM (1), RAD51C (1), and BRIP1 (1). Five patients (4%) had variants in genes implicated in cancer but where the significance of germline variants in CRC risk is uncertain: GATA2 (1), ERCC2 (mono-allelic) (1), ERCC4 (mono-allelic) (1), CFTR (2). Fourteen (11%) had dMMR tumors. Eighteen (14%) reported a first-degree relative with CRC, but only three of these carried P/LP variants. Three patients with variants in polyposis-associated genes showed no polyposis (one each in MUTYH [bi-allelic], RNF43, and BMPR1A). Approximately one in five young adults in our series carried at least one P/LP variant in a cancer-predisposing/implicated gene; 80% of these variants are currently considered clinically actionable in a familial cancer setting. Family history and phenotype have limitations for genetic risk prediction; therefore multigene panel testing and genetic counseling are warranted for all young adults with CRC regardless of those two factors.
Collapse
Affiliation(s)
- Reger R Mikaeel
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia.,SAHMRI Colorectal Node, Basil Hetzel Institute, Woodville South, South Australia, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Biology Department, College of Science, University of Duhok, Duhok, Iraq
| | - Joanne P Young
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia.,SAHMRI Colorectal Node, Basil Hetzel Institute, Woodville South, South Australia, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Eric Smith
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Mehgan Horsnell
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Wendy Uylaki
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Gonzalo Tapia Rico
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Medical Oncology, Icon Cancer Centre Adelaide, Kurralta Park, South Australia, Australia
| | - Nicola K Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Discipline of Paediatrics, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jennifer E Hardingham
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia.,SAHMRI Colorectal Node, Basil Hetzel Institute, Woodville South, South Australia, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Yoko Tomita
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Amanda R Townsend
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Jinghua Feng
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Arne Zibat
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Müller
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Timothy J Price
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia.,Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Olkinuora AP, Peltomäki PT, Aaltonen LA, Rajamäki K. From APC to the genetics of hereditary and familial colon cancer syndromes. Hum Mol Genet 2021; 30:R206-R224. [PMID: 34329396 PMCID: PMC8490010 DOI: 10.1093/hmg/ddab208] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/12/2022] Open
Abstract
Hereditary colorectal cancer (CRC) syndromes attributable to high penetrance mutations represent 9-26% of young-onset CRC cases. The clinical significance of many of these mutations is understood well enough to be used in diagnostics and as an aid in patient care. However, despite the advances made in the field, a significant proportion of familial and early-onset cases remains molecularly uncharacterized and extensive work is still needed to fully understand the genetic nature of CRC susceptibility. With the emergence of next-generation sequencing and associated methods, several predisposition loci have been unraveled, but validation is incomplete. Individuals with cancer-predisposing mutations are currently enrolled in life-long surveillance, but with the development of new treatments, such as cancer vaccinations, this might change in the not so distant future for at least some individuals. For individuals without a known cause for their disease susceptibility, prevention and therapy options are less precise. Herein, we review the progress achieved in the last three decades with a focus on how CRC predisposition genes were discovered. Furthermore, we discuss the clinical implications of these discoveries and anticipate what to expect in the next decade.
Collapse
Affiliation(s)
- Alisa P Olkinuora
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Päivi T Peltomäki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, 00014 Helsinki, Finland
| | - Kristiina Rajamäki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
18
|
Dominguez-Valentin M, Plazzer JP, Sampson JR, Engel C, Aretz S, Jenkins MA, Sunde L, Bernstein I, Capella G, Balaguer F, Macrae F, Winship IM, Thomas H, Evans DG, Burn J, Greenblatt M, de Vos tot Nederveen Cappel WH, Sijmons RH, Nielsen M, Bertario L, Bonanni B, Tibiletti MG, Cavestro GM, Lindblom A, Valle AD, Lopez-Kostner F, Alvarez K, Gluck N, Katz L, Heinimann K, Vaccaro CA, Nakken S, Hovig E, Green K, Lalloo F, Hill J, Vasen HFA, Perne C, Büttner R, Görgens H, Holinski-Feder E, Morak M, Holzapfel S, Hüneburg R, von Knebel Doeberitz M, Loeffler M, Rahner N, Weitz J, Steinke-Lange V, Schmiegel W, Vangala D, Crosbie EJ, Pineda M, Navarro M, Brunet J, Moreira L, Sánchez A, Serra-Burriel M, Mints M, Kariv R, Rosner G, Piñero TA, Pavicic WH, Kalfayan P, Broeke SWT, Mecklin JP, Pylvänäinen K, Renkonen-Sinisalo L, Lepistö A, Peltomäki P, Hopper JL, Win AK, Buchanan DD, Lindor NM, Gallinger S, Marchand LL, Newcomb PA, Figueiredo JC, Thibodeau SN, Therkildsen C, Hansen TVO, Lindberg L, Rødland EA, Neffa F, Esperon P, Tjandra D, Möslein G, Seppälä TT, Møller P. No Difference in Penetrance between Truncating and Missense/Aberrant Splicing Pathogenic Variants in MLH1 and MSH2: A Prospective Lynch Syndrome Database Study. J Clin Med 2021; 10:jcm10132856. [PMID: 34203177 PMCID: PMC8269121 DOI: 10.3390/jcm10132856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/31/2022] Open
Abstract
Background. Lynch syndrome is the most common genetic predisposition for hereditary cancer. Carriers of pathogenic changes in mismatch repair (MMR) genes have an increased risk of developing colorectal (CRC), endometrial, ovarian, urinary tract, prostate, and other cancers, depending on which gene is malfunctioning. In Lynch syndrome, differences in cancer incidence (penetrance) according to the gene involved have led to the stratification of cancer surveillance. By contrast, any differences in penetrance determined by the type of pathogenic variant remain unknown. Objective. To determine cumulative incidences of cancer in carriers of truncating and missense or aberrant splicing pathogenic variants of the MLH1 and MSH2 genes. Methods. Carriers of pathogenic variants of MLH1 (path_MLH1) and MSH2 (path_MSH2) genes filed in the Prospective Lynch Syndrome Database (PLSD) were categorized as truncating or missense/aberrant splicing according to the InSiGHT criteria for pathogenicity. Results. Among 5199 carriers, 1045 had missense or aberrant splicing variants, and 3930 had truncating variants. Prospective observation years for the two groups were 8205 and 34,141 years, respectively, after which there were no significant differences in incidences for cancer overall or for colorectal cancer or endometrial cancers separately. Conclusion. Truncating and missense or aberrant splicing pathogenic variants were associated with similar average cumulative incidences of cancer in carriers of path MLH1 and path_MSH2.
Collapse
Affiliation(s)
- Mev Dominguez-Valentin
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, 0379 Oslo, Norway; (S.N.); (E.H.); (E.A.R.); (P.M.)
- European Hereditary Tumour Group (EHTG), c/o Lindsays, Caledonian Exchange 19A Canning Street, Edinburgh EH3 8HE, UK; (J.R.S.); (C.E.); (G.C.); (J.B.); (R.H.S.); (J.-P.M.); (G.M.); (T.T.S.)
- The International Society for Gastrointestinal Hereditary Tumours (InSiGHT), The Polyposis Registry, St Mark’s Hospital, Watford Road, Harrow, Middlesex HA1 3UJ, UK; (J.-P.P.); (F.M.); (E.H.-F.)
- Correspondence:
| | - John-Paul Plazzer
- The International Society for Gastrointestinal Hereditary Tumours (InSiGHT), The Polyposis Registry, St Mark’s Hospital, Watford Road, Harrow, Middlesex HA1 3UJ, UK; (J.-P.P.); (F.M.); (E.H.-F.)
- Department of Medicine, Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Melbourne, VIC 3050, Australia;
| | - Julian R. Sampson
- European Hereditary Tumour Group (EHTG), c/o Lindsays, Caledonian Exchange 19A Canning Street, Edinburgh EH3 8HE, UK; (J.R.S.); (C.E.); (G.C.); (J.B.); (R.H.S.); (J.-P.M.); (G.M.); (T.T.S.)
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Christoph Engel
- European Hereditary Tumour Group (EHTG), c/o Lindsays, Caledonian Exchange 19A Canning Street, Edinburgh EH3 8HE, UK; (J.R.S.); (C.E.); (G.C.); (J.B.); (R.H.S.); (J.-P.M.); (G.M.); (T.T.S.)
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107 Leipzig, Germany;
| | - Stefan Aretz
- Institute of Human Genetics, National Center for Hereditary Tumor Syndromes, Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany; (S.A.); (C.P.); (S.H.)
| | - Mark A. Jenkins
- Melbourne School of Population and Global Health, Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, VIC 3010, Australia; (M.A.J.); (J.L.H.); (A.K.W.)
| | - Lone Sunde
- Department of Clinical Genetics, Aalborg University Hospital, 9000 Aalborg, Denmark;
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Inge Bernstein
- Department of Surgical Gastroenterology, Aalborg University Hospital, Aalborg University, 9100 Aalborg, Denmark;
- Department of Clinical Medicine, Aalborg University Hospital, Aalborg University, 9100 Aalborg, Denmark
| | - Gabriel Capella
- European Hereditary Tumour Group (EHTG), c/o Lindsays, Caledonian Exchange 19A Canning Street, Edinburgh EH3 8HE, UK; (J.R.S.); (C.E.); (G.C.); (J.B.); (R.H.S.); (J.-P.M.); (G.M.); (T.T.S.)
- The International Society for Gastrointestinal Hereditary Tumours (InSiGHT), The Polyposis Registry, St Mark’s Hospital, Watford Road, Harrow, Middlesex HA1 3UJ, UK; (J.-P.P.); (F.M.); (E.H.-F.)
- Hereditary Cancer Program, Institut Català d’Oncologia-IDIBELL, L, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.P.); (M.N.); (J.B.)
| | - Francesc Balaguer
- Gastroenterology Department, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (F.B.); (L.M.); (A.S.)
| | - Finlay Macrae
- The International Society for Gastrointestinal Hereditary Tumours (InSiGHT), The Polyposis Registry, St Mark’s Hospital, Watford Road, Harrow, Middlesex HA1 3UJ, UK; (J.-P.P.); (F.M.); (E.H.-F.)
- Department of Medicine, Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Melbourne, VIC 3050, Australia;
| | - Ingrid M. Winship
- Department of Genomic Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3052, Australia;
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Huw Thomas
- Department of Surgery and Cancer, St Mark’s Hospital, Imperial College London, London HA1 3UJ, UK;
| | - Dafydd Gareth Evans
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (D.G.E.); (K.G.); (F.L.)
| | - John Burn
- European Hereditary Tumour Group (EHTG), c/o Lindsays, Caledonian Exchange 19A Canning Street, Edinburgh EH3 8HE, UK; (J.R.S.); (C.E.); (G.C.); (J.B.); (R.H.S.); (J.-P.M.); (G.M.); (T.T.S.)
- The International Society for Gastrointestinal Hereditary Tumours (InSiGHT), The Polyposis Registry, St Mark’s Hospital, Watford Road, Harrow, Middlesex HA1 3UJ, UK; (J.-P.P.); (F.M.); (E.H.-F.)
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Marc Greenblatt
- Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | | | - Rolf H. Sijmons
- European Hereditary Tumour Group (EHTG), c/o Lindsays, Caledonian Exchange 19A Canning Street, Edinburgh EH3 8HE, UK; (J.R.S.); (C.E.); (G.C.); (J.B.); (R.H.S.); (J.-P.M.); (G.M.); (T.T.S.)
- The International Society for Gastrointestinal Hereditary Tumours (InSiGHT), The Polyposis Registry, St Mark’s Hospital, Watford Road, Harrow, Middlesex HA1 3UJ, UK; (J.-P.P.); (F.M.); (E.H.-F.)
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, The Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leids Universitair Medisch Centrum, 2300RC Leiden, The Netherlands; (M.N.); (S.W.t.B.)
| | - Lucio Bertario
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, IRCCS, 20141 Milan, Italy;
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy;
| | - Maria Grazia Tibiletti
- Ospedale di Circolo ASST Settelaghi, Centro di Ricerca Tumori Eredo-Familiari, Università dell’Insubria, 21100 Varese, Italy;
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden;
| | - Adriana Della Valle
- Grupo Colaborativo Uruguayo, Investigación de Afecciones Oncológicas Hereditarias (GCU), Hospital Fuerzas Armadas, Montevideo 11600, Uruguay; (A.D.V.); (F.N.); (P.E.)
| | - Francisco Lopez-Kostner
- Programa Cáncer Heredo Familiar, Clínica Universidad de los Andes, Santiago 7550000, Chile; (F.L.-K.); (K.A.)
| | - Karin Alvarez
- Programa Cáncer Heredo Familiar, Clínica Universidad de los Andes, Santiago 7550000, Chile; (F.L.-K.); (K.A.)
| | - Nathan Gluck
- Department of Gastroenterology, Sackler Faculty of Medicine, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Tel-Aviv 64259, Israel; (N.G.); (R.K.); (G.R.)
| | - Lior Katz
- The Department of Gastroenterology, Gastro-Oncology Unit, High Risk and GI Cancer Prevention Clinic, Sheba Medical Center, Sheba 91120, Israel;
| | - Karl Heinimann
- Medical Genetics, Institute for Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland;
| | - Carlos A. Vaccaro
- Hereditary Cancer Program (PROCANHE), Hospital Italiano de Buenos Aires, Buenos Aires C1199ABB, Argentina; (C.A.V.); (T.A.P.); (W.H.P.); (P.K.)
- Instituto de Medicina Traslacional e Ingenieria Biomedica (IMTIB), CONICET IU, Hospital Italiano de Buenos Aires, Buenos Aires C1199ABB, Argentina
| | - Sigve Nakken
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, 0379 Oslo, Norway; (S.N.); (E.H.); (E.A.R.); (P.M.)
- Centre for Cancer Cell Reprogramming (CanCell), Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 4950 Oslo, Norway
| | - Eivind Hovig
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, 0379 Oslo, Norway; (S.N.); (E.H.); (E.A.R.); (P.M.)
- Department of Informatics, Centre for Bioinformatics, University of Oslo, 0316 Oslo, Norway
| | - Kate Green
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (D.G.E.); (K.G.); (F.L.)
| | - Fiona Lalloo
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (D.G.E.); (K.G.); (F.L.)
| | - James Hill
- Department of Surgery, Central Manchester University Hospitals NHS, Foundation Trust, University of Manchester, London M13 9WL, UK;
| | - Hans F. A. Vasen
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, 2333 Leiden, The Netherlands;
| | - Claudia Perne
- Institute of Human Genetics, National Center for Hereditary Tumor Syndromes, Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany; (S.A.); (C.P.); (S.H.)
| | - Reinhard Büttner
- Institute of Pathology, University of Cologne, 50937 Cologne, Germany;
| | - Heike Görgens
- Department of Surgery, Technische Universität Dresden, 01062 Dresden, Germany; (H.G.); (J.W.)
| | - Elke Holinski-Feder
- The International Society for Gastrointestinal Hereditary Tumours (InSiGHT), The Polyposis Registry, St Mark’s Hospital, Watford Road, Harrow, Middlesex HA1 3UJ, UK; (J.-P.P.); (F.M.); (E.H.-F.)
- Campus Innenstadt, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany; (M.M.); (V.S.-L.)
- Center of Medical Genetics, 80335 Munich, Germany
| | - Monika Morak
- Campus Innenstadt, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany; (M.M.); (V.S.-L.)
- Center of Medical Genetics, 80335 Munich, Germany
| | - Stefanie Holzapfel
- Institute of Human Genetics, National Center for Hereditary Tumor Syndromes, Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany; (S.A.); (C.P.); (S.H.)
| | - Robert Hüneburg
- Department of Internal Medicine, University Hospital Bonn, 53127 Bonn, Germany;
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Cooperation Unit Applied Tumour Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107 Leipzig, Germany;
| | - Nils Rahner
- Medical School, Institute of Human Genetics, Heinrich-Heine-University, 40225 Dusseldorf, Germany;
| | - Jürgen Weitz
- Department of Surgery, Technische Universität Dresden, 01062 Dresden, Germany; (H.G.); (J.W.)
| | - Verena Steinke-Lange
- Campus Innenstadt, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany; (M.M.); (V.S.-L.)
- Center of Medical Genetics, 80335 Munich, Germany
| | - Wolff Schmiegel
- Department of Medicine, Knappschaftskrankenhaus, Ruhr-University Bochum, D-44789 Bochum, Germany; (W.S.); (D.V.)
| | - Deepak Vangala
- Department of Medicine, Knappschaftskrankenhaus, Ruhr-University Bochum, D-44789 Bochum, Germany; (W.S.); (D.V.)
| | - Emma J. Crosbie
- Gynaecological Oncology Research Group, Manchester University NHS Foundation Trust, Manchester, UK and Division of Cancer Sciences, University of Manchester, Manchester M20 4GJ, UK;
| | - Marta Pineda
- Hereditary Cancer Program, Institut Català d’Oncologia-IDIBELL, L, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.P.); (M.N.); (J.B.)
| | - Matilde Navarro
- Hereditary Cancer Program, Institut Català d’Oncologia-IDIBELL, L, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.P.); (M.N.); (J.B.)
| | - Joan Brunet
- Hereditary Cancer Program, Institut Català d’Oncologia-IDIBELL, L, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.P.); (M.N.); (J.B.)
| | - Leticia Moreira
- Gastroenterology Department, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (F.B.); (L.M.); (A.S.)
| | - Ariadna Sánchez
- Gastroenterology Department, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (F.B.); (L.M.); (A.S.)
| | - Miquel Serra-Burriel
- Centre de Recerca en Economia i Salut (CRES-UPF), Universitat de Barcelona, 08002 Barcelona, Spain;
| | - Miriam Mints
- Division of Obstetrics and Gyneacology, Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska University Hospital, Solna, 171 77 Stockholm, Sweden;
| | - Revital Kariv
- Department of Gastroenterology, Sackler Faculty of Medicine, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Tel-Aviv 64259, Israel; (N.G.); (R.K.); (G.R.)
| | - Guy Rosner
- Department of Gastroenterology, Sackler Faculty of Medicine, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Tel-Aviv 64259, Israel; (N.G.); (R.K.); (G.R.)
| | - Tamara Alejandra Piñero
- Hereditary Cancer Program (PROCANHE), Hospital Italiano de Buenos Aires, Buenos Aires C1199ABB, Argentina; (C.A.V.); (T.A.P.); (W.H.P.); (P.K.)
- Instituto de Medicina Traslacional e Ingenieria Biomedica (IMTIB), CONICET IU, Hospital Italiano de Buenos Aires, Buenos Aires C1199ABB, Argentina
| | - Walter Hernán Pavicic
- Hereditary Cancer Program (PROCANHE), Hospital Italiano de Buenos Aires, Buenos Aires C1199ABB, Argentina; (C.A.V.); (T.A.P.); (W.H.P.); (P.K.)
- Instituto de Medicina Traslacional e Ingenieria Biomedica (IMTIB), CONICET IU, Hospital Italiano de Buenos Aires, Buenos Aires C1199ABB, Argentina
| | - Pablo Kalfayan
- Hereditary Cancer Program (PROCANHE), Hospital Italiano de Buenos Aires, Buenos Aires C1199ABB, Argentina; (C.A.V.); (T.A.P.); (W.H.P.); (P.K.)
| | - Sanne W. ten Broeke
- Department of Clinical Genetics, Leids Universitair Medisch Centrum, 2300RC Leiden, The Netherlands; (M.N.); (S.W.t.B.)
| | - Jukka-Pekka Mecklin
- European Hereditary Tumour Group (EHTG), c/o Lindsays, Caledonian Exchange 19A Canning Street, Edinburgh EH3 8HE, UK; (J.R.S.); (C.E.); (G.C.); (J.B.); (R.H.S.); (J.-P.M.); (G.M.); (T.T.S.)
- The International Society for Gastrointestinal Hereditary Tumours (InSiGHT), The Polyposis Registry, St Mark’s Hospital, Watford Road, Harrow, Middlesex HA1 3UJ, UK; (J.-P.P.); (F.M.); (E.H.-F.)
- Departments of Surgery, Central Finland Hospital Nova, University of Jyväskylä, 40620 Jyväskylä, Finland
| | - Kirsi Pylvänäinen
- Department of Education and Science, Sport and Health Sciences, Central Finland Hospital Nova, University of Jyväskylä, FI-40014 Jyväskylä, Finland;
| | - Laura Renkonen-Sinisalo
- Applied Tumour Genomics Research Program, University of Helsinki, 00014 Helsinki, Finland; (L.R.-S.); (A.L.)
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, 00280 Helsinki, Finland
| | - Anna Lepistö
- Applied Tumour Genomics Research Program, University of Helsinki, 00014 Helsinki, Finland; (L.R.-S.); (A.L.)
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, 00280 Helsinki, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland;
| | - John L. Hopper
- Melbourne School of Population and Global Health, Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, VIC 3010, Australia; (M.A.J.); (J.L.H.); (A.K.W.)
| | - Aung Ko Win
- Melbourne School of Population and Global Health, Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, VIC 3010, Australia; (M.A.J.); (J.L.H.); (A.K.W.)
| | - Daniel D. Buchanan
- Centre for Cancer Research, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia;
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC 3010, Australia
| | - Noralane M. Lindor
- Department of Health Science Research, Mayo Clinic Arizona, Phoenix, AZ 85054, USA;
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada;
| | | | - Polly A. Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA;
| | | | - Stephen N. Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Christina Therkildsen
- The Danish HNPCC Register, Clinical Research Centre, Copenhagen University Hospital, 2560 Hvidovre, Denmark;
| | - Thomas V. O. Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark;
| | - Lars Lindberg
- Gastro Unit, Copenhagen University Hospital, 2560 Hvidovre, Denmark;
| | - Einar Andreas Rødland
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, 0379 Oslo, Norway; (S.N.); (E.H.); (E.A.R.); (P.M.)
| | - Florencia Neffa
- Grupo Colaborativo Uruguayo, Investigación de Afecciones Oncológicas Hereditarias (GCU), Hospital Fuerzas Armadas, Montevideo 11600, Uruguay; (A.D.V.); (F.N.); (P.E.)
| | - Patricia Esperon
- Grupo Colaborativo Uruguayo, Investigación de Afecciones Oncológicas Hereditarias (GCU), Hospital Fuerzas Armadas, Montevideo 11600, Uruguay; (A.D.V.); (F.N.); (P.E.)
| | - Douglas Tjandra
- Department of Medicine, Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Melbourne, VIC 3050, Australia;
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Gabriela Möslein
- European Hereditary Tumour Group (EHTG), c/o Lindsays, Caledonian Exchange 19A Canning Street, Edinburgh EH3 8HE, UK; (J.R.S.); (C.E.); (G.C.); (J.B.); (R.H.S.); (J.-P.M.); (G.M.); (T.T.S.)
- The International Society for Gastrointestinal Hereditary Tumours (InSiGHT), The Polyposis Registry, St Mark’s Hospital, Watford Road, Harrow, Middlesex HA1 3UJ, UK; (J.-P.P.); (F.M.); (E.H.-F.)
- Surgical Center for Hereditary Tumors, Ev. Bethesda Khs Duisburg, University Witten-Herdecke, 58448 Herdecke, Germany
| | - Toni T. Seppälä
- European Hereditary Tumour Group (EHTG), c/o Lindsays, Caledonian Exchange 19A Canning Street, Edinburgh EH3 8HE, UK; (J.R.S.); (C.E.); (G.C.); (J.B.); (R.H.S.); (J.-P.M.); (G.M.); (T.T.S.)
- The International Society for Gastrointestinal Hereditary Tumours (InSiGHT), The Polyposis Registry, St Mark’s Hospital, Watford Road, Harrow, Middlesex HA1 3UJ, UK; (J.-P.P.); (F.M.); (E.H.-F.)
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, 00280 Helsinki, Finland
- Department of Surgical Oncology, Johns Hopkins Hospital, Baltimore, MA 21287, USA
| | - Pål Møller
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, 0379 Oslo, Norway; (S.N.); (E.H.); (E.A.R.); (P.M.)
- European Hereditary Tumour Group (EHTG), c/o Lindsays, Caledonian Exchange 19A Canning Street, Edinburgh EH3 8HE, UK; (J.R.S.); (C.E.); (G.C.); (J.B.); (R.H.S.); (J.-P.M.); (G.M.); (T.T.S.)
- The International Society for Gastrointestinal Hereditary Tumours (InSiGHT), The Polyposis Registry, St Mark’s Hospital, Watford Road, Harrow, Middlesex HA1 3UJ, UK; (J.-P.P.); (F.M.); (E.H.-F.)
| |
Collapse
|
19
|
Boland CR, Yurgelun MB, Mraz KA, Boland PM. Managing gastric cancer risk in lynch syndrome: controversies and recommendations. Fam Cancer 2021; 21:75-78. [PMID: 33611683 PMCID: PMC8799584 DOI: 10.1007/s10689-021-00235-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 01/01/2023]
Affiliation(s)
- C Richard Boland
- Department of Medicine, University of California San Diego, San Diego, CA, USA.
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Patrick M Boland
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|