1
|
Martos-Arregui A, Li Z, Miras-Moreno S, Marcos-Frutos D, Jiménez-Martínez P, Alix-Fages C, Janicijevic D, García-Ramos A. Comparative effects of caffeine, beta-alanine, and their combination on mechanical, physiological, and perceptual responses to upper-body superset resistance training. Eur J Appl Physiol 2025; 125:837-850. [PMID: 39438314 DOI: 10.1007/s00421-024-05639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Caffeine and beta-alanine are widely used in multi-ingredient pre-workout supplements believed to enhance resistance training, but their specific role in driving this effect remains unclear. The current study employed a randomized, triple-blinded, placebo-controlled and crossover experimental design to explore the acute effects of caffeine (200 mg), beta-alanine (3 g), or their combination (200 mg caffeine and 3 g beta-alanine; C+B-A) administered 30 min prior to resistance training (RT) on mechanical, physiological, and perceptual variables. Twenty-one young resistance-trained males (age = 23.5 ± 4.5 years, body mass = 82.1 ± 10.2 kg) visited the laboratory on six occasions: one familiarization session, one preliminary testing session for load determination, and four experimental sessions which differed only in supplementation condition and involved four supersets of bench press and bench pull exercises. The supplement condition did not significantly affect any mechanical variables (p ≥ 0.335), except for the velocity of the last repetition of the set, where beta-alanine produced lower values (0.383 m/s) compared to placebo (0.407 m/s; p < 0.05), with no differences observed for C+B-A (0.397 m/s) and caffeine (0.392 m/s). Heart rate was consistent across the different supplement conditions with the exception of the higher values observed immediately before the start of the RT session for placebo compared to caffeine (p = 0.010) and C+B-A (p = 0.019). Post-RT blood lactate concentration (p = 0.384), general and local ratings of perceived exertion (p = 0.177 and 0.160, respectively), and readiness (p = 0.281-0.925), did not differ significantly between supplement conditions. Selected supplements have minimal effects on performance and physiological responses in agonist-antagonist upper-body superset RT not leading to failure.
Collapse
Affiliation(s)
- Antonio Martos-Arregui
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Camino de Alfacar, 21, 18071, Granada, Spain
| | - Zhaoqian Li
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Camino de Alfacar, 21, 18071, Granada, Spain
| | - Sergio Miras-Moreno
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Camino de Alfacar, 21, 18071, Granada, Spain
| | - Daniel Marcos-Frutos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Camino de Alfacar, 21, 18071, Granada, Spain
| | | | | | - Danica Janicijevic
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
- Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Católica de La Santísima Concepción, Concepción, Chile
| | - Amador García-Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Camino de Alfacar, 21, 18071, Granada, Spain.
- Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Católica de La Santísima Concepción, Concepción, Chile.
| |
Collapse
|
2
|
Nuzzo JL, Pinto MD, Nosaka K, Steele J. Maximal Number of Repetitions at Percentages of the One Repetition Maximum: A Meta-Regression and Moderator Analysis of Sex, Age, Training Status, and Exercise. Sports Med 2024; 54:303-321. [PMID: 37792272 PMCID: PMC10933212 DOI: 10.1007/s40279-023-01937-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2023] [Indexed: 10/05/2023]
Abstract
The maximal number of repetitions that can be completed at various percentages of the one repetition maximum (1RM) [REPS ~ %1RM relationship] is foundational knowledge in resistance exercise programming. The current REPS ~ %1RM relationship is based on few studies and has not incorporated uncertainty into estimations or accounted for between-individuals variation. Therefore, we conducted a meta-regression to estimate the mean and between-individuals standard deviation of the number of repetitions that can be completed at various percentages of 1RM. We also explored if the REPS ~ %1RM relationship is moderated by sex, age, training status, and/or exercise. A total of 952 repetitions-to-failure tests, completed by 7289 individuals in 452 groups from 269 studies, were identified. Study groups were predominantly male (66%), healthy (97%), < 59 years of age (92%), and resistance trained (60%). The bench press (42%) and leg press (14%) were the most commonly studied exercises. The REPS ~ %1RM relationship for mean repetitions and standard deviation of repetitions were best described using natural cubic splines and a linear model, respectively, with mean and standard deviation for repetitions decreasing with increasing %1RM. More repetitions were evident in the leg press than bench press across the loading spectrum, thus separate REPS ~ %1RM tables were developed for these two exercises. Analysis of moderators suggested little influences of sex, age, or training status on the REPS ~ %1RM relationship, thus the general main model REPS ~ %1RM table can be applied to all individuals and to all exercises other than the bench press and leg press. More data are needed to develop REPS ~ %1RM tables for other exercises.
Collapse
Affiliation(s)
- James L Nuzzo
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Matheus D Pinto
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - James Steele
- School of Sport, Health, and Social Sciences, Solent University, Southampton, UK
| |
Collapse
|
3
|
Grgic J, Varovic D. Ergogenic Effects of Caffeine on Ballistic (Throwing) Performance: A Meta-Analytical Review. Nutrients 2022; 14:nu14194155. [PMID: 36235804 PMCID: PMC9572449 DOI: 10.3390/nu14194155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 12/04/2022] Open
Abstract
Ballistic exercise is characterized by high velocity, force, and muscle activation. Typical examples of ballistic exercise are jumping and throwing activities. While several studies explored caffeine’s effects on throwing performance, the between study findings varied. Therefore, we performed a meta-analysis exploring caffeine’s effects on throwing performance (e.g., shot put, medicine ball throw, bench press throw). Seven databases were searched for eligible research. Ten studies (n = 151) were included. In the main meta-analysis, there was a significant ergogenic effect of caffeine on throwing performance (standardized mean difference [SMD]: 0.19; 95% confidence interval [CI]: 0.05, 0.33; p = 0.007). There was a significant ergogenic effect of caffeine in the subgroup analysis for studies that evaluated throwing velocity (SMD: 0.24; 95% CI: 0.10, 0.37; p = 0.0006) and used caffeine doses ≤3 mg/kg (SMD: 0.18; 95% CI: 0.05, 0.31; p = 0.006). There was no significant difference between caffeine and placebo in the subgroup analysis for studies that evaluated throwing distance (SMD: 0.15; 95% CI: −0.09, 0.40; p = 0.22) and used caffeine doses >3 mg/kg, (SMD: 0.17; 95% CI: −0.08, 0.41; p = 0.19). However, after one outlier study was excluded as part of a sensitivity analysis, an ergogenic effect was also observed for throwing distance and caffeine doses >3 mg/kg. Based on the results of this review, we conclude that individuals interested in the acute enhancement of throwing performance may consider caffeine supplementation.
Collapse
Affiliation(s)
- Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Correspondence:
| | - Dorian Varovic
- Faculty of Kinesiology, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Negro M, Cerullo G, Perna S, Beretta-Piccoli M, Rondanelli M, Liguori G, Cena H, Phillips SM, Cescon C, D’Antona G. Effects of a Single Dose of a Creatine-Based Multi-Ingredient Pre-workout Supplement Compared to Creatine Alone on Performance Fatigability After Resistance Exercise: A Double-Blind Crossover Design Study. Front Nutr 2022; 9:887523. [PMID: 35799580 PMCID: PMC9255897 DOI: 10.3389/fnut.2022.887523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/28/2022] [Indexed: 11/25/2022] Open
Abstract
Background This study aims to investigate the acute effects of a single oral administration of a creatine-based multi-ingredient pre-workout supplement (MIPS) on performance fatigability and maximal force production after a resistance exercise protocol (REP). Methods Eighteen adult males (age: 23 ± 1 years; body mass: 76.4 ± 1.5 kg; height: 1.77 ± 0.01 m) were enrolled in a randomized, double-blind, crossover design study. Subjects received a single dose of a MIPS (3 g of creatine, 2 g of arginine, 1 g of glutamine, 1 g of taurine, and 800 mg of β-alanine) or creatine citrate (CC) (3 g of creatine) or a placebo (PLA) in three successive trials 1 week apart. In a randomized order, participants consumed either MIPS, CC, or PLA and performed a REP 2 h later. Before ingestion and immediately after REP, subjects performed isometric contractions of the dominant biceps brachii: two maximal voluntary contractions (MVCs), followed by a 20% MVC for 90 s and a 60% MVC until exhaustion. Surface electromyographic indices of performance fatigability, conduction velocity (CV), and fractal dimension (FD) were obtained from the surface electromyographic signal (sEMG). Time to perform the task (TtT), basal blood lactate (BL), and BL after REP were also measured. Results Following REP, statistically significant (P < 0.05) pre–post mean for ΔTtT between MIPS (−7.06 s) and PLA (+0.222 s), ΔCV slopes (20% MVC) between MIPS (0.0082%) and PLA (−0.0519%) and for ΔCV slopes (60% MVC) between MIPS (0.199%) and PLA (−0.154%) were found. A pairwise comparison analysis showed no statistically significant differences in other variables between groups and condition vs. condition. Conclusion After REP, a creatine-enriched MIPS resulted in greater improvement of sEMG descriptors of performance fatigability and TtT compared with PLA. Conversely, no statistically significant differences in outcomes measured were observed between CC and PLA or MIPS and CC.
Collapse
Affiliation(s)
- Massimo Negro
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS) – Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Giuseppe Cerullo
- Department of Movement Sciences and Wellbeing, University of Naples Parthenope, Naples, Italy
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir, Bahrain
| | - Matteo Beretta-Piccoli
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
| | - Giorgio Liguori
- Department of Movement Sciences and Wellbeing, University of Naples Parthenope, Naples, Italy
| | - Hellas Cena
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici (ICS) Maugeri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Pavia, Pavia, Italy
| | - Stuart M. Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Corrado Cescon
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Giuseppe D’Antona
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS) – Sport Medicine Centre, University of Pavia, Voghera, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Giuseppe D’Antona,
| |
Collapse
|
5
|
Stratton MT, Siedler MR, Harty PS, Rodriguez C, Boykin JR, Green JJ, Keith DS, White SJ, DeHaven B, Williams AD, Tinsley GM. The influence of caffeinated and non-caffeinated multi-ingredient pre-workout supplements on resistance exercise performance and subjective outcomes. J Int Soc Sports Nutr 2022; 19:126-149. [PMID: 35599920 PMCID: PMC9116396 DOI: 10.1080/15502783.2022.2060048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background There is substantial consumer and practitioner interest in an emerging supplement class known as multi-ingredient pre-workout supplements (MIPS), largely due to their prevalence in resistance training communities as well as research findings demonstrating the ergogenic impact of caffeine on muscular performance. However, limited research has examined the potential efficacy of non-caffeinated MIPS, despite their growing popularity among those who are caffeine-sensitive or who train later in the day. Methods Twenty-four resistance-trained college-aged males (n = 12) and females (n = 12) completed three visits in which they ingested either a caffeinated MIPS (C), an otherwise identical non-caffeinated MIPS (NC), or placebo in a double-blind, counterbalanced, crossover fashion. Squat isometric peak force (PFiso), rate of force development (RFD), and isokinetic performance were assessed. Upper and lower body maximal muscular strength and endurance were evaluated using the bench press and leg press, respectively. Visual analog scales for energy, focus, and fatigue were completed five times throughout the testing protocol. The effects of supplementation and biological sex on all variables were examined using linear mixed effects models. Results Significantly greater PFiso was observed in both C (b: 0.36 transformed units [0.09, 0.62]) and NC (b: 0.32 transformed units [95% CI: 0.05, 0.58]) conditions, relative to placebo. Early RFD (RFD50) may have been higher with supplementation, particularly in females, with no effects for late RFD (RFD200) or peak RFD. In addition, increases in subjective energy after supplement ingestion were noted for C, but not NC. No effects of supplementation on traditional resistance exercise performance or isokinetic squat performance were observed, other than a lower leg press one-repetition maximum for males in the NC condition. Conclusions These data indicate that acute ingestion of either a caffeinated or non-caffeinated pre-workout formulation improved maximal force production during an isometric squat test but did not provide additional benefit to leg press, bench press, or isokinetic squat performance over placebo, within the context of a laboratory environment. The consumption of a caffeinated, but not non-caffeinated, MIPS increased subjective ratings of energy over placebo when assessed as part of a testing battery.
Collapse
Affiliation(s)
- Matthew T. Stratton
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Madelin R. Siedler
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Patrick S. Harty
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Christian Rodriguez
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Jake R. Boykin
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Jacob J. Green
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Dale S. Keith
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Sarah J. White
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Brielle DeHaven
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Abegale D. Williams
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Grant M. Tinsley
- Energy Balance & Body Composition Laboratory; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
6
|
Fernández-Lázaro D, Mielgo-Ayuso J, del Valle Soto M, Adams DP, Gutiérrez-Abejón E, Seco-Calvo J. Impact of Optimal Timing of Intake of Multi-Ingredient Performance Supplements on Sports Performance, Muscular Damage, and Hormonal Behavior across a Ten-Week Training Camp in Elite Cyclists: A Randomized Clinical Trial. Nutrients 2021; 13:3746. [PMID: 34836002 PMCID: PMC8618318 DOI: 10.3390/nu13113746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Multi-ingredient performance supplements (MIPS), ingested pre- or post-workout, have been shown to increase physiological level effects and integrated metabolic response on exercise. The purpose of this study was to determine the efficacy of pre-and post-training supplementation with its own MIPS, associated with CHO (1 g·kg-1) plus protein (0.3 g·kg-1) on exercise-related benchmarks across a training camp for elite cyclists. Thirty elite male cyclists participated in a randomized non-placebo-controlled trial for ten weeks assigned to one of three groups (n = 10 each): a control group treated with CHO plus protein after training (CG); a group treated with MIPS before training and a CHO plus protein after training, (PRE-MIPS); a group treated with CHO plus protein plus MIPS after training, (POST-MIPS). Performance parameters included (VO2max, peak; median and minimum power (W) and fatigue index (%)); hormonal response (Cortisol; Testosterone; and Testosterone/Cortisol ratio); and muscle biomarkers (Creatine kinase (CK), Lactate dehydrogenase (LDH), and Myoglobin (Mb)) were assessed. MIPS administered before or after training (p ≤ 0.05) was significantly influential in attenuating CK, LDH, and MB; stimulating T response and modulating C; and improved on all markers of exercise performance. These responses were greater when MIPS was administered post-workout.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Miguel del Valle Soto
- Department of Morphology and Cell Biology, University of Oviedo, Health Research Institute of the Principality of Asturias (ISPA), 33003 Oviedo, Spain;
| | - David P. Adams
- Dual Enrollment Program, Point University, Savannah, GA 31419, USA;
| | - Eduardo Gutiérrez-Abejón
- Pharmacological Big Data Laboratory, University of Valladolid, 47005 Valladolid, Spain;
- Technical Direction of Pharmaceutical Assistance, Regional Health Management of Castilla y León, 47005 Valladolid, Spain
| | - Jesús Seco-Calvo
- Physiotherapy Department, Institute of Biomedicine (IBIOMED), University of Leon, Visiting Researcher of Basque Country University, Campus de Vegazana, 24071 Leon, Spain;
| |
Collapse
|
7
|
Puente-Fernández J, Seijo M, Larumbe-Zabala E, Jiménez A, Liguori G, Rossato CJL, Mayo X, Naclerio F. Effects of Multi-Ingredient Preworkout Supplementation across a Five-Day Resistance and Endurance Training Microcycle in Middle-Aged Adults. Nutrients 2020; 12:E3778. [PMID: 33317139 PMCID: PMC7764411 DOI: 10.3390/nu12123778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 11/17/2022] Open
Abstract
Preworkout multi-ingredient admixtures are used to maximise exercise performance. The present double-blind, cross-over study compared the acute effects of ingesting a preworkout multi-ingredient (PREW) admixture vs. carbohydrate (CHO) over a week (microcycle) comprising three resistance training (RT) workouts alternated with two 30-min low-intensity endurance sessions (END) on RT volume (kg lifted) and END substrate oxidation. Additionally, postworkout decreases of muscle function and subjective responses were analysed. Following a baseline assessment, fourteen recreationally trained, middle-aged adults (seven females, 48.8 ± 4.7 years old) completed two identical microcycles separated by a two-week washout period while receiving either PREW or CHO (15 min prior to workout). The RT volume, per session (SVOL) and for the entire week (WVOL), was calculated. Fatty acid oxidation (FAO) during 30-min cycling corresponding to their individually determined maximal fat oxidation was measured using expired gasses and indirect calorimetry. Assessments of performance and tensiomyography were conducted within 20 min after each RT. Higher (p = 0.001) SVOL and WVOL along with a larger proportion of FAO (p = 0.05) during the second END workout were determined under the PREW treatment. No other statistically significant differences were observed between conditions. Compared to CHO, a preworkout multi-ingredient appears to increase resistance volume and favour fat oxidation during low-intensity endurance exercises.
Collapse
Affiliation(s)
- Joel Puente-Fernández
- Institute for Lifecourse Development, School of Human Sciences, Centre for Chronic Illness and Ageing, University of Greenwich, Eltham SE9 2TB, UK; (J.P.-F.); (M.S.); (C.J.L.R.)
| | - Marcos Seijo
- Institute for Lifecourse Development, School of Human Sciences, Centre for Chronic Illness and Ageing, University of Greenwich, Eltham SE9 2TB, UK; (J.P.-F.); (M.S.); (C.J.L.R.)
| | - Eneko Larumbe-Zabala
- School of Doctorate and Research, European University of Madrid, 28670 Villaviciosa de Odon, Spain;
| | - Alfonso Jiménez
- Advanced Well-Being Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
- Observatory of Healthy and Active Living of Spain Active Foundation, Centre for Sport Studies, King Juan Carlos University, 28942 Madrid, Spain
- GO Fit LAB, Ingesport, 28108 Madrid, Spain;
| | - Gary Liguori
- College of Health Sciences, University of Rhode Island, Kingston, RI 02881, USA;
| | - Claire J. L. Rossato
- Institute for Lifecourse Development, School of Human Sciences, Centre for Chronic Illness and Ageing, University of Greenwich, Eltham SE9 2TB, UK; (J.P.-F.); (M.S.); (C.J.L.R.)
| | - Xian Mayo
- GO Fit LAB, Ingesport, 28108 Madrid, Spain;
| | - Fernando Naclerio
- Institute for Lifecourse Development, School of Human Sciences, Centre for Chronic Illness and Ageing, University of Greenwich, Eltham SE9 2TB, UK; (J.P.-F.); (M.S.); (C.J.L.R.)
| |
Collapse
|
8
|
Harty PS, Stratton MT, Escalante G, Rodriguez C, Dellinger JR, Williams AD, White SJ, Smith RW, Johnson BA, Sanders MB, Tinsley GM. Effects of Bang® Keto Coffee Energy Drink on Metabolism and Exercise Performance in Resistance-Trained Adults: A Randomized, Double-blind, Placebo-controlled, Crossover Study. J Int Soc Sports Nutr 2020; 17:45. [PMID: 32831109 PMCID: PMC7446127 DOI: 10.1186/s12970-020-00374-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Energy drinks are often consumed by the general population, as well as by active individuals seeking to enhance exercise performance and augment training adaptations. However, limited information is available regarding the efficacy of these products. Thus, the purpose of this study was to determine the effects of a commercially available caffeine- and protein-containing energy drink on metabolism and muscular performance. METHODS Sixteen resistance-trained males (n = 8; mean ± SD; age: 22.4 ± 4.9 years; body mass: 78.8 ± 14.0 kg; body fat: 15.3 ± 6.4%) and females (n = 8; age: 24.5 ± 4.8 years; body mass: 67.5 ± 11.9 kg; body fat: 26.6 ± 7.1%) participated in this randomized, double-blind, placebo-controlled, crossover study. Following a familiarization visit, participants completed two identical visits to the laboratory separated by 5-10 days, each of which consisted of indirect calorimetry energy expenditure (EE) assessments before and after consumption of the beverage (Bang® Keto Coffee; 130 kcal, 300 mg caffeine, 20 g protein) or placebo (30 kcal, 11 mg caffeine, 1 g protein) as well as after exercise testing. In addition, participants' subjective feelings of energy, fatigue, and focus as well as muscular performance (leg press one-repetition maximum and repetitions to fatigue, maximal isometric and isokinetic squat testing) were assessed. Multiple repeated measures ANOVAs with Tukey post-hoc tests were used to analyze data. Estimates of effect size were quantified via partial eta squared (ηP2) and Hedge's g. RESULTS A significant interaction effect was identified for EE (p < 0.001, ηP2 = 0.52) but not respiratory exchange ratio (p = 0.17, ηP2 = 0.11). Following consumption of the beverage, EE was 0.18 [corrected] kcal·min- 1 greater than placebo at the post-beverage time point (p < 0.001) and 0.08 [corrected] kcal·min- 1 greater than placebo at the post-exercise time point (p = 0.011). However, no between-condition differences were detected for any subjective or muscular performance outcomes. CONCLUSIONS The results of this study suggest that consumption of the energy drink had minimal effects on lower-body muscular performance and subjective factors in the context of a laboratory setting. However, the beverage was found to significantly increase energy expenditure compared to placebo immediately following ingestion as well as during the recovery period after an exercise bout, suggesting that active individuals may improve acute metabolic outcomes via consumption of a caffeine- and protein-containing energy drink. TRIAL REGISTRATION This trial was prospectively registered at ClinicalTrials.gov (Identifier: NCT04180787 ; Registered 29 November 2019).
Collapse
Affiliation(s)
- Patrick S Harty
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, 79424, USA
| | - Matthew T Stratton
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, 79424, USA
| | | | - Christian Rodriguez
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, 79424, USA
| | - Jacob R Dellinger
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, 79424, USA
| | - Abegale D Williams
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, 79424, USA
| | - Sarah J White
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, 79424, USA
| | - Robert W Smith
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, 79424, USA
| | - Baylor A Johnson
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, 79424, USA
| | - Mark B Sanders
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, 79424, USA
| | - Grant M Tinsley
- Energy Balance & Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, 79424, USA.
| |
Collapse
|
9
|
Beckner ME, Pihoker AA, Darnell ME, Beals K, Lovalekar M, Proessl F, Flanagan SD, Arciero PJ, Nindl BC, Martin BJ. Effects of Multi-ingredient Preworkout Supplements on Physical Performance, Cognitive Performance, Mood State, and Hormone Concentrations in Recreationally Active Men and Women. J Strength Cond Res 2020; 36:2493-2501. [PMID: 32569125 DOI: 10.1519/jsc.0000000000003660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Beckner, ME, Pihoker, AA, Darnell, ME, Beals, K, Lovalekar, M, Proessl, F, Flanagan, SD, Arciero, PJ, Nindl, BC, and Martin, BJ. Effects of multi-ingredient preworkout supplements on physical performance, cognitive performance, mood state, and hormone concentrations in recreationally active men and women. J Strength Cond Res XX(X): 000-000, 2020-Performance enhancement supplement research has primarily focused on the effectiveness of individual ingredients, rather than the combination. This study investigated the acute effects of 2 multi-ingredient preworkout supplements (MIPS), with beta-alanine and caffeine (BAC) and without (NBAC), compared with placebo (PLA) on anaerobic performance, endurance capacity, mood state, cognitive function, vascular function, and anabolic hormones. Thirty exercise-trained individuals (24.4 ± 4.9 years, 15 men and 15 women) completed a fatiguing exercise protocol on 3 separate occasions, 30 minutes after ingestion of BAC, NBAC, or PLA. Outcomes were analyzed using one-way or two-way repeated-measures analysis of variance, as appropriate (alpha = 0.05). Anaerobic power was greater when supplementing with NBAC (10.7 ± 1.2 W·kg) and BAC (10.8 ± 1.4 W·kg) compared with PLA (10.4 ± 1.2 W·kg) (p = 0.014 and p = 0.022, respectively). BAC improved V[Combining Dot Above]O2peak time to exhaustion (p = 0.006), accompanied by an increase in blood lactate accumulation (p < 0.001), compared with PLA. Both NBAC and BAC demonstrated improved brachial artery diameter after workout (p = 0.041 and p = 0.005, respectively), but PLA did not. L-arginine concentrations increased from baseline to postsupplement consumption of BAC (p = 0.017). Reaction time significantly decreased after exercise for all supplements. There was no effect of supplement on mood states. Exercise-trained individuals looking to achieve modest improvements in power and endurance may benefit from consuming MIPS before exercise.
Collapse
Affiliation(s)
- Meaghan E Beckner
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alexis A Pihoker
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew E Darnell
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kim Beals
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mita Lovalekar
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Felix Proessl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shawn D Flanagan
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paul J Arciero
- Health & Human Physiological Sciences Department, Skidmore College, Saratoga Springs, New York
| | - Bradley C Nindl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian J Martin
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Schwarz NA, McKinley-Barnard SK, Blahnik ZJ. Effect of Bang® Pre-Workout Master Blaster® combined with four weeks of resistance training on lean body mass, maximal strength, mircoRNA expression, and serum IGF-1 in men: a randomized, double-blind, placebo-controlled trial. J Int Soc Sports Nutr 2019; 16:54. [PMID: 31744521 PMCID: PMC6862793 DOI: 10.1186/s12970-019-0310-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
Background The aim of the current study was to determine if 4 weeks of consumption of Bang® Pre-Workout Master Blaster® (BMB; Vital Pharmaceuticals Inc., Weston, FL) combined with resistance training resulted in greater increases in muscle mass and maximal strength compared with resistance training combined with placebo (PLA). Additionally, we aimed to determine if BMB ingestion combined with resistance training preferentially altered resting skeletal muscle expression of microRNAs (miRs) or resting serum insulin-like growth factor (IGF-1). Methods Sixteen recreationally-active men completed the study. The study employed a block-randomized, double-blind, placebo-controlled, parallel design. Participants completed two testing sessions separated by 4 weeks of resistance exercise combined with daily supplementation of BMB or PLA. At each testing session, hemodynamics, body composition, and muscle and blood samples were obtained followed by strength assessments of the lower- and upper-body via measurement of squat and bench press one-repetition maximum (1-RM), respectively. A separate general linear model was utilized for analysis of each variable to determine the effect of each supplement (between-factor) over time (within-factor) using an a priori probability level of ≤0.05. Results No significant effects were observed for dietary intake, hemodynamics, fat mass, body fat percentage, or serum IGF-1. A greater increase in total body mass (3.19 kg, 95% CI, 1.98 kg, 4.40 kg vs. 0.44 kg, 95% CI, − 0.50 kg, 1.39 kg) and lean body mass (3.15 kg, 95% CI, 1.80 kg, 4.49 kg vs. 0.89 kg, 95% CI, − 0.14 kg, 1.93 kg) was observed for the BMB group compared with PLA (p < 0.01). A significant increase over time was observed for miR-23a (p = 0.02) and miR-23b (p = 0.05) expression. A greater increase in squat 1-RM was observed for the BMB group (23.86 kg, 95% CI, 16.75 kg, 30.97 kg) compared with the PLA group (14.20 kg, 95% CI, 7.04 kg, 21.37 kg, p = 0.04). Conclusions BMB supplementation combined with resistance exercise training for 4 weeks resulted in superior adaptations in maximal strength and LBM compared with resistance training with a placebo. No adverse resting hemodynamic or clinical blood safety markers were observed as a result of BMB supplementation. The superior outcomes associated with BMB supplementation could not be explained by resting serum IGF-1 or the skeletal muscle miRs measured, although resting miR-23a and miR-23b expression both increased as a result of resistance training.
Collapse
Affiliation(s)
- Neil A Schwarz
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, 36688, USA.
| | - Sarah K McKinley-Barnard
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, 36688, USA
| | - Zachary J Blahnik
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, 36688, USA
| |
Collapse
|
11
|
Rickli A, Hoener MC, Liechti ME. Pharmacological profiles of compounds in preworkout supplements ("boosters"). Eur J Pharmacol 2019; 859:172515. [PMID: 31265842 DOI: 10.1016/j.ejphar.2019.172515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
Abstract
Preworkout supplements ("boosters") are used to enhance physical and mental performance during workouts. These products may contain various chemical substances with undefined pharmacological activity. We investigated whether substances that are contained in commercially available athletic multiple-ingredient preworkout supplements exert amphetamine-type activity at norepinephrine, dopamine, and serotonin transporters (NET, DAT, and SERT, respectively). We assessed the in vitro monoamine transporter inhibition potencies of the substances using human embryonic kidney 293 cells that expressed the human NET, DAT, and SERT. The phenethylamines β-phenethylamine, N-methylphenethylamine, β-methylphenethylamine, N-benzylphenethylamine, N-methyl-β-methylphenethylamine, and methylsynephrine inhibited the NET and less potently the DAT similarly to D-amphetamine. β-phenethylamine was the most potent, with IC50 values of 0.05 and 1.8 μM at the NET and DAT, respectively. These IC50 values were comparable to D-amphetamine (IC50 = 0.09 and 1.3 μM, respectively). The alkylamines 1,3-dimethylbutylamine and 1,3-dimethylamylamine blocked the NET but not the DAT. Most of the phenethylamines interacted with trace amine-associated receptor 1, serotonin 5-hydroxytryptamine-1A receptor, and adrenergic α1A and α2A receptors at submicromolar concentrations. None of the compounds blocked the SERT. In conclusion, products that are used by athletes may contain substances with mainly noradrenergic amphetamine-type properties.
Collapse
Affiliation(s)
- Anna Rickli
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Marius C Hoener
- Neuroscience Research, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|