1
|
Xie Y, Toyoda F, Ding W, Matsuura H. Involvement of CaMKII in the modulation of I Ks under oxidative stress in guinea pig sinoatrial node cells. Biochem Biophys Res Commun 2025; 754:151554. [PMID: 40022813 DOI: 10.1016/j.bbrc.2025.151554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/04/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Our previous study found that Ca2+/calmodulin-dependent protein kinase II (CaMKII) potentiates the slow delayed rectifier K+ current (IKs) in sinoatrial node (SAN) pacemaker cells. Recently, oxidative activation of CaMKII has emerged as a major cause of SAN dysfunction; however, its correlation with IKs regulation remains unclear. In this study, we investigated the effect of hydrogen peroxide (H2O2) on IKs in SAN cells isolated from guinea pig heart. Whole-cell patch-clamp recordings were performed using an EGTA (5 mM) pipette solution to stabilize intracellular Ca2+ levels (pCa 7). The results showed that 5 min of H2O2 (100 μM) perfusion initiated an increase in IKs, which gradually increased to saturation (∼60.5 % enhancement from baseline to saturation) after 10 min of H2O2 exposure. In contrast, IKs remained almost unchanged in the presence of catalase (1000 units mL-1). These observations were replicable in atrial and ventricular cardiomyocytes. H2O2 failed to stimulate KCNQ1/KCNE1 currents in HEK and CHO cells expressing low CaMKII levels. In SAN cells, H2O2-induced IKs enhancement was strongly attenuated by intracellular dialysis with a lower Ca2+ concentration (pCa 10) or by pretreatment with KN-93 (1 μM), suggesting that Ca2+/calmodulin binding to CaMKII is a prerequisite for CaMKII activation. Autocamtide-2 inhibitory peptide (AIP, 1 μM), an inhibitor of the catalytic domain of CaMKII, almost completely abolished the H2O2-induced potentiation of IKs. Taken together, these findings imply that H2O2 enhances cardiac IKs through the oxidative activation of CaMKII.
Collapse
Affiliation(s)
- Yu Xie
- School of Basic Medical Sciences, Beihua University, Jilin, China; Department of Physiology, Shiga University of Medical Science, Otsu, Japan.
| | - Futoshi Toyoda
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan; Central Research Laboratory, Shiga University of Medical Science, Otsu, Japan
| | - Weiguang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
2
|
Long V, El Gebeily G, Leblanc É, Senhadji M, Fiset C. Cardiac automaticity is modulated by IKACh in sinoatrial node during pregnancy. Cardiovasc Res 2024; 120:2208-2219. [PMID: 39259837 PMCID: PMC11687396 DOI: 10.1093/cvr/cvae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/29/2024] [Accepted: 07/14/2024] [Indexed: 09/13/2024] Open
Abstract
AIMS Pregnant (P) women have a significantly elevated resting heart rate (HR), which makes cardiac arrhythmias more likely to occur. Although electrical remodelling of the sinoatrial node (SAN) has been documented, the underlying mechanism is not fully understood. The acetylcholine-activated potassium current (IKACh), one of the major repolarizing currents in the SAN, plays a critical role in HR control by hyperpolarizing the maximal diastolic potential (MDP) of the SAN action potential (AP), thereby reducing SAN automaticity and HR. Thus, considering its essential role in cardiac automaticity, this study aims to determine whether changes in IKACh are potentially involved in the increased HR associated with pregnancy. METHODS AND RESULTS Experiments were conducted on non-pregnant (NP) and pregnant (P; 17-18 days gestation) female CD-1 mice aged 2 to 4 months. IKACh was recorded on spontaneously beating SAN cells using the muscarinic agonist carbachol (CCh). Voltage-clamp data showed a reduction in IKACh density during pregnancy, which returned to control values shortly after delivery. The reduction in IKACh was explained by a decrease in protein expression of Kir3.1 channel subunit and the muscarinic type 2 receptor. In agreement with these findings, current-clamp data showed that the MDP of SAN cells from P mice were less hyperpolarized following CCh administration. Surface electrocardiograms (ECGs) recorded on anaesthetized mice revealed that the cholinergic antagonist atropine and the selective KACh channel blocker tertiapin-Q increased HR in NP mice and had only a minimal effect on P mice. AP and ECG data also showed that pregnancy is associated with a decrease in beating and HR variability, respectively. CONCLUSION IKACh function and expression are decreased in the mouse SAN during pregnancy, strongly suggesting that, in addition to other electrical remodelling of the SAN, reduced IKACh also plays an important role in the pregnancy-induced increased HR.
Collapse
Affiliation(s)
- Valérie Long
- Research Center, Montreal Heart Institute, 5000 Bélanger, Montréal, Québec, Canada H1T 1C8
- Faculty of Pharmacy, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada H3T 1J4
| | - Gracia El Gebeily
- Research Center, Montreal Heart Institute, 5000 Bélanger, Montréal, Québec, Canada H1T 1C8
- Faculty of Pharmacy, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada H3T 1J4
| | - Élisabeth Leblanc
- Research Center, Montreal Heart Institute, 5000 Bélanger, Montréal, Québec, Canada H1T 1C8
- Faculty of Pharmacy, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada H3T 1J4
| | - Marwa Senhadji
- Research Center, Montreal Heart Institute, 5000 Bélanger, Montréal, Québec, Canada H1T 1C8
- Faculty of Pharmacy, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada H3T 1J4
| | - Céline Fiset
- Research Center, Montreal Heart Institute, 5000 Bélanger, Montréal, Québec, Canada H1T 1C8
- Faculty of Pharmacy, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada H3T 1J4
| |
Collapse
|
3
|
Si M, Darvish A, Paulhus K, Kumar P, Hamilton KA, Glasscock E. Epilepsy-associated Kv1.1 channel subunits regulate intrinsic cardiac pacemaking in mice. J Gen Physiol 2024; 156:e202413578. [PMID: 39037413 PMCID: PMC11261506 DOI: 10.1085/jgp.202413578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
The heartbeat originates from spontaneous action potentials in specialized pacemaker cells within the sinoatrial node (SAN) of the right atrium. Voltage-gated potassium channels in SAN myocytes mediate outward K+ currents that regulate cardiac pacemaking by controlling action potential repolarization, influencing the time between heartbeats. Gene expression studies have identified transcripts for many types of voltage-gated potassium channels in the SAN, but most remain of unknown functional significance. One such gene is Kcna1, which encodes epilepsy-associated voltage-gated Kv1.1 K+ channel α-subunits that are important for regulating action potential firing in neurons and cardiomyocytes. Here, we investigated the functional contribution of Kv1.1 to cardiac pacemaking at the whole heart, SAN, and SAN myocyte levels by performing Langendorff-perfused isolated heart preparations, multielectrode array recordings, patch clamp electrophysiology, and immunocytochemistry using Kcna1 knockout (KO) and wild-type (WT) mice. Our results showed that either genetic or pharmacological ablation of Kv1.1 significantly decreased the SAN firing rate, primarily by impairing SAN myocyte action potential repolarization. Voltage-clamp electrophysiology and immunocytochemistry revealed that Kv1.1 exerts its effects despite contributing only a small outward K+ current component, which we term IKv1.1, and despite apparently being present in low abundance at the protein level in SAN myocytes. These findings establish Kv1.1 as the first identified member of the Kv1 channel family to play a role in sinoatrial function, thereby rendering it a potential candidate and therapeutic targeting of sinus node dysfunction. Furthermore, our results demonstrate that small currents generated via low-abundance channels can still have significant impacts on cardiac pacemaking.
Collapse
Affiliation(s)
- Man Si
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Ahmad Darvish
- School of Biological and Physical Science, Northwestern State University, Natchitoches, LA, USA
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Shreveport, LA, USA
| | - Kelsey Paulhus
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Praveen Kumar
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Kathryn A. Hamilton
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Shreveport, LA, USA
| | - Edward Glasscock
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Shreveport, LA, USA
| |
Collapse
|
4
|
Short B. Kv1.1 channels help set the pace. J Gen Physiol 2024; 156:e202413649. [PMID: 39110119 PMCID: PMC11307325 DOI: 10.1085/jgp.202413649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
JGP study (Si et al. https://doi.org/10.1085/jgp.202413578) reveals that, although they are present at low levels and only generate small currents in the sinoatrial node, Kv1.1 channels have a significant impact on cardiac pacemaking.
Collapse
Affiliation(s)
- Ben Short
- Science Writer, Rockefeller University Press, New York, NY, USA
| |
Collapse
|
5
|
Quigley KS, Gianaros PJ, Norman GJ, Jennings JR, Berntson GG, de Geus EJC. Publication guidelines for human heart rate and heart rate variability studies in psychophysiology-Part 1: Physiological underpinnings and foundations of measurement. Psychophysiology 2024; 61:e14604. [PMID: 38873876 PMCID: PMC11539922 DOI: 10.1111/psyp.14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/22/2023] [Accepted: 04/04/2024] [Indexed: 06/15/2024]
Abstract
This Committee Report provides methodological, interpretive, and reporting guidance for researchers who use measures of heart rate (HR) and heart rate variability (HRV) in psychophysiological research. We provide brief summaries of best practices in measuring HR and HRV via electrocardiographic and photoplethysmographic signals in laboratory, field (ambulatory), and brain-imaging contexts to address research questions incorporating measures of HR and HRV. The Report emphasizes evidence for the strengths and weaknesses of different recording and derivation methods for measures of HR and HRV. Along with this guidance, the Report reviews what is known about the origin of the heartbeat and its neural control, including factors that produce and influence HRV metrics. The Report concludes with checklists to guide authors in study design and analysis considerations, as well as guidance on the reporting of key methodological details and characteristics of the samples under study. It is expected that rigorous and transparent recording and reporting of HR and HRV measures will strengthen inferences across the many applications of these metrics in psychophysiology. The prior Committee Reports on HR and HRV are several decades old. Since their appearance, technologies for human cardiac and vascular monitoring in laboratory and daily life (i.e., ambulatory) contexts have greatly expanded. This Committee Report was prepared for the Society for Psychophysiological Research to provide updated methodological and interpretive guidance, as well as to summarize best practices for reporting HR and HRV studies in humans.
Collapse
Affiliation(s)
- Karen S. Quigley
- Department of Psychology, Northeastern University, Boston,
Massachusetts, USA
| | - Peter J. Gianaros
- Department of Psychology, University of Pittsburgh,
Pittsburgh, Pennsylvania, USA
| | - Greg J. Norman
- Department of Psychology, The University of Chicago,
Chicago, Illinois, USA
| | - J. Richard Jennings
- Department of Psychiatry & Psychology, University of
Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gary G. Berntson
- Department of Psychology & Psychiatry, The Ohio State
University, Columbus, Ohio, USA
| | - Eco J. C. de Geus
- Department of Biological Psychology, Vrije Universiteit
Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
McNeill SM, Zhao P. The roles of RGS proteins in cardiometabolic disease. Br J Pharmacol 2024; 181:2319-2337. [PMID: 36964984 DOI: 10.1111/bph.16076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the most prominent receptors on the surface of the cell and play a central role in the regulation of cardiac and metabolic functions. GPCRs transmit extracellular stimuli to the interior of the cells by activating one or more heterotrimeric G proteins. The duration and intensity of G protein-mediated signalling are tightly controlled by a large array of intracellular mediators, including the regulator of G protein signalling (RGS) proteins. RGS proteins selectively promote the GTPase activity of a subset of Gα subunits, thus serving as negative regulators in a pathway-dependent manner. In the current review, we summarise the involvement of RGS proteins in cardiometabolic function with a focus on their tissue distribution, mechanisms of action and dysregulation under various disease conditions. We also discuss the potential therapeutic applications for targeting RGS proteins in treating cardiometabolic conditions and current progress in developing RGS modulators. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Samantha M McNeill
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Peishen Zhao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (CCeMMP), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Hennis K, Piantoni C, Biel M, Fenske S, Wahl-Schott C. Pacemaker Channels and the Chronotropic Response in Health and Disease. Circ Res 2024; 134:1348-1378. [PMID: 38723033 PMCID: PMC11081487 DOI: 10.1161/circresaha.123.323250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Loss or dysregulation of the normally precise control of heart rate via the autonomic nervous system plays a critical role during the development and progression of cardiovascular disease-including ischemic heart disease, heart failure, and arrhythmias. While the clinical significance of regulating changes in heart rate, known as the chronotropic effect, is undeniable, the mechanisms controlling these changes remain not fully understood. Heart rate acceleration and deceleration are mediated by increasing or decreasing the spontaneous firing rate of pacemaker cells in the sinoatrial node. During the transition from rest to activity, sympathetic neurons stimulate these cells by activating β-adrenergic receptors and increasing intracellular cyclic adenosine monophosphate. The same signal transduction pathway is targeted by positive chronotropic drugs such as norepinephrine and dobutamine, which are used in the treatment of cardiogenic shock and severe heart failure. The cyclic adenosine monophosphate-sensitive hyperpolarization-activated current (If) in pacemaker cells is passed by hyperpolarization-activated cyclic nucleotide-gated cation channels and is critical for generating the autonomous heartbeat. In addition, this current has been suggested to play a central role in the chronotropic effect. Recent studies demonstrate that cyclic adenosine monophosphate-dependent regulation of HCN4 (hyperpolarization-activated cyclic nucleotide-gated cation channel isoform 4) acts to stabilize the heart rate, particularly during rapid rate transitions induced by the autonomic nervous system. The mechanism is based on creating a balance between firing and recently discovered nonfiring pacemaker cells in the sinoatrial node. In this way, hyperpolarization-activated cyclic nucleotide-gated cation channels may protect the heart from sinoatrial node dysfunction, secondary arrhythmia of the atria, and potentially fatal tachyarrhythmia of the ventricles. Here, we review the latest findings on sinoatrial node automaticity and discuss the physiological and pathophysiological role of HCN pacemaker channels in the chronotropic response and beyond.
Collapse
Affiliation(s)
- Konstantin Hennis
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Chiara Piantoni
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Stefanie Fenske
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Christian Wahl-Schott
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
8
|
Wang L, Wang X, Chen J, Liu Y, Wang G, Chen L, Ni W, Jia Y, Dai C, Shao W, Liu B. Low-intensity exercise training improves systolic function of heart during metastatic melanoma-induced cachexia in mice. Heliyon 2024; 10:e25562. [PMID: 38370171 PMCID: PMC10874746 DOI: 10.1016/j.heliyon.2024.e25562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Cardiac dysfunction frequently emerges in the initial stages of cancer cachexia, posing a significant complication of the disease. Physical fitness is commonly recommended in these early stages of cancer cachexia due to its beneficial impacts on various aspects of the condition, including cardiac dysfunction. However, the direct functional impacts of exercise on the heart during cancer cachexia largely remain unexplored. In this study, we induced cancer cachexia in mice using a metastatic B16F10 melanoma model. Concurrently, these mice underwent a low-intensity exercise regimen to investigate its potential role in cardiac function during cachexia. Our findings indicate that exercise training can help prevent metastatic melanoma-induced muscle loss without significant alterations to body and fat weight. Moreover, exercise improved the melanoma-induced decline in left ventricular ejection fraction and fractional shortening, while also mitigating the increase in high-sensitive cardiac troponin T levels caused by metastatic melanoma in mice. Transcriptome analysis revealed that exercise significantly reversed the transcriptional alterations in the heart induced by melanoma, which were primarily enriched in pathways related to heart contraction. These results suggest that exercise can improve systolic heart function and directly influence the transcriptome of the heart during metastatic melanoma-induced cachexia.
Collapse
Affiliation(s)
- Lin Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Xuchao Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Jingyu Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Yang Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
- Liaoning University of Traditional Chinese Medicine, Chongshan East Road 79, Shenyang 110032, China
| | - Gang Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Linjian Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Ni
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Yijia Jia
- Zhoukou Central Hospital, Renmin Road 26, Zhoukou, 466000, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Shao
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Binbin Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| |
Collapse
|
9
|
Marcoux E, Sosnowski D, Ninni S, Mackasey M, Cadrin-Tourigny J, Roberts JD, Olesen MS, Fatkin D, Nattel S. Genetic Atrial Cardiomyopathies: Common Features, Specific Differences, and Broader Relevance to Understanding Atrial Cardiomyopathy. Circ Arrhythm Electrophysiol 2023; 16:675-698. [PMID: 38018478 DOI: 10.1161/circep.123.003750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Atrial cardiomyopathy is a condition that causes electrical and contractile dysfunction of the atria, often along with structural and functional changes. Atrial cardiomyopathy most commonly occurs in conjunction with ventricular dysfunction, in which case it is difficult to discern the atrial features that are secondary to ventricular dysfunction from those that arise as a result of primary atrial abnormalities. Isolated atrial cardiomyopathy (atrial-selective cardiomyopathy [ASCM], with minimal or no ventricular function disturbance) is relatively uncommon and has most frequently been reported in association with deleterious rare genetic variants. The genes involved can affect proteins responsible for various biological functions, not necessarily limited to the heart but also involving extracardiac tissues. Atrial enlargement and atrial fibrillation are common complications of ASCM and are often the predominant clinical features. Despite progress in identifying disease-causing rare variants, an overarching understanding and approach to the molecular pathogenesis, phenotypic spectrum, and treatment of genetic ASCM is still lacking. In this review, we aim to analyze the literature relevant to genetic ASCM to understand the key features of this rather rare condition, as well as to identify distinct characteristics of ASCM and its arrhythmic complications that are related to specific genotypes. We outline the insights that have been gained using basic research models of genetic ASCM in vitro and in vivo and correlate these with patient outcomes. Finally, we provide suggestions for the future investigation of patients with genetic ASCM and improvements to basic scientific models and systems. Overall, a better understanding of the genetic underpinnings of ASCM will not only provide a better understanding of this condition but also promises to clarify our appreciation of the more commonly occurring forms of atrial cardiomyopathy associated with ventricular dysfunction.
Collapse
Affiliation(s)
- Edouard Marcoux
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Faculty of Pharmacy, Université de Montréal. (E.M.)
| | - Deanna Sosnowski
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (D.S., M.M., S. Nattel)
| | - Sandro Ninni
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, France (S. Ninni)
| | - Martin Mackasey
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (D.S., M.M., S. Nattel)
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Faculty of Medicine, Université de Montréal. (J.C.-T.)
| | - Jason D Roberts
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Canada (J.D.R.)
| | - Morten Salling Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (M.S.O.)
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst (D.F.)
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington (D.F.)
- Department of Cardiology, St Vincent's Hospital, Darlinghurst, NSW, Australia (D.F.)
| | - Stanley Nattel
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal. (S. Nattel.)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (D.S., M.M., S. Nattel)
- Institute of Pharmacology. West German Heart and Vascular Center, University Duisburg-Essen, Germany (S. Nattel)
- IHU LYRIC & Fondation Bordeaux Université de Bordeaux, France (S. Nattel)
| |
Collapse
|
10
|
Sonkodi B, Radovits T, Csulak E, Kopper B, Sydó N, Merkely B. Orthostasis Is Impaired Due to Fatiguing Intensive Acute Concentric Exercise Succeeded by Isometric Weight-Loaded Wall-Sit in Delayed-Onset Muscle Soreness: A Pilot Study. Sports (Basel) 2023; 11:209. [PMID: 37999426 PMCID: PMC10675158 DOI: 10.3390/sports11110209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
The aim of the study was to investigate any indication of diminished orthostatic tolerance as a result of fatiguing intensive acute concentric exercise with a successive isometric wall-sit followed by an orthostatic stress test, with a special focus on any distinguishable alterations due to a delayed-onset muscle soreness effect. The exercise protocol was carried out among nineteen (10 female, 9 male) junior swimmers from the Hungarian National Swim Team. All athletes showed a positive orthostatic stress test right after our exercise protocol. The diastolic blood pressure was significantly lower due to the delayed-onset muscle soreness effect in the standing position after the supine position of the orthostatic stress test, in contrast to the athletes who did not experience delayed-onset muscle soreness. Furthermore, the heart rate was dysregulated in athletes with a delayed-onset muscle soreness effect when they assumed a supine position after the sustained standing position during the orthostatic stress test, in contrast to the athletes without delayed-onset muscle soreness. Interesting to note is that, in three subjects, the sustained standing position decreased the heart rate below the level of the initial supine position and six athletes experienced dizziness in the standing position, and all of these athletes were from the group that experienced delayed-onset muscle soreness. Accordingly, this study, for the first time, demonstrated that delayed-onset muscle soreness impairs orthostasis after unaccustomed fatiguing intensive acute concentric exercise with a successive isometric weight-loaded wall-sit; however, validation of this association should be investigated in a larger sample size.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Emese Csulak
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Bence Kopper
- Faculty of Kinesiology, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Nóra Sydó
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Béla Merkely
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| |
Collapse
|
11
|
Kanemaru K, Cranley J, Muraro D, Miranda AMA, Ho SY, Wilbrey-Clark A, Patrick Pett J, Polanski K, Richardson L, Litvinukova M, Kumasaka N, Qin Y, Jablonska Z, Semprich CI, Mach L, Dabrowska M, Richoz N, Bolt L, Mamanova L, Kapuge R, Barnett SN, Perera S, Talavera-López C, Mulas I, Mahbubani KT, Tuck L, Wang L, Huang MM, Prete M, Pritchard S, Dark J, Saeb-Parsy K, Patel M, Clatworthy MR, Hübner N, Chowdhury RA, Noseda M, Teichmann SA. Spatially resolved multiomics of human cardiac niches. Nature 2023; 619:801-810. [PMID: 37438528 PMCID: PMC10371870 DOI: 10.1038/s41586-023-06311-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 06/12/2023] [Indexed: 07/14/2023]
Abstract
The function of a cell is defined by its intrinsic characteristics and its niche: the tissue microenvironment in which it dwells. Here we combine single-cell and spatial transcriptomics data to discover cellular niches within eight regions of the human heart. We map cells to microanatomical locations and integrate knowledge-based and unsupervised structural annotations. We also profile the cells of the human cardiac conduction system1. The results revealed their distinctive repertoire of ion channels, G-protein-coupled receptors (GPCRs) and regulatory networks, and implicated FOXP2 in the pacemaker phenotype. We show that the sinoatrial node is compartmentalized, with a core of pacemaker cells, fibroblasts and glial cells supporting glutamatergic signalling. Using a custom CellPhoneDB.org module, we identify trans-synaptic pacemaker cell interactions with glia. We introduce a druggable target prediction tool, drug2cell, which leverages single-cell profiles and drug-target interactions to provide mechanistic insights into the chronotropic effects of drugs, including GLP-1 analogues. In the epicardium, we show enrichment of both IgG+ and IgA+ plasma cells forming immune niches that may contribute to infection defence. Overall, we provide new clarity to cardiac electro-anatomy and immunology, and our suite of computational approaches can be applied to other tissues and organs.
Collapse
Affiliation(s)
- Kazumasa Kanemaru
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - James Cranley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Daniele Muraro
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Siew Yen Ho
- Cardiac Morphology Unit, Royal Brompton Hospital and Imperial College London, London, UK
| | - Anna Wilbrey-Clark
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Jan Patrick Pett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Laura Richardson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Monika Litvinukova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Natsuhiko Kumasaka
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Yue Qin
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Zuzanna Jablonska
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Claudia I Semprich
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Lukas Mach
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton Hospital, London, UK
| | - Monika Dabrowska
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Nathan Richoz
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Rakeshlal Kapuge
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sam N Barnett
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Shani Perera
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Carlos Talavera-López
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Würzburg Institute for Systems Immunology, Max Planck Research Group, Julius-Maximilian-Universität, Würzburg, Germany
| | - Ilaria Mulas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge, and Cambridge Biorepository for Translational Medicine, NIHR Cambridge Biomedical Centre, Cambridge, UK
| | - Liz Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Lu Wang
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Margaret M Huang
- Department of Surgery, University of Cambridge, and Cambridge Biorepository for Translational Medicine, NIHR Cambridge Biomedical Centre, Cambridge, UK
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sophie Pritchard
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - John Dark
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, and Cambridge Biorepository for Translational Medicine, NIHR Cambridge Biomedical Centre, Cambridge, UK
| | - Minal Patel
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | | | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
McClenaghan C, Mukadam MA, Roeglin J, Tryon RC, Grabner M, Dayal A, Meyer GA, Nichols CG. Skeletal muscle delimited myopathy and verapamil toxicity in SUR2 mutant mouse models of AIMS. EMBO Mol Med 2023; 15:e16883. [PMID: 37154692 PMCID: PMC10245035 DOI: 10.15252/emmm.202216883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
ABCC9-related intellectual disability and myopathy syndrome (AIMS) arises from loss-of-function (LoF) mutations in the ABCC9 gene, which encodes the SUR2 subunit of ATP-sensitive potassium (KATP ) channels. KATP channels are found throughout the cardiovascular system and skeletal muscle and couple cellular metabolism to excitability. AIMS individuals show fatigability, muscle spasms, and cardiac dysfunction. We found reduced exercise performance in mouse models of AIMS harboring premature stop codons in ABCC9. Given the roles of KATP channels in all muscles, we sought to determine how myopathy arises using tissue-selective suppression of KATP and found that LoF in skeletal muscle, specifically, underlies myopathy. In isolated muscle, SUR2 LoF results in abnormal generation of unstimulated forces, potentially explaining painful spasms in AIMS. We sought to determine whether excessive Ca2+ influx through CaV 1.1 channels was responsible for myopathology but found that the Ca2+ channel blocker verapamil unexpectedly resulted in premature death of AIMS mice and that rendering CaV 1.1 channels nonpermeable by mutation failed to reverse pathology; results which caution against the use of calcium channel blockers in AIMS.
Collapse
Affiliation(s)
- Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, and Department of Cell Biology and PhysiologyWashington University School of MedicineSt. LouisMOUSA
- Center for Advanced Biotechnology and Medicine, and Departments of Pharmacology and Medicine, Robert Wood Johnson Medical SchoolRutgers UniversityPiscatawayNJUSA
| | - Maya A Mukadam
- Center for the Investigation of Membrane Excitability Diseases, and Department of Cell Biology and PhysiologyWashington University School of MedicineSt. LouisMOUSA
| | - Jacob Roeglin
- Center for the Investigation of Membrane Excitability Diseases, and Department of Cell Biology and PhysiologyWashington University School of MedicineSt. LouisMOUSA
| | - Robert C Tryon
- Center for the Investigation of Membrane Excitability Diseases, and Department of Cell Biology and PhysiologyWashington University School of MedicineSt. LouisMOUSA
| | - Manfred Grabner
- Department of PharmacologyMedical University of InnsbruckInnsbruckAustria
| | - Anamika Dayal
- Department of PharmacologyMedical University of InnsbruckInnsbruckAustria
| | - Gretchen A Meyer
- Program in Physical Therapy, Departments of Orthopaedic Surgery, Neurology and Biomedical EngineeringWashington University School of MedicineSt. LouisMOUSA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, and Department of Cell Biology and PhysiologyWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
13
|
McClenaghan C, Nichols CG. Kir6.1 and SUR2B in Cantú syndrome. Am J Physiol Cell Physiol 2022; 323:C920-C935. [PMID: 35876283 PMCID: PMC9467476 DOI: 10.1152/ajpcell.00154.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/25/2022]
Abstract
Kir6.1 and SUR2 are subunits of ATP-sensitive potassium (KATP) channels expressed in a wide range of tissues. Extensive study has implicated roles of these channel subunits in diverse physiological functions. Together they generate the predominant KATP conductance in vascular smooth muscle and are the target of vasodilatory drugs. Roles for Kir6.1/SUR2 dysfunction in disease have been suggested based on studies of animal models and human genetic discoveries. In recent years, it has become clear that gain-of-function (GoF) mutations in both genes result in Cantú syndrome (CS)-a complex, multisystem disorder. There is currently no targeted therapy for CS, but studies of mouse models of the disease reveal that pharmacological reversibility of cardiovascular and gastrointestinal pathologies can be achieved by administration of the KATP channel inhibitor, glibenclamide. Here we review the function, structure, and physiological and pathological roles of Kir6.1/SUR2B channels, with a focus on CS. Recent studies have led to much improved understanding of the underlying pathologies and the potential for treatment, but important questions remain: Can the study of genetically defined CS reveal new insights into Kir6.1/SUR2 function? Do these reveal new pathophysiological mechanisms that may be important in more common diseases? And is our pharmacological armory adequately stocked?
Collapse
Affiliation(s)
- Conor McClenaghan
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St. Louis, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St. Louis, Missouri
| |
Collapse
|
14
|
Xia R, Tomsits P, Loy S, Zhang Z, Pauly V, Schüttler D, Clauss S. Cardiac Macrophages and Their Effects on Arrhythmogenesis. Front Physiol 2022; 13:900094. [PMID: 35812333 PMCID: PMC9257039 DOI: 10.3389/fphys.2022.900094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiac electrophysiology is a complex system established by a plethora of inward and outward ion currents in cardiomyocytes generating and conducting electrical signals in the heart. However, not only cardiomyocytes but also other cell types can modulate the heart rhythm. Recently, cardiac macrophages were demonstrated as important players in both electrophysiology and arrhythmogenesis. Cardiac macrophages are a heterogeneous group of immune cells including resident macrophages derived from embryonic and fetal precursors and recruited macrophages derived from circulating monocytes from the bone marrow. Recent studies suggest antiarrhythmic as well as proarrhythmic effects of cardiac macrophages. The proposed mechanisms of how cardiac macrophages affect electrophysiology vary and include both direct and indirect interactions with other cardiac cells. In this review, we provide an overview of the different subsets of macrophages in the heart and their possible interactions with cardiomyocytes under both physiologic conditions and heart disease. Furthermore, we elucidate similarities and differences between human, murine and porcine cardiac macrophages, thus providing detailed information for researchers investigating cardiac macrophages in important animal species for electrophysiologic research. Finally, we discuss the pros and cons of mice and pigs to investigate the role of cardiac macrophages in arrhythmogenesis from a translational perspective.
Collapse
Affiliation(s)
- Ruibing Xia
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Simone Loy
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Zhihao Zhang
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Valerie Pauly
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| |
Collapse
|
15
|
Al Kury LT, Chacar S, Alefishat E, Khraibi AA, Nader M. Structural and Electrical Remodeling of the Sinoatrial Node in Diabetes: New Dimensions and Perspectives. Front Endocrinol (Lausanne) 2022; 13:946313. [PMID: 35872997 PMCID: PMC9302195 DOI: 10.3389/fendo.2022.946313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
The sinoatrial node (SAN) is composed of highly specialized cells that mandate the spontaneous beating of the heart through self-generation of an action potential (AP). Despite this automaticity, the SAN is under the modulation of the autonomic nervous system (ANS). In diabetes mellitus (DM), heart rate variability (HRV) manifests as a hallmark of diabetic cardiomyopathy. This is paralleled by an impaired regulation of the ANS, and by a pathological remodeling of the pacemaker structure and function. The direct effect of diabetes on the molecular signatures underscoring this pathology remains ill-defined. The recent focus on the electrical currents of the SAN in diabetes revealed a repressed firing rate of the AP and an elongation of its tracing, along with conduction abnormalities and contractile failure. These changes are blamed on the decreased expression of ion transporters and cell-cell communication ports at the SAN (i.e., HCN4, calcium and potassium channels, connexins 40, 45, and 46) which further promotes arrhythmias. Molecular analysis crystallized the RGS4 (regulator of potassium currents), mitochondrial thioredoxin-2 (reactive oxygen species; ROS scavenger), and the calcium-dependent calmodulin kinase II (CaMKII) as metabolic culprits of relaying the pathological remodeling of the SAN cells (SANCs) structure and function. A special attention is given to the oxidation of CaMKII and the generation of ROS that induce cell damage and apoptosis of diabetic SANCs. Consequently, the diabetic SAN contains a reduced number of cells with significant infiltration of fibrotic tissues that further delay the conduction of the AP between the SANCs. Failure of a genuine generation of AP and conduction of their derivative waves to the neighboring atrial myocardium may also occur as a result of the anti-diabetic regiment (both acute and/or chronic treatments). All together, these changes pose a challenge in the field of cardiology and call for further investigations to understand the etiology of the structural/functional remodeling of the SANCs in diabetes. Such an understanding may lead to more adequate therapies that can optimize glycemic control and improve health-related outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
- *Correspondence: Lina T. Al Kury, ; Moni Nader,
| | - Stephanie Chacar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- *Correspondence: Lina T. Al Kury, ; Moni Nader,
| |
Collapse
|
16
|
Chen Y, Yue P, Wu Y, Li J, Lei Y, Gao D, Liu J, Han P. Trend in survival after out-of-hospital cardiac arrest and its relationship with bystander cardiopulmonary resuscitation: a six-year prospective observational study in Beijing. BMC Cardiovasc Disord 2021; 21:625. [PMID: 34972521 PMCID: PMC8720208 DOI: 10.1186/s12872-021-02446-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/24/2021] [Indexed: 01/17/2023] Open
Abstract
Background Out-of-hospital cardiac arrest (OHCA), a global health problem with a survival rate ranging from 2 to 22% across different countries, has been a leading cause of premature death for decades. The aim of this study was to evaluate the trends of survival after OHCA over time and its relationship with bystander cardiopulmonary resuscitation (CPR), initial shockable rhythm, return of spontaneous circulation (ROSC), and survived event. Methods In this prospective observational study, data of OHCA patients were collected following the “Utstein style” by the Beijing, China, Emergency Medical Service (EMS) from January 2011 (data from February to June in 2011 was not collected) to October 2016. Patients who had a cardiac arrest and for whom an ambulance was dispatched were included in this study. All cases were followed up to determine hospital discharge or death. The trend of OHCA survival was analyzed using the Chi-square test. The relationship among bystander CPR, initial shockable rhythm, ROSC, survived event, and OHCA survival rate was analyzed using multivariate path analyses with maximum standard likelihood estimation. Results A total of 25,421 cases were transferred by the Beijing EMS; among them, 5042 (19.8%) were OHCA (median age: 78 years, interquartile range: 63–85, 60.1% male), and 484 (9.6%) received bystander CPR. The survival rate was 0.6%, which did not improve from 2012 to 2015 (P = 0.569). Overall, bystander CPR was indirectly associated with an 8.0% (β = 0.080, 95% confidence interval [CI] = 0.064–0.095, P = 0.002) increase in survival rate. The indirect effect of bystander CPR on survival rate through survived event was 6.6% (β = 0.066, 95% CI = 0.051–0.081, P = 0.002), which accounted for 82.5% (0.066 of 0.080) of the total indirect effect. With every 1 increase in survived event, the possibility of survival rate will directly increase by 53.5% (β = 0.535, 95% CI = 0.512–0.554, P = 0.003). Conclusions The survival rate after OHCA was low in Beijing which has not improved between 2012 and 2015. The effect of bystander CPR on survival rate was mainly mediated by survived event. Trial registration Chinese Clinical Trial Registry: ChiCTR-TRC-12002149 (2 May, 2012, retrospectively registered). http://www.chictr.org.cn/showproj.aspx?proj=7400 Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02446-z.
Collapse
Affiliation(s)
- Yuling Chen
- School of Nursing, Capital Medical University, No. 10, You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China
| | - Peng Yue
- School of Nursing, Capital Medical University, No. 10, You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China
| | - Ying Wu
- School of Nursing, Capital Medical University, No. 10, You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China.
| | - Jia Li
- School of Nursing, Capital Medical University, No. 10, You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China
| | - Yanni Lei
- Beijing Emergency Medical Center, No. 103, Qian Men Xi Da Jie, Xicheng District, Beijing, 100031, China
| | - Ding Gao
- Beijing Emergency Medical Center, No. 103, Qian Men Xi Da Jie, Xicheng District, Beijing, 100031, China
| | - Jiang Liu
- Beijing Emergency Medical Center, No. 103, Qian Men Xi Da Jie, Xicheng District, Beijing, 100031, China
| | - Pengda Han
- Beijing Emergency Medical Center, No. 103, Qian Men Xi Da Jie, Xicheng District, Beijing, 100031, China
| |
Collapse
|
17
|
Nakano K, Nanri N, Tsukamoto Y, Akashi M. Mechanical activities of self-beating cardiomyocyte aggregates under mechanical compression. Sci Rep 2021; 11:15159. [PMID: 34312427 PMCID: PMC8313529 DOI: 10.1038/s41598-021-93657-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022] Open
Abstract
Since the discovery of synchronous pulsations in cardiomyocytes (CMs), electrical communication between CMs has been emphasized; however, recent studies suggest the possibility of mechanical communication. Here, we demonstrate that spherical self-beating CM aggregates, termed cardiac spheroids (CSs), produce enhanced mechanical energy under mechanical compression and work cooperatively via mechanical communication. For single CSs between parallel plates, compression increased both beating frequency and beating energy. Contact mechanics revealed a scaling law on the beating energy, indicating that the most intensively stressed cells in the compressed CSs predominantly contributed to the performance of mechanical work against mechanical compression. For pairs of CSs between parallel plates, compression immediately caused synchronous beating with mechanical coupling. Compression tended to strengthen and stabilize the synchronous beating, although some irregularity and temporary arrest were observed. These results suggest that mechanical compression is an indispensable control parameter when evaluating the activities of CMs and their aggregates.
Collapse
Affiliation(s)
- Ken Nakano
- Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama, Kanagawa, 240-8501, Japan.
| | - Naoya Nanri
- Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama, Kanagawa, 240-8501, Japan
| | | | - Mitsuru Akashi
- Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
18
|
Sano T, Yasuno H, Watanabe T. Ion channel mRNA distribution and expression in the sinoatrial node and right atrium of dogs and monkeys. J Toxicol Pathol 2021; 34:223-230. [PMID: 34290476 PMCID: PMC8280307 DOI: 10.1293/tox.2020-0089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/02/2021] [Indexed: 11/24/2022] Open
Abstract
There are limited data on the gene expression profiles of ion channels in the sinoatrial node (SAN) of dogs and monkeys. In this study, the messenger RNA (mRNA) expression profiles of various ion channels in the SAN of naïve dogs and monkeys were examined using RNAscope®in situ hybridization and compared with those in the surrounding right atrium (RA) of each species. Regional-specific Cav1.3 and HCN4 expression was observed in the SAN of dogs and monkeys. Additionally, HCN1 in dogs was only expressed in the SAN. The expression profiles of Cav3.1 and Cav3.2 in the SAN and RA were completely different between dogs and monkeys. Dog hearts only expressed Cav3.2; however, Cav3.1 was detected only in monkeys, and the expression score in the SAN was slightly higher than that in the RA. Although Kir3.1 and NCX1 in dogs were equally expressed in both the SAN and RA, the expression scores of these genes in the SAN of monkeys were slightly higher than those in the RA. The Kir3.4 expression score in the SAN of dogs and monkeys was also slightly higher than that in the RA. The mRNA expression scores of Kv11.1/ERG and KvLQT1 were equally observed in both the SAN and RA of dogs and monkeys. HCN2 was not detected in dogs and monkeys. In summary, we used RNAscope to demonstrate the SAN-specific gene expression patterns of ion channels, which may be useful in explaining the effect of pacemaking and/or hemodynamic effects in nonclinical studies.
Collapse
Affiliation(s)
- Tomoya Sano
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hironobu Yasuno
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takeshi Watanabe
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
19
|
Saljic A, Jespersen T, Buhl R. Anti-arrhythmic investigations in large animal models of atrial fibrillation. Br J Pharmacol 2021; 179:838-858. [PMID: 33624840 DOI: 10.1111/bph.15417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) constitutes an increasing health problem in the aging population. Animal models reflecting human phenotypes are needed to understand the mechanisms of AF, as well as to test new pharmacological interventions. In recent years, a number of large animal models, primarily pigs, goats, dog and horses have been used in AF research. These animals can to a certain extent recapitulate the human pathophysiological characteristics and serve as valuable tools in investigating new pharmacological interventions for treating AF. This review focuses on anti-arrhythmic investigations in large animals. Initially, spontaneous AF in small and large mammals is discussed. This is followed by a short presentation of frequently used methods for inducing short- and long-term AF. The major focus of the review is on anti-arrhythmic compounds either frequently used in the human clinic (ranolazine, flecainide, vernakalant and amiodarone) or being promising new AF medicine candidates (IK,Ach , ISK,Ca and IK2P blockers).
Collapse
Affiliation(s)
- Arnela Saljic
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Jespersen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
20
|
Abstract
A progressive decline in maximum heart rate (mHR) is a fundamental aspect of aging in humans and other mammals. This decrease in mHR is independent of gender, fitness, and lifestyle, affecting in equal measure women and men, athletes and couch potatoes, spinach eaters and fast food enthusiasts. Importantly, the decline in mHR is the major determinant of the age-dependent decline in aerobic capacity that ultimately limits functional independence for many older individuals. The gradual reduction in mHR with age reflects a slowing of the intrinsic pacemaker activity of the sinoatrial node of the heart, which results from electrical remodeling of individual pacemaker cells along with structural remodeling and a blunted β-adrenergic response. In this review, we summarize current evidence about the tissue, cellular, and molecular mechanisms that underlie the reduction in pacemaker activity with age and highlight key areas for future work.
Collapse
Affiliation(s)
- Colin H Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA; , ,
| | - Emily J Sharpe
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA; , ,
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA; , ,
- Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|