1
|
Klawitter J, Weissenborn W, Gvon I, Walz M, Klawitter J, Jackson M, Sempio C, Joksimovic SL, Shokati T, Just I, Christians U, Todorovic SM. β-Caryophyllene Inhibits Monoacylglycerol Lipase Activity and Increases 2-Arachidonoyl Glycerol Levels In Vivo: A New Mechanism of Endocannabinoid-Mediated Analgesia? Mol Pharmacol 2024; 105:75-83. [PMID: 38195158 PMCID: PMC10794982 DOI: 10.1124/molpharm.123.000668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 01/11/2024] Open
Abstract
The mechanisms of β-caryophyllene (BCP)-induced analgesia are not well studied. Here, we tested the efficacy of BCP in an acute postsurgical pain model and evaluated its effect on the endocannabinoid system. Rats were treated with vehicle and 10, 25, 50, and 75 mg/kg BCP. Paw withdrawal responses to mechanical stimuli were evaluated using an electronic von Frey anesthesiometer. Endocannabinoids, including 2-arachidonoylglycerol (2-AG), were also evaluated in plasma and tissues using high-performance liquid chromatography-tandem mass spectrometry. Monoacylglycerol lipase (MAGL) activity was evaluated in vitro as well as ex vivo. We observed a dose-dependent and time-dependent alleviation of hyperalgesia in incised paws up to 85% of the baseline value at 30 minutes after administration of BCP. We also observed dose-dependent increases in the 2-AG levels of about threefold after administration of BCP as compared with vehicle controls. Incubations of spinal cord tissue homogenates from BCP-treated rats with isotope-labeled 2-arachidonoylglycerol-d8 revealed a reduced formation of the isotope-labeled MAGL product 2-AG-d8 as compared with vehicle controls, indicating MAGL enzyme inhibition. In vitro MAGL enzyme activity assessment using 2-AG as the substrate revealed an IC50 of 15.8 µM for MAGL inhibition using BCP. These data showed that BCP inhibits MAGL activity in vitro and in vivo, causing 2-AG levels to rise. Since the endocannabinoid 2-AG is a CB1 and CB2 receptor agonist, we propose that 2-AG-mediated cannabinoid receptor activation contributes to BCP's mechanism of analgesia. SIGNIFICANCE STATEMENT: β-Caryophyllene (BCP) consumption is relatively safe and is approved by the Food and Drug Administration as a flavoring agent, which can be used in cosmetic and food additives. BCP is a potent anti-inflammatory agent that showed substantial antihyperalgesic properties in this study of acute pain suggesting that BCP might be an alternative to opioids. This study shows an additive mechanism (monoacylglycerol lipase inhibition) by which BCP might indirectly alter CB1 and CB2 receptor activity and exhibit its pharmacological properties.
Collapse
Affiliation(s)
- Jost Klawitter
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Wiebke Weissenborn
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Iuliia Gvon
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Mackenzie Walz
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Jelena Klawitter
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Matthew Jackson
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Cristina Sempio
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Sonja L Joksimovic
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Touraj Shokati
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Ingo Just
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Uwe Christians
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Slobodan M Todorovic
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| |
Collapse
|
2
|
Bedir Z, Ozkaloglu Erdem KT, Doymus O, Suleyman H, Yavuzer B, Cicek B, Altuner D, Mammadov R, Yilmaz M, Coban TA, Suleyman B, Bulut S. Effects of benidipine, paracetamol, and their combination on postoperative and normal tissue pain thresholds. Front Pharmacol 2024; 14:1326128. [PMID: 38249347 PMCID: PMC10796563 DOI: 10.3389/fphar.2023.1326128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction: In clinical practice, inadequate pain inhibition leads to increased morbidity and mortality. Increased intracellular calcium, oxidants, and proinflammatory cytokines are known to play a role in the pathogenesis of postoperative pain. Therefore, we investigated the analgesic effects of benidipine, paracetamol, and benidipine-paracetamol combination (BPC) on postoperative and normal pain thresholds in rats. Material and methods: Sixty-four male albino Wistar rats weighing 285-295 g were used. The without-incision rats were divided into 4 subgroups: healthy control, benidipine alone, paracetamol alone, and BPC. The scalpel-incision rats were divided into 4 subgroups: scalpel incision, scalpel incision + benidipine, scalpel incision + paracetamol, and scalpel incision + BPC. Paw pain thresholds of rats were measured using a Basile algesimeter. Biochemical analyses were performed on the paw tissues of 6 rats randomly taken from the experimental groups, each containing 8 rats. Rats were sacrificed immediately after the measurements. After the pain threshold tests were finished, the paw tissues were removed and malondialdehyde (MDA), total glutathione (tGSH), cyclooxygenase (COX), and interleukin-6 (IL-6) levels were measured. Results: There was no significant difference between the groups in paw pain threshold and measured biochemical parameters in rats without incision. The decrease in the pain threshold of the incised paw was also best prevented by BPC, followed by benidipine and then paracetamol. Furthermore, increases in scalpel-incised paw tissue MDA, COX-2, and IL-6 levels and the decrease in tGSH were significantly suppressed by benidipine and BPC, while paracetamol could only significantly inhibit the increase in IL-6 production. Conclusion: The combination of the L-type Ca2+ channel blocker benidipine and paracetamol (BPC) may provide potent analgesia. Our experimental results support that BPC may be useful in the treatment of severe pain that cannot be adequately inhibited by paracetamol.
Collapse
Affiliation(s)
- Zehra Bedir
- Department of Anaesthesiology and Reanimation, University of Health Sciences, Erzurum State Hospital, Erzurum, Türkiye
| | - Kezban Tuna Ozkaloglu Erdem
- Department of Anaesthesiology and Reanimation, University of Health Sciences, Antalya Training and Research Hospital, Antalya, Türkiye
| | - Omer Doymus
- Department of Anaesthesiology and Reanimation, University of Health Sciences, Erzurum State Hospital, Erzurum, Türkiye
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Bulent Yavuzer
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, Türkiye
| | - Durdu Altuner
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Renad Mammadov
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Mehmet Yilmaz
- Department of Orthopaedics and Traumatology, Private Deva Hospital, Gaziantep, Türkiye
| | - Taha Abdulkadir Coban
- Department of Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Bahadir Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Seval Bulut
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| |
Collapse
|
7
|
Coulter I, Timic Stamenic T, Eggan P, Fine BR, Corrigan T, Covey DF, Yang L, Pan JQ, Todorovic SM. Different roles of T-type calcium channel isoforms in hypnosis induced by an endogenous neurosteroid epipregnanolone. Neuropharmacology 2021; 197:108739. [PMID: 34339750 PMCID: PMC8478885 DOI: 10.1016/j.neuropharm.2021.108739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/09/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Many neuroactive steroids induce sedation/hypnosis by potentiating γ-aminobutyric acid (GABAA) currents. However, we previously demonstrated that an endogenous neuroactive steroid epipregnanolone [(3β,5β)-3-hydroxypregnan-20-one] (EpiP) exerts potent peripheral analgesia and blocks T-type calcium currents while sparing GABAA currents in rat sensory neurons. This study seeks to investigate the behavioral effects elicited by systemic administration of EpiP and to characterize its use as an adjuvant agent to commonly used general anesthetics (GAs). METHODS Here, we utilized electroencephalographic (EEG) recordings to characterize thalamocortical oscillations, as well as behavioral assessment and mouse genetics with wild-type (WT) and different knockout (KO) models of T-channel isoforms to investigate potential sedative/hypnotic and immobilizing properties of EpiP. RESULTS Consistent with increased oscillations in slower EEG frequencies, EpiP induced an hypnotic state in WT mice when injected alone intra-peritoneally (i.p.) and effectively facilitated anesthetic effects of isoflurane (ISO) and sevoflurane (SEVO). The CaV3.1 (Cacna1g) KO mice demonstrated decreased sensitivity to EpiP-induced hypnosis when compared to WT mice, whereas no significant difference was noted between CaV3.2 (Cacna1h), CaV3.3 (Cacna1i) and WT mice. Finally, when compared to WT mice, onset of EpiP-induced hypnosis was delayed in CaV3.2 KO mice but not in CaV3.1 and CaV3.3 KO mice. CONCLUSION We posit that EpiP may have an important role as novel hypnotic and/or adjuvant to volatile anesthetic agents. We speculate that distinct hypnotic effects of EpiP across all three T-channel isoforms is due to their differential expression in thalamocortical circuitry.
Collapse
Affiliation(s)
- Ian Coulter
- Department of Anesthesiology, University of Colorado,
Anschutz Medical Campus, Aurora 80045
| | - Tamara Timic Stamenic
- Department of Anesthesiology, University of Colorado,
Anschutz Medical Campus, Aurora 80045
| | - Pierce Eggan
- Department of Anesthesiology, University of Colorado,
Anschutz Medical Campus, Aurora 80045
| | - Brier R. Fine
- Department of Anesthesiology, University of Colorado,
Anschutz Medical Campus, Aurora 80045
| | - Timothy Corrigan
- Department of Pediatrics, Division of Neurology,
Translational Epilepsy Research Program, University of Colorado, Anschutz Medical
Campus, Aurora, CO 80045, USA
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University
School of Medicine, St. Louis, MO 63110, USA;,Taylor Family Institute for Innovative Psychiatric
Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lingling Yang
- Stanley Center for Psychiatric Research, Broad Institute of
Harvard and MIT
| | - Jen Q. Pan
- Stanley Center for Psychiatric Research, Broad Institute of
Harvard and MIT
| | - Slobodan M. Todorovic
- Department of Anesthesiology, University of Colorado,
Anschutz Medical Campus, Aurora 80045;,Neuroscience, University of Colorado, Anschutz Medical
Campus, Aurora 80045;,Pharmacology Graduate Programs, University of Colorado,
Anschutz Medical Campus, Aurora 80045
| |
Collapse
|