1
|
Boulassel S, Schreier PCF, Melyshi AM, Berger J, Reinach PS, Jacob K, Boekhoff I, Breit A, Müller TD, Zierler S, Gudermann T, Khajavi N. Mg 2+ Supplementation Mitigates Metabolic Deficits Associated With TRPM7 Disruption. J Cell Physiol 2025; 240:e70042. [PMID: 40275767 PMCID: PMC12022727 DOI: 10.1002/jcp.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/20/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Transient receptor potential channel subfamily M member 7 (TRPM7) regulates cellular and systemic Mg2+ homeostasis through its channel domain and induces protein phosphorylation via its kinase domain. We recently found that mice with selective deletion of Trpm7 in β-cells develop glucose intolerance and declines in insulin secretion, primarily due to the impaired enzymatic activity of this protein. Accumulating evidence suggests that Mg2+ supplementation effectively mitigates the detrimental effects of TRPM7 disruption in various cell types. However, the impact of Mg2+ supplementation on metabolic impairments caused by TRPM7 inactivation remains unclear. In the present study, we found that Mg2+ supplementation significantly ameliorates glucose intolerance observed in high-fat-fed TRPM7 kinase-deficient mice (Trpm7R/R). However, our ex vivo analysis of islets isolated from Trpm7R/R mice revealed that Mg2+ supplementation does not enhance glucose-induced insulin secretion. Instead, the improvement appears to be partially driven by enhanced insulin sensitivity and increased β-cell proliferation. The pharmacological analysis in MIN6 cells showed that inhibiting TRPM7 with either NS8593 or VER155008 disrupts β-cell proliferation. These effects mimicked the phenotype seen in Trpm7R/R mice. We attribute this impairment to diminished ERK1/2 signaling, which suppressed PDX1 expression, while Mg2+ supplementation in vitro partially restored ERK1/2 phosphorylation levels. Collectively, Mg2+ supplementation enhances glucose metabolism in Trpm7R/R mice and mitigates the ERK1/2 signaling disruptions and proliferation arrest induced by TRPM7 inactivation in vitro. These findings provide compelling evidence that Mg2+ supplementation can reverse the adverse metabolic and cellular phenotypes associated with the loss of TRPM7 function.
Collapse
Affiliation(s)
- Severin Boulassel
- Walther Straub Institute of Pharmacology and Toxicology, LMU MunichMunichGermany
| | | | - Anna M. Melyshi
- Walther Straub Institute of Pharmacology and Toxicology, LMU MunichMunichGermany
| | - Johanna Berger
- Walther Straub Institute of Pharmacology and Toxicology, LMU MunichMunichGermany
| | - Peter S. Reinach
- Ophthalmology DepartmentWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Katharina Jacob
- Walther Straub Institute of Pharmacology and Toxicology, LMU MunichMunichGermany
| | - Ingrid Boekhoff
- Walther Straub Institute of Pharmacology and Toxicology, LMU MunichMunichGermany
| | - Andreas Breit
- Walther Straub Institute of Pharmacology and Toxicology, LMU MunichMunichGermany
| | - Timo D. Müller
- Walther Straub Institute of Pharmacology and Toxicology, LMU MunichMunichGermany
- Institute of Diabetes and ObesityHelmholtz Center MunichMunichGermany
- German Center for Diabetes Research (DZD)DüsseldorfGermany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, LMU MunichMunichGermany
- Institute of Pharmacology, Medical FacultyJohannes Kepler University LinzLinzAustria
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, LMU MunichMunichGermany
- German Center for Lung ResearchMunichGermany
| | - Noushafarin Khajavi
- Walther Straub Institute of Pharmacology and Toxicology, LMU MunichMunichGermany
| |
Collapse
|
2
|
Schuurman M, Nguyen J, Wilson RB, Barillaro M, Wallace M, Borradaile N, Wang R. Long-Term Administration of Antioxidant N-Acetyl-L-Cysteine Impacts Beta Cell Oxidative Stress, Insulin Secretion, and Intracellular Signaling Pathways in Aging Mice. Antioxidants (Basel) 2025; 14:417. [PMID: 40298742 PMCID: PMC12023964 DOI: 10.3390/antiox14040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/30/2025] Open
Abstract
Research into the effects of long-term antioxidant supplementation on the islet microenvironment is limited. This study examined whether long-term N-acetyl-L-cysteine (NAC) supplementation can prevent changes in metabolic outcomes, beta cell function, and pancreatic stellate cell (PaSC) activation in aging mice. Male C57BL/6N mice at 18 weeks were administered 50 mM NAC through their daily drinking water and treated for up to 60 weeks. Aging NAC mice displayed lower body weights and improved glucose tolerance but reduced insulin secretion and insulin signaling compared to control (ND) mice. When some 40-week-old ND and NAC mice were subjected to 8 weeks of a high-fat diet (HFD)-stress challenge, results showed that NAC reduced HFD-induced beta cell oxidative stress and preserved nuclear PDX-1 expression. The findings from this study suggest that while NAC can be beneficial for diet-induced stress during aging, the effects of long-term NAC on the islets of physiologically aging mice are more ambiguous. Further exploration is required to determine the effects of NAC-mediated lowering of beta cell oxidative stress on insulin secretion and signaling pathways. This study highlights the importance of investigating oxidative stress balance in aging islets under normal diet conditions to determine if antioxidative therapies can be utilized without interfering with essential physiological processes.
Collapse
Affiliation(s)
- Meg Schuurman
- Children’s Health Research Institute, London, ON N6C 2V5, Canada; (M.S.); (R.B.W.); (M.B.); (M.W.)
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; (J.N.); (N.B.)
| | - Jonathan Nguyen
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; (J.N.); (N.B.)
| | - Rachel B. Wilson
- Children’s Health Research Institute, London, ON N6C 2V5, Canada; (M.S.); (R.B.W.); (M.B.); (M.W.)
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; (J.N.); (N.B.)
| | - Malina Barillaro
- Children’s Health Research Institute, London, ON N6C 2V5, Canada; (M.S.); (R.B.W.); (M.B.); (M.W.)
| | - Madison Wallace
- Children’s Health Research Institute, London, ON N6C 2V5, Canada; (M.S.); (R.B.W.); (M.B.); (M.W.)
| | - Nica Borradaile
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; (J.N.); (N.B.)
| | - Rennian Wang
- Children’s Health Research Institute, London, ON N6C 2V5, Canada; (M.S.); (R.B.W.); (M.B.); (M.W.)
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; (J.N.); (N.B.)
| |
Collapse
|
3
|
Ivovic A, Yung JHM, Oprescu AI, Vlavcheski F, Mori Y, Rahman SMN, Ye W, Eversley JA, Wheeler MB, Woo M, Tsiani E, Giacca A. β-Cell Insulin Resistance Plays a Causal Role in Fat-Induced β-Cell Dysfunction In Vitro and In Vivo. Endocrinology 2024; 165:bqae044. [PMID: 38578954 PMCID: PMC11033845 DOI: 10.1210/endocr/bqae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/07/2024]
Abstract
In the classical insulin target tissues of liver, muscle, and adipose tissue, chronically elevated levels of free fatty acids (FFA) impair insulin signaling. Insulin signaling molecules are also present in β-cells where they play a role in β-cell function. Therefore, inhibition of the insulin/insulin-like growth factor 1 pathway may be involved in fat-induced β-cell dysfunction. To address the role of β-cell insulin resistance in FFA-induced β-cell dysfunction we co-infused bisperoxovanadate (BPV) with oleate or olive oil for 48 hours in rats. BPV, a tyrosine phosphatase inhibitor, acts as an insulin mimetic and is devoid of any antioxidant effect that could prevent β-cell dysfunction, unlike most insulin sensitizers. Following fat infusion, rats either underwent hyperglycemic clamps for assessment of β-cell function in vivo or islets were isolated for ex vivo assessment of glucose-stimulated insulin secretion (GSIS). We also incubated islets with oleate or palmitate and BPV for in vitro assessment of GSIS and Akt (protein kinase B) phosphorylation. Next, mice with β-cell specific deletion of PTEN (phosphatase and tensin homolog; negative regulator of insulin signaling) and littermate controls were infused with oleate for 48 hours, followed by hyperglycemic clamps or ex vivo evaluation of GSIS. In rat experiments, BPV protected against fat-induced impairment of β-cell function in vivo, ex vivo, and in vitro. In mice, β-cell specific deletion of PTEN protected against oleate-induced β-cell dysfunction in vivo and ex vivo. These data support the hypothesis that β-cell insulin resistance plays a causal role in FFA-induced β-cell dysfunction.
Collapse
Affiliation(s)
- Aleksandar Ivovic
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Justin Hou Ming Yung
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andrei I Oprescu
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Filip Vlavcheski
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Yusaku Mori
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Diabetes, Metabolism, and Endocrinology, Anti-Glycation Research Section, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo 142-8555, Japan
| | - S M Niazur Rahman
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Wenyue Ye
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Judith A Eversley
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael B Wheeler
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Minna Woo
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada
- Division of Endocrinology, Department of Medicine, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Adria Giacca
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
4
|
Zheng L, Wang Y, Li Y, Li L, Wang X, Li Y. miR-765 targeting PDX1 impairs pancreatic β-cell function to induce type 2 diabetes. Arch Physiol Biochem 2023; 129:1279-1288. [PMID: 34357821 DOI: 10.1080/13813455.2021.1946561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/17/2021] [Indexed: 01/02/2023]
Abstract
Type 2 diabetes (T2DM) is a chronic metabolism disorder with a symptom as pancreatic β-cell dysfunction. In this study, the bioinformatics analysis identified the key regulators (PDX1 and miR-765) in T2DM. By qRT-PCR and western blotting, miR-765 with high expression and PDX1 with low expression were observed in blood samples from T2DM patients and the T2DM cell model. Together with GSIS assay, CCK-8, TUNEL assay, glycolysis assay, and mitochondrial respiration assay, miR-765 overexpression impaired insulin secretion cell viability, glycolysis, and mitochondrial respiration, while enhanced cell apoptosis in pancreatic β-cell. The Luciferase reporter, RIP, and RNA pull-down assays showed that PDX1 was the target gene of miR-765 in pancreatic β-cell. Besides, the negative effect of miR-765 on pancreatic β-cell could be overturned by PDX1 overexpression. In conclusion, we confirmed that miR-765 could cause a detrimental effect on pancreatic β-cell survival and function by targeting PDX1, which might provide new insight for T2DM therapy.
Collapse
Affiliation(s)
- Li Zheng
- Department of Endocrinology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yalan Wang
- Department of Endocrinology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yanhong Li
- Department of Endocrinology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Endocrinology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xiaohong Wang
- Department of Endocrinology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Endocrinology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Converti A, Bianchi MS, Martinez MD, Montaner AD, Lux‐Lantos V, Bonaventura MM. IMT504 protects beta cells against apoptosis and maintains beta cell identity, without modifying proliferation. Physiol Rep 2023; 11:e15790. [PMID: 37568265 PMCID: PMC10421975 DOI: 10.14814/phy2.15790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
We have demonstrated that oligodeoxynucleotide IMT504 promotes significant improvement in the diabetic condition in diverse animal models. Based on these results, here we evaluated whether these effects observed in vivo could be due to direct effects on β-cells. We demonstrate by immunofluorescence that IMT504 enters the cell and locates in cytoplasm where it induces GSK-3β phosphorylation that inactivates this kinase. As GSK-3β tags Pdx1 for proteasomal degradation, by inactivating GSK-3β, IMT504 induces an increase in Pdx1 protein levels, demonstrated by Western blotting. Concomitantly, an increase in Ins2 and Pdx1 gene transcription was observed, with no significant increase in insulin content or secretion. Enhanced Pdx1 is promising since it is a key transcription factor for insulin synthesis and is also described as an essential factor for the maintenance β-cell phenotype and function. Dose-dependent inhibition of H2 O2 -induced apoptosis determined by ELISA as well as decreased expression of Bax was also observed. These results were confirmed in another β-cell line, beta-TC-6 cells, in which a cytokine mix induced apoptosis that was reversed by IMT504. In addition, an inhibitor of IMT504 entrance into cells abrogated the effect IMT504. Based on these results we conclude that the β-cell recovery observed in vivo may include direct effects of IMT504 on β-cells, by maintaining their identity/phenotype and protecting them from oxidative stress and cytokine-induced apoptosis. Thus, this work positions IMT504 as a promising option in the framework of the search of new therapies for type I diabetes treatment.
Collapse
Affiliation(s)
- Ayelén Converti
- Instituto de Biología y Medicina Experimental (IBYME‐CONICET)Buenos AiresArgentina
| | - María Silvia Bianchi
- Instituto de Biología y Medicina Experimental (IBYME‐CONICET)Buenos AiresArgentina
| | - Mario D. Martinez
- CONICET‐Universidad de Buenos Aires, UMYMFORBuenos AiresArgentina
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| | | | - Victoria Lux‐Lantos
- Instituto de Biología y Medicina Experimental (IBYME‐CONICET)Buenos AiresArgentina
| | - María Marta Bonaventura
- Instituto de Biología y Medicina Experimental (IBYME‐CONICET)Buenos AiresArgentina
- Universidad Nacional de San Martin (UNSAM), ECyTBuenos AiresArgentina
| |
Collapse
|
6
|
Kimani CN, Reuter H, Kotzé SH, Muller CJF. Regeneration of Pancreatic Beta Cells by Modulation of Molecular Targets Using Plant-Derived Compounds: Pharmacological Mechanisms and Clinical Potential. Curr Issues Mol Biol 2023; 45:6216-6245. [PMID: 37623211 PMCID: PMC10453321 DOI: 10.3390/cimb45080392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
Type 2 diabetes (T2D) is characterized by pancreatic beta-cell dysfunction, increased cell death and loss of beta-cell mass despite chronic treatment. Consequently, there has been growing interest in developing beta cell-centered therapies. Beta-cell regeneration is mediated by augmented beta-cell proliferation, transdifferentiation of other islet cell types to functional beta-like cells or the reprograming of beta-cell progenitors into fully differentiated beta cells. This mediation is orchestrated by beta-cell differentiation transcription factors and the regulation of the cell cycle machinery. This review investigates the beta-cell regenerative potential of antidiabetic plant extracts and phytochemicals. Various preclinical studies, including in vitro, in vivo and ex vivo studies, are highlighted. Further, the potential regenerative mechanisms and the intra and extracellular mediators that are of significance are discussed. Also, the potential of phytochemicals to translate into regenerative therapies for T2D patients is highlighted, and some suggestions regarding future perspectives are made.
Collapse
Affiliation(s)
- Clare Njoki Kimani
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa;
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Sanet Henriët Kotzé
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- Division of Anatomy, Department of Biomedical Sciences, School of Veterinary Medicine, Ross University, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Christo John Fredrick Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa;
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
7
|
Khajavi N, Beck A, Riçku K, Beyerle P, Jacob K, Syamsul SF, Belkacemi A, Reinach PS, Schreier PC, Salah H, Popp T, Novikoff A, Breit A, Chubanov V, Müller TD, Zierler S, Gudermann T. TRPM7 kinase is required for insulin production and compensatory islet responses during obesity. JCI Insight 2023; 8:163397. [PMID: 36574297 PMCID: PMC9977431 DOI: 10.1172/jci.insight.163397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Most overweight individuals do not develop diabetes due to compensatory islet responses to restore glucose homeostasis. Therefore, regulatory pathways that promote β cell compensation are potential targets for treatment of diabetes. The transient receptor potential cation channel subfamily M member 7 protein (TRPM7), harboring a cation channel and a serine/threonine kinase, has been implicated in controlling cell growth and proliferation. Here, we report that selective deletion of Trpm7 in β cells disrupted insulin secretion and led to progressive glucose intolerance. We indicate that the diminished insulinotropic response in β cell-specific Trpm7-knockout mice was caused by decreased insulin production because of impaired enzymatic activity of this protein. Accordingly, high-fat-fed mice with a genetic loss of TRPM7 kinase activity displayed a marked glucose intolerance accompanied by hyperglycemia. These detrimental glucoregulatory effects were engendered by reduced compensatory β cell responses because of mitigated protein kinase B (AKT)/ERK signaling. Collectively, our data identify TRPM7 kinase as a potentially novel regulator of insulin synthesis, β cell dynamics, and glucose homeostasis under obesogenic diet.
Collapse
Affiliation(s)
- Noushafarin Khajavi
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Andreas Beck
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Klea Riçku
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Philipp Beyerle
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Katharina Jacob
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Sabrina F. Syamsul
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Anouar Belkacemi
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Peter S. Reinach
- Wenzhou Medical University, Ophthalmology Department, Wenzhou, China
| | - Pascale C.F. Schreier
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Houssein Salah
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Aaron Novikoff
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas Breit
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Vladimir Chubanov
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Timo D. Müller
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.,Institute of Pharmacology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.,German Center for Lung Research, Munich, Germany
| |
Collapse
|
8
|
Lin X, Cheng L, Wan Y, Yan Y, Zhang Z, Li X, Wu J, Wang X, Xu M. Ang II Controls the Expression of Mapkap1 by miR-375 and Affects the Function of Islet β Cells. Endocr Metab Immune Disord Drug Targets 2023; 23:1186-1200. [PMID: 36748222 PMCID: PMC10514520 DOI: 10.2174/1871530323666230206121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND The RAS system is involved in the regulation of islet function, but its regulation remains unclear. OBJECTIVE This study investigates the role of an islet-specific miR-375 in the effect of RAS system on islet β-cells. METHODS miR-375 mimics and inhibitors were transfected into insulin-secreting MIN6 cells in the presence or absence of RAS component. RESULTS Compared to control, in Ang II-treated MIN6 cells, miR-375 mimic transfection results in a decrement in cell viability and Akt-Ser levels (0.739±0.05 vs. 0.883±0.06 and 0.40±0.04 vs. 0.79±0.04, respectively), while the opposite occurred in miR-375 inhibitor-transfected cells (1.032±0.11 vs. 0.883±0.06 and 0.98±0.05 vs. 0.79±0.04, respectively, P<0.05). Mechanistically, transfection of miR- 375 mimics into Ang II-treated MIN6 cells significantly reduced the expression of Mapkap1 protein (0.97±0.15 vs. 0.63±0.06, P<0.05); while miR-375 inhibitor-transfected cells elevated Mapkap1 expression level (0.35±0.11 vs. 0.90±0.05, P<0.05), without changes in mRNA expression. Transfection of miR-375 specific inhibitors TSB-Mapkap1 could elevate Mapkap1 (1.62±0.02 vs. 0.68±0.01, P<0.05), while inhibition of Mapkap1 could significantly reduce the level of Akt-Ser473 phosphorylation (0.60±0.14 vs. 1.80±0.27, P<0.05). CONCLUSION The effects of Ang II on mouse islet β cells were mediated by miR-375 through miR- 375/Mapkap 1 axis. This targeted regulation may occur by affecting Akt phosphorylation of β cells. These results may provide new ideas and a scientific basis for further development of miRNA-targeted islet protection measures.
Collapse
Affiliation(s)
- Xiuhong Lin
- Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Lin Cheng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Yan Wan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Yuerong Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Zhuo Zhang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Xiaohui Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Jiayun Wu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Xiaoyi Wang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Mingtong Xu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| |
Collapse
|
9
|
Ebrahim N, Shakirova K, Dashinimaev E. PDX1 is the cornerstone of pancreatic β-cell functions and identity. Front Mol Biosci 2022; 9:1091757. [PMID: 36589234 PMCID: PMC9798421 DOI: 10.3389/fmolb.2022.1091757] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes has been a worldwide healthcare problem for many years. Current methods of treating diabetes are still largely directed at symptoms, aiming to control the manifestations of the pathology. This creates an overall need to find alternative measures that can impact on the causes of the disease, reverse diabetes, or make it more manageable. Understanding the role of key players in the pathogenesis of diabetes and the related β-cell functions is of great importance in combating diabetes. PDX1 is a master regulator in pancreas organogenesis, the maturation and identity preservation of β-cells, and of their role in normal insulin function. Mutations in the PDX1 gene are correlated with many pancreatic dysfunctions, including pancreatic agenesis (homozygous mutation) and MODY4 (heterozygous mutation), while in other types of diabetes, PDX1 expression is reduced. Therefore, alternative approaches to treat diabetes largely depend on knowledge of PDX1 regulation, its interaction with other transcription factors, and its role in obtaining β-cells through differentiation and transdifferentiation protocols. In this article, we review the basic functions of PDX1 and its regulation by genetic and epigenetic factors. Lastly, we summarize different variations of the differentiation protocols used to obtain β-cells from alternative cell sources, using PDX1 alone or in combination with various transcription factors and modified culture conditions. This review shows the unique position of PDX1 as a potential target in the genetic and cellular treatment of diabetes.
Collapse
Affiliation(s)
- Nour Ebrahim
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Ksenia Shakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia,*Correspondence: Erdem Dashinimaev,
| |
Collapse
|
10
|
Nagaharu K, Kojima Y, Hirose H, Minoura K, Hinohara K, Minami H, Kageyama Y, Sugimoto Y, Masuya M, Nii S, Seki M, Suzuki Y, Tawara I, Shimamura T, Katayama N, Nishikawa H, Ohishi K. A bifurcation concept for B-lymphoid/plasmacytoid dendritic cells with largely fluctuating transcriptome dynamics. Cell Rep 2022; 40:111260. [PMID: 36044861 DOI: 10.1016/j.celrep.2022.111260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/02/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Hematopoiesis was considered a hierarchical stepwise process but was revised to a continuous process following single-cell RNA sequencing. However, the uncertainty or fluctuation of single-cell transcriptome dynamics during differentiation was not considered, and the dendritic cell (DC) pathway in the lymphoid context remains unclear. Here, we identify human B-plasmacytoid DC (pDC) bifurcation as large fluctuating transcriptome dynamics in the putative B/NK progenitor region by dry and wet methods. By converting splicing kinetics into diffusion dynamics in a deep generative model, our original computational methodology reveals strong fluctuation at B/pDC bifurcation in IL-7Rα+ regions, and LFA-1 fluctuates positively in the pDC direction at the bifurcation. These expectancies are validated by the presence of B/pDC progenitors in the IL-7Rα+ fraction and preferential expression of LFA-1 in pDC-biased progenitors with a niche-like culture system. We provide a model of fluctuation-based differentiation, which reconciles continuous and discrete models and is applicable to other developmental systems.
Collapse
Affiliation(s)
- Keiki Nagaharu
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Yasuhiro Kojima
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Haruka Hirose
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kodai Minoura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kunihiko Hinohara
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Hirohito Minami
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Yuki Kageyama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Yuka Sugimoto
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Masahiro Masuya
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Shigeru Nii
- Shiroko Women's Hospital, Suzuka 510-0235, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Japan; Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan; Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan.
| | - Kohshi Ohishi
- Department of Transfusion Medicine and Cell Therapy, Mie University Hospital, Tsu 514-8507, Japan.
| |
Collapse
|
11
|
Lockridge A, Hanover JA. A nexus of lipid and O-Glcnac metabolism in physiology and disease. Front Endocrinol (Lausanne) 2022; 13:943576. [PMID: 36111295 PMCID: PMC9468787 DOI: 10.3389/fendo.2022.943576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Although traditionally considered a glucose metabolism-associated modification, the O-linked β-N-Acetylglucosamine (O-GlcNAc) regulatory system interacts extensively with lipids and is required to maintain lipid homeostasis. The enzymes of O-GlcNAc cycling have molecular properties consistent with those expected of broad-spectrum environmental sensors. By direct protein-protein interactions and catalytic modification, O-GlcNAc cycling enzymes may provide both acute and long-term adaptation to stress and other environmental stimuli such as nutrient availability. Depending on the cell type, hyperlipidemia potentiates or depresses O-GlcNAc levels, sometimes biphasically, through a diversity of unique mechanisms that target UDP-GlcNAc synthesis and the availability, activity and substrate selectivity of the glycosylation enzymes, O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA). At the same time, OGT activity in multiple tissues has been implicated in the homeostatic regulation of systemic lipid uptake, storage and release. Hyperlipidemic patterns of O-GlcNAcylation in these cells are consistent with both transient physiological adaptation and feedback uninhibited obesogenic and metabolic dysregulation. In this review, we summarize the numerous interconnections between lipid and O-GlcNAc metabolism. These links provide insights into how the O-GlcNAc regulatory system may contribute to lipid-associated diseases including obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Amber Lockridge
- Laboratory of Cell and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Blandino-Rosano M, Scheys JO, Werneck-de-Castro JP, Louzada RA, Almaça J, Leibowitz G, Rüegg MA, Hall MN, Bernal-Mizrachi E. Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling. Am J Physiol Endocrinol Metab 2022; 323:E133-E144. [PMID: 35723227 PMCID: PMC9291412 DOI: 10.1152/ajpendo.00076.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 01/23/2023]
Abstract
Mammalian target of rapamycin (mTOR) kinase is an essential hub where nutrients and growth factors converge to control cellular metabolism. mTOR interacts with different accessory proteins to form complexes 1 and 2 (mTORC), and each complex has different intracellular targets. Although mTORC1's role in β-cells has been extensively studied, less is known about mTORC2's function in β-cells. Here, we show that mice with constitutive and inducible β-cell-specific deletion of RICTOR (βRicKO and iβRicKO mice, respectively) are glucose intolerant due to impaired insulin secretion when glucose is injected intraperitoneally. Decreased insulin secretion in βRicKO islets was caused by abnormal actin polymerization. Interestingly, when glucose was administered orally, no difference in glucose homeostasis and insulin secretion were observed, suggesting that incretins are counteracting the mTORC2 deficiency. Mechanistically, glucagon-like peptide-1 (GLP-1), but not gastric inhibitory polypeptide (GIP), rescued insulin secretion in vivo and in vitro by improving actin polymerization in βRicKO islets. In conclusion, mTORC2 regulates glucose-stimulated insulin secretion by promoting actin filament remodeling.NEW & NOTEWORTHY The current studies uncover a novel mechanism linking mTORC2 signaling to glucose-stimulated insulin secretion by modulation of the actin filaments. This work also underscores the important role of GLP-1 in rescuing defects in insulin secretion by modulating actin polymerization and suggests that this effect is independent of mTORC2 signaling.
Collapse
Affiliation(s)
- Manuel Blandino-Rosano
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Joshua O Scheys
- Medical School, Division of Metabolism, Endocrinology, and Diabetes and Brehm Center for Diabetes Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Ruy A Louzada
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Joana Almaça
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Gil Leibowitz
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Miami VA Healthcare System, Miami, Florida
| |
Collapse
|
13
|
Khalique A, Mohammed AK, Al-khadran NM, Gharaibeh MA, Abu-Gharbieh E, El-Huneidi W, Sulaiman N, Taneera J. Reduced Retinoic Acid Receptor Beta (Rarβ) Affects Pancreatic β-Cell Physiology. BIOLOGY 2022; 11:biology11071072. [PMID: 36101450 PMCID: PMC9312298 DOI: 10.3390/biology11071072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 12/02/2022]
Abstract
Various studies have suggested a link between vitamin A (VA), all-trans-retinol, and type 2 diabetes (T2D). However, the functional role/expression of vitamin A receptors (Rarα, β, and γ) in pancreatic β-cells is not clear yet. Accordingly, we performed a series of bioinformatics, molecular and functional experiments in human islet and INS-1 cells to evaluate the role of Rarβ on insulin secretion and pancreatic β-cell function. Microarray and RNA-sequencing (RAN-seq) expression analysis showed that RARα, β, and γ are expressed in human pancreatic islets. RNA-seq expression of RARβ in diabetic/hyperglycemic human islets (HbA1c ≥ 6.3%) revealed a significant reduction (p = 0.004) compared to nondiabetic/normoglycemic cells (HbA1c < 6%). The expression of RARβ with INS and PDX1 showed inverse association, while positive correlations were observed with INSR and HbA1c levels. Exploration of the T2D knowledge portal (T2DKP) revealed that several genetic variants in RARβ are associated with BMI. The most associated variant is rs6804842 (p = 1.2 × 10−25). Silencing of Rarβ in INS-1 cells impaired insulin secretion without affecting cell viability or apoptosis. Interestingly, reactive oxygen species (ROS) production levels were elevated and glucose uptake was reduced in Rarβ-silenced cells. mRNA expression of Ins1, Pdx1, NeuroD1, Mafa, Snap25, Vamp2, and Gck were significantly (p < 0.05) downregulated in Rarβ-silenced cells. For protein levels, Pro/Insulin, PDX1, GLUT2, GCK, pAKT/AKT, and INSR expression were downregulated considerably (p < 0.05). The expression of NEUROD and VAMP2 were not affected. In conclusion, our results indicate that Rarβ is an important molecule for β-cell function. Hence, our data further support the potential role of VA receptors in the development of T2D.
Collapse
Affiliation(s)
- Anila Khalique
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.K.); (A.K.M.); (M.A.G.); (E.A.-G.); (W.E.-H.)
| | - Abdul Khader Mohammed
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.K.); (A.K.M.); (M.A.G.); (E.A.-G.); (W.E.-H.)
| | - Nujood Mohammed Al-khadran
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Mutaz Al Gharaibeh
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.K.); (A.K.M.); (M.A.G.); (E.A.-G.); (W.E.-H.)
| | - Eman Abu-Gharbieh
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.K.); (A.K.M.); (M.A.G.); (E.A.-G.); (W.E.-H.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.K.); (A.K.M.); (M.A.G.); (E.A.-G.); (W.E.-H.)
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Nabil Sulaiman
- Department of Family Medicine, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.K.); (A.K.M.); (M.A.G.); (E.A.-G.); (W.E.-H.)
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Correspondence: ; Tel.: +97-165-057-743
| |
Collapse
|
14
|
The role of pancreas to improve hyperglycemia in STZ-induced diabetic rats by thiamine disulfide. Nutr Diabetes 2022; 12:32. [PMID: 35725834 PMCID: PMC9209469 DOI: 10.1038/s41387-022-00211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/04/2022] [Accepted: 06/06/2022] [Indexed: 12/04/2022] Open
Abstract
Background The present study investigated the effect of thiamine disulfide (TD) on the pancreas in terms of hyperglycemia improvement and insulin sensitivity increase in diabetic male rats. We also aimed to study the function of Pdx1 (pancreatic and duodenal homeobox 1) and Glut2 (glucose transporter 2) genes in pancreatic tissue. Methods Type 1 diabetes was induced through injection of 60 mg/kg streptozotocin (STZ). The diabetic rats were divided into four groups, namely diabetic control (DC), diabetic treated with thiamine disulfide (D-TD), diabetic treated with insulin (D-insulin), and diabetic treated with TD and insulin (D-insulin+TD). The non-diabetic (NDC) and diabetic groups received a normal diet (14 weeks). Blood glucose level and body weight were measured weekly; insulin tolerance test (ITT) and glucagon tolerance test (GTT) were performed in the last month of the study. The level of serum insulin and glucagon were measured monthly and a hyperglycemic clamp (Insulin Infusion rate (IIR)) was done for all the groups. Pancreas tissue was isolated so that Pdx1and Glut2 genes expression could be measured. Results We observed that TD therapy decreased blood glucose level, ITT, and serum glucagon levels in comparison with those of the DC group; it also increased serum insulin levels, IIR, and expression of Pdx1 and Glut2 genes in comparison with those of the DC group. Conclusion Administration of TD could improve hyperglycemia in type 1 diabetic animals through improved pancreas function. Therefore, not only does TD have a significant effect on controlling and reducing hyperglycemia in diabetes, but it also has the potential to decrease the dose of insulin administration.
Collapse
|
15
|
Lei Z, Chen Y, Wang J, Zhang Y, Shi W, Wang X, Xing D, Li D, Jiao X. Txnip deficiency promotes β-cell proliferation in the HFD-induced obesity mouse model. Endocr Connect 2022; 11:EC-21-0641. [PMID: 35294398 PMCID: PMC9066588 DOI: 10.1530/ec-21-0641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
Abstract
Elucidating the mechanisms of regulation of β-cell proliferation is key to understanding the pathogenesis of diabetes mellitus. Txnip is a tumor suppressor that is upregulated in diabetes and plays an important role in the regulation of insulin sensitivity; however, its potential effect on pancreatic β-cell proliferation remains unclear. Here, we evaluated the role of Txnip in pancreatic β-cell compensatory proliferation by subjecting WT and Txnip knockout (KO) mice to a high-fat diet (HFD). Our results demonstrate that Txnip deficiency improves glucose tolerance and increases insulin sensitivity in HFD-induced obesity. The antidiabetogenic effect of Txnip deficiency was accompanied by increased β-cell proliferation and enhanced β-cell mass expansion. Furthermore, Txnip deficiency modulated the expression of a set of transcription factors with key roles in β-cell proliferation and cell cycle regulation. Txnip KO in HFD mice also led to activated levels of p-PI3K, p-AKT, p-mTOR and p-GSK3β, suggesting that Txnip may act via PI3K/AKT signaling to suppress β-cell proliferation. Thus, our work provides a theoretical basis for Txnip as a new therapeutic target for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Zhandong Lei
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Yunfei Chen
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jin Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yan Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Wenjuan Shi
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Xuejiao Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Dehai Xing
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Dongxue Li
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Xiangying Jiao
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
- Correspondence should be addressed to X Jiao:
| |
Collapse
|
16
|
Liu F, Chen GD, Fan LK. Knockdown of PDX1 enhances the osteogenic differentiation of ADSCs partly via activation of the PI3K/Akt signaling pathway. J Orthop Surg Res 2022; 17:107. [PMID: 35183219 PMCID: PMC8858563 DOI: 10.1186/s13018-021-02825-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Osteoporosis (OP) is a systemic bone disease manifested as low bone mass, destruction of bone microstructure, increased bone fragility and fracture risk. The purpose of this study was to explore the role and mechanism of PDX1 for osteogenic differentiation of adipose derived stem cells (ADSCs).
Methods
GSE37329 dataset was retrieved from NCBI Gene Expression Omnibus (GEO) database and performed bioinformatic analyses. ADSCs were incubated with normal medium, osteogenic induction medium (OIM) and OIM+si-PDX1. Then, alkaline phosphatase (ALP) staining and Alizarin Red Staining (ARS) were performed to assess the role of PDX1 for osteogenesis of ADSCs. PI3K inhibitor, LY294002 was then added to further explore the mechanism of PDX1 for osteogenic differentiation of ADSCs. Western blot assay was used to assess the osteogenic-related markers. Graphpad software was used to perform statistically analysis.
Results
A total of 285 DEGs were obtained from analysis of the dataset GSE37329, of which 145 were upregulated and 140 were downregulated genes. These differentially expressed genes mainly enriched in cell differentiation and PI3K/Akt signaling pathway. Moreover, PDX1 was decreased in osteogenic induced ADSCs. Knockdown of PDX1 significantly increased osteogenic differentiation capacity and p-PI3K and p-Akt protein levels. Administration with LY294002 could partially reversed the promotion effects of si-PDX1.
Conclusion
In conclusion, knockdown of PDX1 promotes osteogenic differentiation of ADSCs through the PI3K/Akt signaling pathway.
Collapse
|
17
|
Xu Y, Tang Z, Dai H, Hou J, Li F, Tang Z, Zhang D. MiR-195 promotes pancreatic β-cell dedifferentiation by targeting Mfn2 and impairing Pi3k/Akt signaling in type 2 diabetes. Obesity (Silver Spring) 2022; 30:447-459. [PMID: 35088561 DOI: 10.1002/oby.23360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The aim of this study was to research the role and underlying mechanism of miR-195 involved in pancreatic β-cell dedifferentiation induced by hyperlipemia in type 2 diabetes mellitus. METHODS High-fat-diet-induced obese C57BL/6J mice and palmitate-stimulated Min6 cells were used as the models of β-cell dedifferentiation in vivo and in vitro, respectively. The expression of miR-195 and insulin secretion during β-cell dedifferentiation were measured. Also, the influence of regulated miR-195 expression on β-cell dedifferentiation was examined. Meanwhile, the IRS-1/2/Pi3k/Akt pathway and mitofusin-2 (Mfn2) expression were investigated during β-cell dedifferentiation. RESULTS MiR-195 was upregulated during lipotoxicity-induced β-cell dedifferentiation in both in vivo and in vitro experiments, and miR-195 functionally contributed to lipotoxicity-induced β-cell dedifferentiation. Furthermore, miR-195 inhibited IRS-1/2/Pi3k/Akt pathway activation, which accompanied β-cell dedifferentiation. Mfn2, a target of miR-195, was found to be downregulated and was associated with increased mitochondrial production of reactive oxygen species during β-cell dedifferentiation. Instructively, inhibition of miR-195, at least partially, reversed the downregulation of Mfn2, restored IRS-1/2/Pi3k/Akt pathway activation, and prevented β-cell dedifferentiation. CONCLUSIONS MiR-195 promoted β-cell dedifferentiation through negatively regulating Mfn2 expression and inhibiting the IRS-1/2/Pi3k/Akt pathway, providing a promising treatment for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yuhua Xu
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Zixuan Tang
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Hui Dai
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Jue Hou
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Fangqin Li
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Zhuqi Tang
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Jiangsu, China
| |
Collapse
|
18
|
Daniel PV, Kamthan M, Thakur S, Mondal P. Molecular pathways dysregulated by Pb 2+ exposure prompts pancreatic beta-cell dysfunction. Toxicol Res (Camb) 2022; 11:206-214. [PMID: 35237425 PMCID: PMC8882803 DOI: 10.1093/toxres/tfab121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 01/24/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by reduced insulin sensitivity and dysfunction of β-cells. Although the increasing prevalence of diabetes worldwide is largely attributed to genetic predisposition or lifestyle factors (insufficient physical activity), and caloric intake. Environmental factors, exposure to xenobiotics and heavy metals have also been reported to be causative factors of T2DM. At this juncture, we, through our work unveil a plausible link between Pb2+ exposure and diabetes mellitus, and delineated a comprehensive understanding of the potential mechanisms of Pb2+-induced β-cells dysfunction. In our in vivo observations, we found that Pb2+ exposure strongly reduced glucose-stimulated insulin secretion and diminished functional pancreatic β-cell mass. Mechanistically, we found that Pb2+ downregulates intracellular cAMP level via hyper-activating Ca2+/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1C and thereby reduces glucose-stimulated insulin secretion. Further, we report that Pb2+ inhibited mitochondrial adenosine triphosphate production and also identified Pb2+ as a negative regulator of β-cell proliferation via Ca2+/calmodulin-dependent protein kinase kinases-pAMPK-pRaptor axis. Together, our findings strongly reinforce Pb2+ to hijack the physiological role of calcium ions, by mimicking Ca2+ within pancreatic β-cell and thereby stands as a diabetogenic xenobiotic.
Collapse
Affiliation(s)
- P Vineeth Daniel
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001, India
| | - Mohan Kamthan
- Department of Biochemistry, School of Chemical and Life Sciences Jamia Hamdard, New Delhi, India
| | - Shilpa Thakur
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001, India
| | - Prosenjit Mondal
- Correspondence address. School of Basic Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh 175001, India. Tel: (91)1950267262;
| |
Collapse
|
19
|
Newsholme P, Rowlands J, Rose’Meyer R, Cruzat V. Metabolic Adaptions/Reprogramming in Islet Beta-Cells in Response to Physiological Stimulators—What Are the Consequences. Antioxidants (Basel) 2022; 11:antiox11010108. [PMID: 35052612 PMCID: PMC8773416 DOI: 10.3390/antiox11010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Irreversible pancreatic β-cell damage may be a result of chronic exposure to supraphysiological glucose or lipid concentrations or chronic exposure to therapeutic anti-diabetic drugs. The β-cells are able to respond to blood glucose in a narrow concentration range and release insulin in response, following activation of metabolic pathways such as glycolysis and the TCA cycle. The β-cell cannot protect itself from glucose toxicity by blocking glucose uptake, but indeed relies on alternative metabolic protection mechanisms to avoid dysfunction and death. Alteration of normal metabolic pathway function occurs as a counter regulatory response to high nutrient, inflammatory factor, hormone or therapeutic drug concentrations. Metabolic reprogramming is a term widely used to describe a change in regulation of various metabolic enzymes and transporters, usually associated with cell growth and proliferation and may involve reshaping epigenetic responses, in particular the acetylation and methylation of histone proteins and DNA. Other metabolic modifications such as Malonylation, Succinylation, Hydroxybutyrylation, ADP-ribosylation, and Lactylation, may impact regulatory processes, many of which need to be investigated in detail to contribute to current advances in metabolism. By describing multiple mechanisms of metabolic adaption that are available to the β-cell across its lifespan, we hope to identify sites for metabolic reprogramming mechanisms, most of which are incompletely described or understood. Many of these mechanisms are related to prominent antioxidant responses. Here, we have attempted to describe the key β-cell metabolic adaptions and changes which are required for survival and function in various physiological, pathological and pharmacological conditions.
Collapse
Affiliation(s)
- Philip Newsholme
- Curtin Medical School and CHIRI, Curtin University, Perth, WA 6845, Australia
- Correspondence: (P.N.); (J.R.)
| | - Jordan Rowlands
- Curtin Medical School and CHIRI, Curtin University, Perth, WA 6845, Australia
- Correspondence: (P.N.); (J.R.)
| | - Roselyn Rose’Meyer
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Vinicius Cruzat
- Faculty of Health, Torrens University Australia, Brisbane, QLD 4006, Australia;
| |
Collapse
|
20
|
Baumel-Alterzon S, Scott DK. Regulation of Pdx1 by oxidative stress and Nrf2 in pancreatic beta-cells. Front Endocrinol (Lausanne) 2022; 13:1011187. [PMID: 36187092 PMCID: PMC9521308 DOI: 10.3389/fendo.2022.1011187] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 01/05/2023] Open
Abstract
The beta-cell identity gene, pancreatic duodenal homeobox 1 (Pdx1), plays critical roles in many aspects of the life of beta-cells including differentiation, maturation, function, survival and proliferation. High levels of reactive oxygen species (ROS) are extremely toxic to cells and especially to beta-cells due to their relatively low expression of antioxidant enzymes. One of the major mechanisms for beta-cell dysfunction in type-2 diabetes results from oxidative stress-dependent inhibition of PDX1 levels and function. ROS inhibits Pdx1 by reducing Pdx1 mRNA and protein levels, inhibiting PDX1 nuclear localization, and suppressing PDX1 coactivator complexes. The nuclear factor erythroid 2-related factor (Nrf2) antioxidant pathway controls the redox balance and allows the maintenance of high Pdx1 levels. Therefore, pharmacological activation of the Nrf2 pathway may alleviate diabetes by preserving Pdx1 levels.
Collapse
Affiliation(s)
- Sharon Baumel-Alterzon
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Sharon Baumel-Alterzon,
| | - Donald K. Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
21
|
Benáková Š, Holendová B, Plecitá-Hlavatá L. Redox Homeostasis in Pancreatic β-Cells: From Development to Failure. Antioxidants (Basel) 2021; 10:antiox10040526. [PMID: 33801681 PMCID: PMC8065646 DOI: 10.3390/antiox10040526] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Redox status is a key determinant in the fate of β-cell. These cells are not primarily detoxifying and thus do not possess extensive antioxidant defense machinery. However, they show a wide range of redox regulating proteins, such as peroxiredoxins, thioredoxins or thioredoxin reductases, etc., being functionally compartmentalized within the cells. They keep fragile redox homeostasis and serve as messengers and amplifiers of redox signaling. β-cells require proper redox signaling already in cell ontogenesis during the development of mature β-cells from their progenitors. We bring details about redox-regulated signaling pathways and transcription factors being essential for proper differentiation and maturation of functional β-cells and their proliferation and insulin expression/maturation. We briefly highlight the targets of redox signaling in the insulin secretory pathway and focus more on possible targets of extracellular redox signaling through secreted thioredoxin1 and thioredoxin reductase1. Tuned redox homeostasis can switch upon chronic pathological insults towards the dysfunction of β-cells and to glucose intolerance. These are characteristics of type 2 diabetes, which is often linked to chronic nutritional overload being nowadays a pandemic feature of lifestyle. Overcharged β-cell metabolism causes pressure on proteostasis in the endoplasmic reticulum, mainly due to increased demand on insulin synthesis, which establishes unfolded protein response and insulin misfolding along with excessive hydrogen peroxide production. This together with redox dysbalance in cytoplasm and mitochondria due to enhanced nutritional pressure impact β-cell redox homeostasis and establish prooxidative metabolism. This can further affect β-cell communication in pancreatic islets through gap junctions. In parallel, peripheral tissues losing insulin sensitivity and overall impairment of glucose tolerance and gut microbiota establish local proinflammatory signaling and later systemic metainflammation, i.e., low chronic inflammation prooxidative properties, which target β-cells leading to their dedifferentiation, dysfunction and eventually cell death.
Collapse
Affiliation(s)
- Štěpánka Benáková
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
- First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
- Department of Mitochondrial Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
- Correspondence: ; Tel.: +420-296-442-285
| |
Collapse
|
22
|
Bar-Tana J. Insulin Resistance, Secretion and Clearance -Taming the Three Effector Encounter of Type 2 Diabetes. Front Endocrinol (Lausanne) 2021; 12:741114. [PMID: 34659123 PMCID: PMC8511791 DOI: 10.3389/fendo.2021.741114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
|