1
|
Reisi A, Ataie Kachoie M, Ghodrati L. The negative aspects of using medicinal plants: human health risks assessment of mycotoxins and toxic metal contamination. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-18. [PMID: 40250985 DOI: 10.1080/09603123.2025.2494229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/12/2025] [Indexed: 04/20/2025]
Abstract
Medicinal plants (MPs) have been valued for their therapeutic properties and are crucial in traditional and modern medicine. However, contamination with hazardous substances such as mycotoxins and toxic THMs (THMs) poses significant safety concerns. This study quantified the levels of mycotoxins and THMs in ten commonly used MPs in Tehran markets, Iran, and assessed their carcinogenic and non-carcinogenic risks to ensure consumer safety. A total of 210 samples were analyzed. THMs, including arsenic (As), mercury (Hg), cadmium (Cd), and lead (Pb), were detected using atomic absorption spectrometry, while mycotoxins such as aflatoxins (B1, B2, G1, G2) and ochratoxin A (OTA) were measured using high-performance liquid chromatography. Risk assessments used Target Hazard Quotient (THQ), Hazard Index (HI), Incremental Lifetime Cancer Risk (ILCR), and Total Carcinogenic Risk (TCR) methodologies. Results revealed variability in contaminant levels (p < 0.05). While heavy metal concentrations were within safe limits, mycotoxin exposure posed non-carcinogenic risks for children, with a THQ exceeding the acceptable limit. Mycotoxin levels remained below carcinogenic thresholds. To mitigate risks, storing MPs in dry, low-humidity environments is recommended to prevent fungal growth and reduce mycotoxin contamination, emphasizing the need for stricter safety measures.
Collapse
Affiliation(s)
- Ali Reisi
- Department of Medicinal Plants, Shk.C., Islamic Azad University, Shahrekord, Iran
| | - Mehrdad Ataie Kachoie
- Department of Medicinal Plants, Shk.C., Islamic Azad University, Shahrekord, Iran
- Medicinal Plants Processing Research Center, Shk.C., Islamic Azad University, Shahrekord, Iran
| | - Leila Ghodrati
- Department of Medicinal Plants, Shk.C., Islamic Azad University, Shahrekord, Iran
- Medicinal Plants Processing Research Center, Shk.C., Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
2
|
Li K, Cai H, Luo B, Duan S, Yang J, Zhang N, He Y, Wu A, Liu H. Recent Progress of Mycotoxin in Various Food Products-Human Exposure and Health Risk Assessment. Foods 2025; 14:865. [PMID: 40077568 PMCID: PMC11898784 DOI: 10.3390/foods14050865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Mycotoxins, as prevalent contaminants in the food chain, exhibit diverse toxicological effects on both animals and humans. Chronic dietary exposure to mycotoxin-contaminated foods may result in the bioaccumulation of these toxins, posing substantial public health risks. This review systematically examines the contamination patterns of mycotoxins across major food categories, including cereals and related products, animal-derived foods, fruits, and medical food materials. Furthermore, we critically evaluated two methodological frameworks for assessing mycotoxin exposure risks: (1) dietary exposure models integrating contamination levels and consumption data and (2) human biomonitoring approaches quantifying mycotoxin biomarkers in biological samples. A key contribution lies in the stratified analysis of exposure disparities among population subgroups (adults, teenagers, children, and infants). Additionally, we summarize current research on the relationship between human mycotoxin biomonitoring and associated health impacts, with a particular emphasis on vulnerable groups such as pregnant women and infants. By elucidating the challenges inherent in existing studies, this synthesis provides a roadmap for advancing risk characterization and evidence-based food safety interventions.
Collapse
Affiliation(s)
- Kailin Li
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200331, China
| | - Hua Cai
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Baozhang Luo
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Shenggang Duan
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Jingjin Yang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Nan Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Yi He
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200331, China
| | - Hong Liu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| |
Collapse
|
3
|
Gonya S, Kallmerten P, Dinapoli P. Are Infants and Children at Risk of Adverse Health Effects from Dietary Deoxynivalenol Exposure? An Integrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:808. [PMID: 38929054 PMCID: PMC11204095 DOI: 10.3390/ijerph21060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Deoxynivalenol (DON) is a foodborne mycotoxin produced by Fusarium molds that commonly infect cereal grains. It is a potent protein synthesis inhibitor that can significantly impact humans' gastrointestinal, immune, and nervous systems and can alter the microbiome landscape. Low-dose, chronic exposure to DON has been found to stimulate the immune system, inhibit protein synthesis, and cause appetite suppression, potentially leading to growth failure in children. At higher doses, DON has been shown to cause immune suppression, nausea, vomiting, abdominal pain, headache, diarrhea, gastroenteritis, the malabsorption of nutrients, intestinal hemorrhaging, dizziness, and fever. A provisional maximum tolerable daily intake (PMTDI) limit of 1 µg/kg/body weight has been established to protect humans, underscoring the potential health risks associated with DON intake. While the adverse effects of dietary DON exposure have been established, healthcare communities have not adequately investigated or addressed this threat to child health, possibly due to the assumption that current regulatory exposure limits protect the public appropriately. This integrative review investigated whether current dietary DON exposure rates in infants and children regularly exceed PMTDI limits, placing them at risk of negative health effects. On a global scale, the routine contamination of cereal grains, bakery products, pasta, and human milk with DON could lead to intake levels above PMTDI limits. Furthermore, evidence suggests that other food commodities, such as soy, coffee, tea, dried spices, nuts, certain seed oils, animal milk, and various water reservoirs, can be intermittently contaminated, further amplifying the scope of the issue. Better mitigation strategies and global measures are needed to safeguard vulnerable youth from this harmful toxicant.
Collapse
Affiliation(s)
- Susan Gonya
- Department of Nursing, College of Health and Human Services, University of New Hampshire, Durham, NH 03824, USA
| | | | - Pamela Dinapoli
- Department of Nursing, College of Health and Human Services, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
4
|
Hassan HF, Tashani H, Ballouk F, Daou R, El Khoury A, Abiad MG, AlKhatib A, Hassan M, El Khatib S, Dimassi H. Aflatoxins and Ochratoxin A in Tea Sold in Lebanon: Effects of Type, Packaging, and Origin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6556. [PMID: 37623142 PMCID: PMC10454378 DOI: 10.3390/ijerph20166556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 08/26/2023]
Abstract
Tea is among the oldest and most-known beverages around the world, and it has many flavors and types. Tea can be easily contaminated in any of its production steps, especially with mycotoxins that are produced particularly in humid and warm environments. This study aims to examine the level of ochratoxin A (OTA) and total aflatoxin (AF) contamination in black and green tea sold in Lebanon, evaluate its safety compared to international standards, and assess the effect of different variables on the levels of OTA and AFs. For this, the Lebanese market was screened and all tea brands (n = 37; 24 black and 13 green) were collected twice. The Enzyme-Linked Immunoassay (ELISA) method was used to determine OTA and AFs in the samples. AFs and OTA were detected in 28 (75.7%) and 31 (88.6%) samples, respectively. The average of AFs in the positive (above detection limit: 1.75 μg/kg) samples was 2.66 ± 0.15 μg/kg, while the average of OTA in the positive (above detection limit: 1.6 μg/kg) samples was 3.74 ± 0.72 μg/kg. The mean AFs in black and green tea were 2.65 ± 0.55 and 2.54 ± 0.40 μg/kg, respectively, while for OTA, the mean levels were 3.67 ± 0.96 and 3.46 ± 1.09 μg/kg in black and green tea samples, respectively. Four brands (10.8%) contained total aflatoxin levels above the EU limit (4 μg/kg). As for OTA, all samples had OTA levels below the Chinese limit (5 μg/kg). No significant association (p > 0.05) was found between OTA and tea type, level of packaging, country of origin, country of packing, and country of distribution. However, AF contamination was significantly (p < 0.05) higher in unpacked tea, and in brands where the country of origin, packing, and distributor was in Asia. The results showed that the tea brands in Lebanon are relatively safe in terms of AFs and OTA.
Collapse
Affiliation(s)
- Hussein F. Hassan
- Nutrition Program, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon (M.H.)
| | - Hadeel Tashani
- Nutrition Program, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon (M.H.)
| | - Farah Ballouk
- Department of Nutrition and Food Sciences, School of Arts and Sciences, Lebanese International University, Beirut P.O. Box 146404, Lebanon
| | - Rouaa Daou
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculty of Sciences, Campus of Sciences and Technologies, Saint Joseph University of Beirut, Mar Roukoz P.O. Box 17-5208, Lebanon
| | - André El Khoury
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculty of Sciences, Campus of Sciences and Technologies, Saint Joseph University of Beirut, Mar Roukoz P.O. Box 17-5208, Lebanon
| | - Mohamad G. Abiad
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
- Laboratories for the Environment, Agriculture, and Food (LEAF), Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Beirut 1107-2020, Lebanon
| | - Ali AlKhatib
- Department of Nutrition and Food Sciences, School of Arts and Sciences, Lebanese International University, Beirut P.O. Box 146404, Lebanon
| | - Mahdi Hassan
- Nutrition Program, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon (M.H.)
| | - Sami El Khatib
- Department of Food Sciences and Technology, School of Arts and Sciences, Lebanese International University, Bekaa P.O. Box 146404, Lebanon;
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, P.O. Box 7207, Hawally 32093, Kuwait
| | - Hani Dimassi
- School of Pharmacy, Lebanese American University, Byblos P.O. Box 36, Lebanon
| |
Collapse
|
5
|
Valenti I, Tini F, Sevarika M, Agazzi A, Beccari G, Bellezza I, Ederli L, Grottelli S, Pasquali M, Romani R, Saracchi M, Covarelli L. Impact of Enniatin and Deoxynivalenol Co-Occurrence on Plant, Microbial, Insect, Animal and Human Systems: Current Knowledge and Future Perspectives. Toxins (Basel) 2023; 15:271. [PMID: 37104209 PMCID: PMC10144843 DOI: 10.3390/toxins15040271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Fusarium mycotoxins commonly contaminate agricultural products resulting in a serious threat to both animal and human health. The co-occurrence of different mycotoxins in the same cereal field is very common, so the risks as well as the functional and ecological effects of mycotoxins cannot always be predicted by focusing only on the effect of the single contaminants. Enniatins (ENNs) are among the most frequently detected emerging mycotoxins, while deoxynivalenol (DON) is probably the most common contaminant of cereal grains worldwide. The purpose of this review is to provide an overview of the simultaneous exposure to these mycotoxins, with emphasis on the combined effects in multiple organisms. Our literature analysis shows that just a few studies on ENN-DON toxicity are available, suggesting the complexity of mycotoxin interactions, which include synergistic, antagonistic, and additive effects. Both ENNs and DON modulate drug efflux transporters, therefore this specific ability deserves to be explored to better understand their complex biological role. Additionally, future studies should investigate the interaction mechanisms of mycotoxin co-occurrence on different model organisms, using concentrations closer to real exposures.
Collapse
Affiliation(s)
- Irene Valenti
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (I.V.); (M.P.); (M.S.)
| | - Francesco Tini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Milos Sevarika
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Alessandro Agazzi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy;
| | - Giovanni Beccari
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Ilaria Bellezza
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.B.); (S.G.)
| | - Luisa Ederli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Silvia Grottelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.B.); (S.G.)
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (I.V.); (M.P.); (M.S.)
| | - Roberto Romani
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (I.V.); (M.P.); (M.S.)
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| |
Collapse
|
6
|
Chatterjee S, Dhole A, Krishnan AA, Banerjee K. Mycotoxin Monitoring, Regulation and Analysis in India: A Success Story. Foods 2023; 12:foods12040705. [PMID: 36832780 PMCID: PMC9956158 DOI: 10.3390/foods12040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Mycotoxins are deleterious fungal secondary metabolites that contaminate food and feed, thereby creating concerns regarding food safety. Common fungal genera can easily proliferate in Indian tropical and sub-tropical conditions, and scientific attention is warranted to curb their growth. To address this, two nodal governmental agencies, namely the Agricultural and Processed Food Products Export Development Authority (APEDA) and the Food Safety and Standards Authority of India (FSSAI), have developed and implemented analytical methods and quality control procedures to monitor mycotoxin levels in a range of food matrices and assess risks to human health over the last two decades. However, comprehensive information on such advancements in mycotoxin testing and issues in implementing these regulations has been inadequately covered in the recent literature. The aim of this review is thus to uphold a systematic picture of the role played by the FSSAI and APEDA for mycotoxin control at the domestic level and for the promotion of international trade, along with certain challenges in dealing with mycotoxin monitoring. Additionally, it unfolds various regulatory concerns regarding mycotoxin mitigation in India. Overall, it provides valuable insights for the Indian farming community, food supply chain stakeholders and researchers about India's success story in arresting mycotoxins throughout the food supply chain.
Collapse
Affiliation(s)
- Sujata Chatterjee
- National Reference Laboratory, ICAR-National Research Centre for Grapes, Post Office, Manjari Farm, Pune 412307, India
| | - Archana Dhole
- National Reference Laboratory, ICAR-National Research Centre for Grapes, Post Office, Manjari Farm, Pune 412307, India
| | | | - Kaushik Banerjee
- National Reference Laboratory, ICAR-National Research Centre for Grapes, Post Office, Manjari Farm, Pune 412307, India
- Correspondence: ; Tel.: +91-98909-40914
| |
Collapse
|
7
|
Zhang J, Li X, Xie J, Huang Z. Rapid and Simultaneous Detection of Aflatoxin B 1, Zearalenone, and T-2 Toxin in Medicinal and Edible Food Using Gold Immunochromatographic Test Strip. Foods 2023; 12:foods12030633. [PMID: 36766161 PMCID: PMC9914187 DOI: 10.3390/foods12030633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Medicinal and edible food and traditional Chinese medicine have been used to treat various diseases. However, their safety has not been thoroughly assessed. (2) Methods: An immunochromatographic test strip (ICS) was used for the first time to screen some mycotoxins, including aflatoxin B1 (AFB1), zearalenone (ZEN), and T-2 toxin, in medicinal and edible food and traditional Chinese medicine. Antibody/nano-gold particle coupling was used with the prepared ICS, and the pH, monoclonal antibody concentration, and antigen amount were optimized. The extraction sample solution was diluted 10 times with phosphate-buffered saline containing 0.5% Tween-20 and 0.05% sodium dodecyl sulfate to remove the complex matrix in medicinal and edible food. (3) Results: Under optimal conditions, the sensitivities of the developed ICS for AFB1, ZEN, and T-2 were 0.5, 5.0, and 5.0 ng/mL, respectively. Among the 30 medicinal and edible food samples tested, two samples (both of sand jujube kernels) were positive, and the results were verified by high-performance liquid chromatography and enzyme-linked immunosorbent assay and were consistent with the ICS test results. (4) Conclusions: The ICS could be used for rapid screening and simultaneous detection of mycotoxins at medicinal and edible food storage facilities.
Collapse
Affiliation(s)
- Jiaying Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xiujiang Li
- The First Affiliated Hospital of Nanchang University, Nanchang University, No. 17 Yongwai Main Street, Nanjing West Road, Nanchang 330006, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
8
|
Ndoro J, Manduna IT, Nyoni M, de Smidt O. Multiple Mycotoxin Contamination in Medicinal Plants Frequently Sold in the Free State Province, South Africa Detected Using UPLC-ESI-MS/MS. Toxins (Basel) 2022; 14:690. [PMID: 36287959 PMCID: PMC9607566 DOI: 10.3390/toxins14100690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 12/03/2022] Open
Abstract
Medicinal plants are important in the South African traditional healthcare system, the growth in the consumption has led to increase in trade through muthi shops and street vendors. Medicinal plants are prone to contamination with fungi and their mycotoxins. The study investigated multiple mycotoxin contamination using Ultra High Pressure Liquid Chromatography-Tandem Mass Spectrometry (UPLC-ESI-MS/MS) for the simultaneous detection of Aflatoxin B1 (AFB1), Deoxynivalenol (DON), Fumonisins (FB1, FB2, FB3), Nivalenol (NIV), Ochratoxin A (OTA) and Zearalenone (ZEN) in frequently sold medicinal plants. Medicinal plant samples (n = 34) were purchased and analyzed for the presence of eight mycotoxins. DON and NIV were not detected in all samples analyzed. Ten out of thirty-four samples tested positive for mycotoxins -AFB1 (10.0%); OTA (10.0%); FB1 (30.0%); FB2 (50.0%); FB3 (20.0%); and ZEN (30.0%). Mean concentration levels ranged from AFB1 (15 µg/kg), OTA (4 µg/kg), FB1 (7-12 µg/kg), FB2 (1-18 µg/kg), FB3 (1-15 µg/kg) and ZEN (7-183 µg/kg). Multiple mycotoxin contamination was observed in 30% of the positive samples with fumonisins. The concentration of AFB1 reported in this study is above the permissible limit for AFB1 (5 µg/kg). Fumonisin concentration did not exceed the limits set for raw maize grain (4000 µg/kg of FB1 and FB2). ZEN and OTA are not regulated in South Africa. The findings indicate the prevalence of mycotoxin contamination in frequently traded medicinal plants that poses a health risk to consumers. There is therefore a need for routine monitoring of multiple mycotoxin contamination, human exposure assessments using biomarker analysis and establishment of regulations and standards.
Collapse
Affiliation(s)
- Julius Ndoro
- Department of Life Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Free State, Private Bag X20539, Bloemfontein 9300, South Africa
| | - Idah Tichaidza Manduna
- Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Central University of Technology, Free State, Bloemfontein 9300, South Africa
| | - Makomborero Nyoni
- Research, Development and Innovation Department, National Biotechnology Authority, 21 Princess Drive Newlands, Harare, Zimbabwe
| | - Olga de Smidt
- Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Central University of Technology, Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
9
|
Troestch J, Reyes S, Vega A. Determination of Mycotoxin Contamination Levels in Rice and Dietary Exposure Assessment. J Toxicol 2022; 2022:3596768. [PMID: 36091100 PMCID: PMC9463030 DOI: 10.1155/2022/3596768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
The contamination by aflatoxins, ochratoxin A, and zearalenone of samples of paddy and polished rice stored in silos located in Chiriquí, Panama, was evaluated. A total of 23 samples were extracted using immunoaffinity columns and analyzed by high-performance liquid chromatography (HPLC) with a fluorescence detector (FLD) and post-column photochemical derivatization. For the method used, the detection limits were lower than 0.25 μg/Kg for aflatoxins (AFB1, AFB2, AFG1, AFG2) and ochratoxin A and 9.35 μg/Kg for zearalenone; the limits of quantification were between 0.25 and 18.75 μg/Kg, respectively. Of the samples analyzed, all of the paddy rice samples were positive for at least one of the mycotoxins studied, zearalenone being the one found with the highest incidence (90.91%); for the polished rice samples, the mycotoxin with the highest incidence was zearalenone (50%), although in concentrations lower than those established in European legislation (100 μg/Kg). The estimate of the daily zearalenone intake according to the concentrations found was always less than 0.07 μg/Kg/bw. This is the first report on the determination of 6 mycotoxins in rice grains from Panama by the HPLC-FLD methodology. Considering the high incidence of mycotoxins in the analyzed rice samples, regular control in the production process is recommended to improve quality and ascertain its safety.
Collapse
Affiliation(s)
- Jose Troestch
- Centro de Investigación en Recursos Naturales, Universidad Autónoma de Chiriquí, David 0427, Chiriquí, Panama
| | - Stephany Reyes
- Centro de Investigación en Recursos Naturales, Universidad Autónoma de Chiriquí, David 0427, Chiriquí, Panama
| | - Aracelly Vega
- Centro de Investigación en Recursos Naturales, Universidad Autónoma de Chiriquí, David 0427, Chiriquí, Panama
| |
Collapse
|
10
|
Zhou H, Yan Z, Wu A, Liu N. Mycotoxins in Tea (( Camellia sinensis (L.) Kuntze)): Contamination and Dietary Exposure Profiling in the Chinese Population. Toxins (Basel) 2022; 14:452. [PMID: 35878190 PMCID: PMC9318285 DOI: 10.3390/toxins14070452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Tea is popular worldwide with multiple health benefits. It may be contaminated by the accidental introduction of toxigenic fungi during production and storage. The present study focuses on potential mycotoxin contamination in tea and the probable dietary exposure assessments associated with consumption. The contamination levels for 16 mycotoxins in 352 Chinese tea samples were determined by ultra-performance liquid chromatography-tandem mass spectrometry. Average concentrations of almost all mycotoxins in tea samples were below the established regulations, except for ochratoxin A in the dark tea samples. A risk assessment was performed for the worst-case scenarios by point evaluation and Monte Carlo assessment model using the obtained mycotoxin levels and the available green, oolong, black, and dark tea consumption data from cities in China. Additionally, we discuss dietary risk through tea consumption as beverages and dietary supplements. In conclusion, there is no dietary risk of exposure to mycotoxins through tea consumption in the Chinese population.
Collapse
Affiliation(s)
| | | | | | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai 200030, China; (H.Z.); (Z.Y.); (A.W.)
| |
Collapse
|
11
|
|
12
|
Hassan HF, Koaik L, Khoury AE, Atoui A, El Obeid T, Karam L. Dietary Exposure and Risk Assessment of Mycotoxins in Thyme and Thyme-Based Products Marketed in Lebanon. Toxins (Basel) 2022; 14:331. [PMID: 35622578 PMCID: PMC9146503 DOI: 10.3390/toxins14050331] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed at evaluating the incidence of aflatoxin B1 (AFB1) and ochratoxin A (OTA) in thyme and thyme-based products, related dietary exposure, and cancer risk for regular and high consumption. A total of 160 samples were collected, and 32 composite samples were analyzed. AFB1 and OTA were respectively found in 84% (27/32) and 38% (12/32) of the samples. AFB1 exceeded the limits in 41% (13/32) and 25% (8/32) of the samples according to the Lebanese and European standards, respectively. OTA was unacceptable in only 6% (2/32) and 3% (1/32) of the samples according to the Lebanese and European standards, respectively. AFB1 and OTA daily exposure was shown to be 4.270 and 1.345 ng/kg bw/day, respectively. AFB1 was shown to be associated with 0.41 and 0.35 additional cancer cases per 100,000 persons per year for regular consumption, respectively; while for high consumption, an increase of 0.911 and 0.639 cancer cases per 100,000 person per year was noted, respectively. The margin of exposure (MOE) for OTA was >10,000 for the non-neoplastic effect and >200 for the neoplastic effect, representing no toxicological concerns for consumers.
Collapse
Affiliation(s)
- Hussein F. Hassan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon;
| | - Lara Koaik
- Department of Nursing & Health Sciences, Faculty of Nursing & Health Sciences, Notre Dame University-Louaize, Zouk Mikael P.O. Box 72, Lebanon;
| | - André El Khoury
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculty of Sciences, Saint-Joseph University of Beirut, Campus of Sciences and Technologies, Beirut P.O. Box 17-5208, Lebanon;
| | - Ali Atoui
- Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences, Lebanese University, Hadath Campus, Beirut P.O. Box 5, Lebanon;
| | - Tahra El Obeid
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Layal Karam
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
13
|
Pallarés N, Tolosa J, Ferrer E, Berrada H. Mycotoxins in raw materials, beverages and supplements of botanicals: A review of occurrence, risk assessment and analytical methodologies. Food Chem Toxicol 2022; 165:113013. [PMID: 35523385 DOI: 10.1016/j.fct.2022.113013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/20/2022] [Accepted: 04/10/2022] [Indexed: 12/30/2022]
Abstract
Over recent years, consumer interest in natural products, such as botanicals has increased considerably. One of the factors affecting their quality is the presence of mycotoxins. This review focuses on exploring the mycotoxin occurrence in botanicals (raw material and ready-to-eat forms such as infusions or tablets) and the risk assessment due to their ingestion. Aflatoxins, Ochratoxin A, and Fumonisins are the most commonly studied mycotoxins and data in the literature report levels ranging from traces to 1000 μg/kg in raw materials. In general, the highest contents observed in raw materials decreased to unconcerning levels after the preparation of the infusions, reaching values that generally do not exceed 100 μg/L. Regarding botanical dietary supplements, the levels observed were lower than those reported for other matrices, although higher levels (of up to 1000 μg/kg) have been reported in some cases. Risk assessment studies in botanicals revealed a higher risk when they are consumed as tablets compared to infusions. Analytical methodologies implied in mycotoxin determination have also been contemplated. In this sense, liquid chromatography coupled to fluorescence detection has been the most frequently employed analytical technique, although in recent years tandem mass spectrometry has been widely used.
Collapse
Affiliation(s)
- N Pallarés
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - J Tolosa
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - E Ferrer
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain.
| | - H Berrada
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Valencia, Spain
| |
Collapse
|
14
|
Pandey AK, Samota MK, Sanches Silva A. Mycotoxins along the tea supply chain: A dark side of an ancient and high valued aromatic beverage. Crit Rev Food Sci Nutr 2022; 63:8672-8697. [PMID: 35452322 DOI: 10.1080/10408398.2022.2061908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACTSTea (Camellia sinensis L.) is a high valued beverage worldwide since ancient times; more than three billion cups of tea are consumed each day. Leaf extracts of the plant are used for food preservation, cosmetics, and medicinal purposes. Nevertheless, tea contaminated with mycotoxins poses a serious health threat to humans. Mycotoxin production by tea fungi is induced by a variety of factors, including poor processing methods and environmental factors such as high temperature and humidity. This review summarizes the studies published to date on mycotoxin prevalence, toxicity, the effects of climate change on mycotoxin production, and the methods used to detect and decontaminate tea mycotoxins. While many investigations in this domain have been carried out on the prevalence of aflatoxins and ochratoxins in black, green, pu-erh, and herbal teas, much less information is available on zearalenone, fumonisins, and Alternaria toxins. Mycotoxins in teas were detected using several methods; the most commonly used being the High-Performance Liquid Chromatography (HPLC) with fluorescence detection, followed by HPLC with tandem mass spectrometry, gas chromatography and enzyme-linked immunosorbent assay. Further, mycotoxins decontamination methods for teas included physical, chemical, and biological methods, with physical methods being most prevalent. Finally, research gaps and future directions have also been discussed.
Collapse
Affiliation(s)
- Abhay K Pandey
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, West Bengal, India
| | - Mahesh K Samota
- Horticulture Crop Processing Division, ICAR- Central Institute of Post Harvest Engineering & Technology, Ludhiana, Punjab, India
| | - Ana Sanches Silva
- Food Science, National Institute for Agricultural and Veterinary Research (INIAV), Oeiras, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
| |
Collapse
|
15
|
Zhou H, Yan Z, Yu S, Wu A, Liu N. Development of a Novel UPLC-MS/MS Method for the Simultaneous Determination of 16 Mycotoxins in Different Tea Categories. Toxins (Basel) 2022; 14:toxins14030169. [PMID: 35324666 PMCID: PMC8951691 DOI: 10.3390/toxins14030169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022] Open
Abstract
The contamination of potential mycotoxins in tea production and consumption has always been a concern. However, the risk monitoring on multiple mycotoxins remains a challenge by existing methods due to the high cost and complex operation in tea matrices. This research has developed a simple ultra-performance liquid chromatography-tandem mass spectrometry strategy based on our homemade purification column, which can be applied in the detections of mycotoxins in complex tea matrices with high-effectively purifying and removing pigment capacity for 16 mycotoxins. The limits of detection and the limits of quantification were in the ranges of 0.015~15.00 and 0.03~30.00 µg·kg−1 for 16 mycotoxins, respectively. Recoveries from mycotoxin-fortified tea samples (0.13~1200 µg·kg−1) in different tea matrices ranged from 61.27 to 118.46%, with their relative standard deviations below 20%. Moreover, this method has been successfully applied to the analysis and investigation of the levels of 16 mycotoxins in major categories of tea and the monitoring of multiple mycotoxins in processed samples of ripened Pu-erh. In conclusion, the proposed strategy is simple, effective, time-saving, and low-cost for the determination of a large number of tea samples.
Collapse
Affiliation(s)
- Haiyan Zhou
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China; (H.Z.); (Z.Y.); (A.W.)
| | - Zheng Yan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China; (H.Z.); (Z.Y.); (A.W.)
| | - Song Yu
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China; (H.Z.); (Z.Y.); (A.W.)
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China; (H.Z.); (Z.Y.); (A.W.)
- Correspondence: ; Tel.: +86-21-54-920-716
| |
Collapse
|
16
|
Natarajan S, Balachandar D, Senthil N, Paranidharan V. Interaction of water activity and temperature on growth, gene expression, and aflatoxin B 1 production in Aspergillus flavus on Indian senna (Cassia angustifolia Vahl.). Int J Food Microbiol 2022; 361:109457. [PMID: 34742145 DOI: 10.1016/j.ijfoodmicro.2021.109457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022]
Abstract
Senna (Cassia angustifolia Vahl.) is a medicinal crop with laxative properties, and it has significant demand in the global pharmaceutical market. Senna pods are highly susceptible to aflatoxin contamination, and the successful export of pods is hindered due to the regulatory limits of importing countries. The senna pod water activity (aw) from harvest to storage is the key factor determining AFB1 accumulation. The temperature conditions from field to warehouse also interact with pod aw, which influences fungal growth and AFB1 production. The determination of an ideal combination of aw and temperature led to the assessment of the critical control point for AFB1 synthesis in senna. Hence, this study aimed to evaluate the influence of aw (0.99, 0.96, 0.93, 0.90, and 0.87 aw) and temperature (20, 28, and 37 °C) on fungal growth, gene expression (aflR and aflS), and AFB1 production by A. flavus in senna agar medium. The fungus showed the longest lag time (7.7 days) at 20 °C with 0.87 aw. We observed that 0.96 aw (P < 0.01) was optimum for the diametric growth rate at 28 and 37 °C. However, the peak expression of regulatory genes (aflR and aflS) and the maximum AFB1 production were observed only at 28 °C (0.96 aw). The highest growth rate occurred at 37 °C, which did not favor the expression of genes and AFB1 production. However, at 28 °C, it positively correlated with gene expression and AFB1 production. The suppressed expression of regulatory genes and a trace amount of aflatoxin B1 were found at 20 °C with all the tested aw. In our experiments, the low aw (0.87 and 0.90 aw) suppressed the fungal growth, gene expression, and AFB1 production of A. flavus at all of the tested temperatures (20, 28, and 37 °C). The rapid drying of senna pods with a low water activity (≤0.87 aw) and storage at low temperature (20 °C) are ideal conditions to avoid AFB1 and ensure the quality of produce for export.
Collapse
Affiliation(s)
- Subramani Natarajan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| | - Natesan Senthil
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| | - Vaikuntavasan Paranidharan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India.
| |
Collapse
|
17
|
Chalyy Z, Kiseleva M, Sedova I, Tutelyan V. Mycotoxins in herbal tea: transfer into the infusion. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mycotoxins are natural food contaminants, associated with adverse health effects due to acute intoxication and, what is much more common, chronic exposure. The most hazardous and widespread mycotoxins are subjected to regulation in food in most countries. Alongside with regulated, a wide list of mycotoxins is monitored in various foods. Traditionally mycotoxins in tea are determined in a dry sample, not taking into account their transfer rate into the infusion. This study was aimed at the determination of the transfer rate of several mycotoxins from naturally contaminated herbal tea samples into an infusion. Seven of the most contaminated samples were pre-selected during the monitoring of mycotoxins in Camellia sinensis and herbal tea available in the Russian Federation. Ochratoxin A (OTA), sterigmatocystin (STE), mycophenolic acid (MPA), tentoxin (TTX), alternariol (AOH), its methyl ether (AME), zearalenone (ZEN), enniatins A and B (ENN A and B), beauvericin (BEA) were detected in these samples in the range of several μg/kg to several mg/kg. HPLC-MS/MS was used for dry tea samples and their infusion analysis. Mycotoxin polarity and infusion pH (for analytes possessing carboxylic groups) appeared to be factors determining transfer rate. STE transferred into infusion at the average rate of 10%. Average transfer of Alternaria toxins varied from 73% (TTX) to 45% (AOH) and about 11% (AME). A third part of ZEN was detected in the infusion. Transfer of ENNs and BEA was low and did not exceed 7%. Infusion pH affected MPA transfer rate; it increased from 23% to 96% in the pH range from 5.5 to 6.3. 83% of OTA was detected in the infusion of a single contaminated sample. Consideration of the mycotoxin transfer rate to herbal tea infusions resulted in the change of the model herbal tea input into mean chronic dietary exposure for most studied mycotoxins.
Collapse
Affiliation(s)
- Z. Chalyy
- Federal Research Centre of Nutrition and Biotechnology, Ust’inskiy pr. 2/14, 109240 Moscow, Russian Federation
| | - M. Kiseleva
- Federal Research Centre of Nutrition and Biotechnology, Ust’inskiy pr. 2/14, 109240 Moscow, Russian Federation
| | - I. Sedova
- Federal Research Centre of Nutrition and Biotechnology, Ust’inskiy pr. 2/14, 109240 Moscow, Russian Federation
| | - V. Tutelyan
- Federal Research Centre of Nutrition and Biotechnology, Ust’inskiy pr. 2/14, 109240 Moscow, Russian Federation
- I.M. Sechenov First Moscow State Medical University, Trubetskaya str. 8/2, 119992 Moscow, Russian Federation
| |
Collapse
|
18
|
Przybylska A, Chrustek A, Olszewska‐Słonina D, Koba M, Kruszewski S. Determination of patulin in products containing dried fruits by Enzyme-Linked Immunosorbent Assay technique Patulin in dried fruits. Food Sci Nutr 2021; 9:4211-4220. [PMID: 34401072 PMCID: PMC8358369 DOI: 10.1002/fsn3.2386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
The era of globalization causes that the export and import of food from different continents of the world are becoming more and more common, which may directly contribute to the increase in pollution in them. The presence of mycotoxin in food is an ubiquitous problem. There is very limited information on the possible influence of the composition of herbal mixtures on the presence of mycotoxins in them, which is an area where research can be expanded. The aim of this study was to determine patulin (PAT) in commercial products containing dried elderberry, rose, blueberry, rowan, hawthorn, and chokeberry fruits by enzyme-linked immunosorbent assay technique. Research using this technique allowed for considering the possible influence of the composition of herbal mixtures on the concentration of patulin in them. Patulin was detected in all analyzed samples with wide range of
Collapse
Affiliation(s)
- Anna Przybylska
- Department of Toxicology and BromatologyFaculty of PharmacyL. Rydygier Collegium Medicum in BydgoszczNicolaus Copernicus University in TorunBydgoszczPoland
| | - Agnieszka Chrustek
- Department of Pathobiochemistry and Clinical ChemistryFaculty of PharmacyL. Rydygier Collegium Medicum in BydgoszczNicolaus Copernicus University in TorunBydgoszczPoland
| | - Dorota Olszewska‐Słonina
- Department of Pathobiochemistry and Clinical ChemistryFaculty of PharmacyL. Rydygier Collegium Medicum in BydgoszczNicolaus Copernicus University in TorunBydgoszczPoland
| | - Marcin Koba
- Department of Toxicology and BromatologyFaculty of PharmacyL. Rydygier Collegium Medicum in BydgoszczNicolaus Copernicus University in TorunBydgoszczPoland
| | - Stefan Kruszewski
- Medical Physics DivisionBiophysics DepartmentFaculty of PharmacyL. Rydygier Collegium Medicum in BydgoszczNicolaus Copernicus University in TorunBydgoszczPoland
| |
Collapse
|
19
|
Kiseleva M, Chalyy Z, Sedova I. Tea: Transfer of Mycotoxins from the Spiked Matrix into an Infusion. Toxins (Basel) 2021; 13:toxins13060404. [PMID: 34200490 PMCID: PMC8228356 DOI: 10.3390/toxins13060404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 01/05/2023] Open
Abstract
Recent surveys report the occurrence of Aspergillus and Penicillium metabolites (aflatoxins (AFLs), ochratoxin A (OTA), cyclopiazonic and mycophenolic acids (MPA), sterigmatocystin (STC), citrinin), Fusarium (trichothecenes, zearalenone (ZEA), fumonisins (FBs), enniatins (ENNs)) and Alternaria (alternariol (AOH), its methyl ether (AME), tentoxin (TE), and tenuazonic acid (TNZ)) toxins in dry Camellia sinensis and herbal tea samples. Since tea is consumed in the form of infusion, correct risk assessment needs evaluation of mycotoxins’ transfer rates. We have studied the transfer of AFLs, OTA, STC, deoxynivalenol (DON), ZEA, FBs, T-2, and HT-2 toxins, AOH, AME, TE, ENN A and B, beauvericin (BEA), and MPA from the spiked green tea matrix into an infusion under variation of preparation time and water characteristics (total dissolved solids (TDS) and pH). Analytes were detected by HPLC-MS/MS. The main factors affecting transfer rate proved to be mycotoxins’ polarity, pH of the resulting infusion (for OTA, FB2, and MPA) and matrix-infusion contact period. The concentration of mycotoxins increased by 20–50% within the first ten minutes of infusing, after that kinetic curve changed slowly. The concentration of DON and FB2 increased by about 10%, for ZEA, MPA, and STC it stayed constant, while for T-2, TE, AOH, and AFLs G1 and G2 it went down. Maximum transfer correlated well with analytes polarity. Maximum transfer of ENNs, BEA, STC, ZEA, and AOH into infusion was below 25%; AFLs—25–45%; DON, TE, and T-2 toxins 60–90%, FB1—80–100%. The concentration of OTA, MPA, and FB2 in the infusion depended on its pH. At pH about four, 20%, 40%, and 60% of these toxins transferred into an infusion, at pH about seven, their concentrations doubled. Water TDS did not affect transfer significantly.
Collapse
|
20
|
Cina M, Ponce MDV, Martinez LD, Cerutti S. Development of a novel UHPLC-MS/MS method for the determination of ochratoxin A in tea. Heliyon 2021; 7:e06663. [PMID: 33869867 PMCID: PMC8045007 DOI: 10.1016/j.heliyon.2021.e06663] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 03/29/2021] [Indexed: 11/27/2022] Open
Abstract
The mycotoxin Ochratoxin A (OTA) is responsible for producing many effects on human and animal health. In this work, the evaluation of the presence of OTA in tea beverage samples consisted of extraction and preconcentration through the solidification of a floating organic drop (DLLME-SFO) combined with an additional octadecyl silane clean-up step. The obtained extract was analyzed by UHPLC-MS/MS. Interferences from the matrix were effectively reduced and, consequently, recovery increased from 43.18% ± 4.1%-96.02% ± 2.54%. The validation assays were carried out by external calibration and spiked samples, with satisfactory recoveries. An adequate dynamic calibration range was obtained over a concentration interval between 0.5 and 70 μg mL-1 OTA. Capabilities of detection and quantification were 0.5 and 1.4 μg mL-1. The obtained Green Certificate was compared with other techniques to establish the greenness profile of the procedure. Quantification of ochratoxin A levels in tea samples was performed.
Collapse
Affiliation(s)
- Mariel Cina
- Instituto de Química de San Luis (CCT-San Luis), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - María del Valle Ponce
- Instituto de Química de San Luis (CCT-San Luis), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Luis Dante Martinez
- Instituto de Química de San Luis (CCT-San Luis), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Soledad Cerutti
- Instituto de Química de San Luis (CCT-San Luis), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| |
Collapse
|
21
|
Caldeirão L, Sousa J, Nunes LCG, Godoy HT, Fernandes JO, Cunha SC. Herbs and herbal infusions: Determination of natural contaminants (mycotoxins and trace elements) and evaluation of their exposure. Food Res Int 2021; 144:110322. [PMID: 34053527 DOI: 10.1016/j.foodres.2021.110322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/14/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
Herbal infusions are amongst the world's most popular and widely enjoyed beverages, due to both large variety and convenience. However, natural contaminants, such as mycotoxins and trace elements can accumulate in aromatic herbs, which may have serious food safety and public health implications. In this study, the presence of mycotoxins, as well as the content of trace elements was evaluated in herbs and herbal infusions commercialized in Brazil. For the determination of fourteen mycotoxins, including the emerging mycotoxins enniatins (EN), beauvericin (BEA), and sterigmatocystin (STE), a liquid-chromatography tandem mass spectrometry (LC-MS/MS) method was validated. Overall, 42 out of 58 herb samples (72%) were contaminated, being BEA the most usual mycotoxin, present in 43% of the samples, followed by STE and HT-2 toxin, present in 37% and 24% of the samples, respectively. In herbal infusions, the occurrence of mycotoxins was 88% lesser than those verified in raw products. Despite these low levels, the hazard quotient (HQ) calculated revealed a potential health concern for HT-2 in infusions. The margin of exposure values for aflatoxins (AF), and ochratoxin A (OTA) from six herbal infusions were below 10,000, indicating also potential health risks. The twenty-one trace elements comprising toxic elements such as arsenic (As), cadmium (Cd), and lead (Pb) were determined in herb raw materials by inductively coupled plasma-mass spectrometry (ICP-MS). The levels of trace elements in herbs were very varied, with aluminum (Al) presenting the highest amount. The levels of legislated elements (As, Cd, Pb) analyzed in herbs were lower than 3.03 µg g-1 (Pb), thus not exceeding the legal limits defined for herbal medicinal by both European and Brazilian pharmacopeia.
Collapse
Affiliation(s)
- Lucas Caldeirão
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), P.O. Box 6121, 13083-862 Campinas, SP, Brazil; LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Portugal
| | - João Sousa
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Portugal
| | - Laura C G Nunes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Portugal
| | - Helena T Godoy
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), P.O. Box 6121, 13083-862 Campinas, SP, Brazil
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Portugal.
| |
Collapse
|
22
|
Zhou H, Liu N, Yan Z, Yu D, Wang L, Wang K, Wei X, Wu A. Development and validation of the one-step purification method coupled to LC-MS/MS for simultaneous determination of four aflatoxins in fermented tea. Food Chem 2021; 354:129497. [PMID: 33752112 DOI: 10.1016/j.foodchem.2021.129497] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/20/2021] [Accepted: 02/25/2021] [Indexed: 12/25/2022]
Abstract
Aflatoxin B1 is the potential chemical contaminant of most concern during the production and storage of fermented tea. In this work, a simple, fast, sensitive, accurate, and inexpensive method has been developed and validated for the simultaneous detection of four aflatoxins in fermented tea based on a modified sample pretreatment method and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Aflatoxins were extracted using acetonitrile and purified using mixed fillers (carboxyl multiwalled carbon nanotubes, hydrophilic-lipophilic balance, silica gel). Under optimum LC-MS conditions, the limits of quantification (LOQs) were 0.02-0.5 µg·kg-1. Recoveries from aflatoxins-fortified tea samples (1-12 µg·kg-1) were in the range of 78.94-105.23% with relative standard deviations (RSDs) less than 18.20%. The proposed method was applied successfully to determine aflatoxin levels in fermented tea samples.
Collapse
Affiliation(s)
- Haiyan Zhou
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Zheng Yan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Dianzhen Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Lan Wang
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Kunbo Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, PR China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China.
| |
Collapse
|
23
|
El Jai A, Zinedine A, Juan-García A, Mañes J, Etahiri S, Juan C. Occurrence of Free and Conjugated Mycotoxins in Aromatic and Medicinal Plants and Dietary Exposure Assessment in the Moroccan Population. Toxins (Basel) 2021; 13:toxins13020125. [PMID: 33567683 PMCID: PMC7915639 DOI: 10.3390/toxins13020125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 01/28/2023] Open
Abstract
Aromatic and medicinal plants (AMPs), as herbal material, are subjected to contamination by various mycotoxin-producing fungi, either free and conjugated. Such a problem is associated with poor storage practices, and lack of adopting good agricultural practices and good harvesting practices. Nevertheless, AMPs are poorly investigated. The purpose of this study was to investigate the co-occurrence of 15 mycotoxins (four aflatoxins (AFB1, AFB2, AFG1, and AFG2), ochratoxin A (OTA), beauvericin (BEA), four enniatins (ENA, ENA1, ENB, and ENB1), zearalenone (ZEN), alternariol (AOH), tentoxin (TENT), T-2, and HT-2 toxins) in 40 samples of AMPs frequently consumed in Morocco by using liquid chromatography tandem mass spectrometry. Evaluation of conjugated mycotoxins and their identification using liquid chromatography coupled to time-of-flight mass spectrometry with ion mass exact was also carried out. Results showed that 90% of the analyzed samples presented at least one mycotoxin, and 52% presented co-occurrence of them. Mycotoxins detected were: AOH (85%), ZEN (27.5%), β-ZEL (22%), AFG1 (17.5%), TENT (17.5%), ENB (10%), AFG2 (7.5%), α-ZEL (5%), ENA1 (2.5%), and HT-2 (2.5%), while the conjugated mycotoxins were ZEN-14-Glc (11%) and ZEN-14-Sulf (9%). The highest observed level was for AOH, with 309 ng/g. Ten samples exceeded the recommended levels set by the European Pharmacopoeia for AF mycotoxins in plant material (4 ng/g), and three samples exceeded the maximum limits for AFs (10 ng/g) in species established by the European Commission. Although the co-occurrence of several mycotoxins in AMP samples was observed, the dietary exposure assessment showed that the intake of mycotoxins through the consumption of AMP beverages does not represent a risk for the population.
Collapse
Affiliation(s)
- Aicha El Jai
- Laboratory of Marine Biotechnologies and Environment (BIOMARE), Faculty of Sciences, Chouaib Doukkali University, P.O. Box. 20, El Jadida 24000, Morocco; (A.E.J.); (S.E.)
| | - Abdellah Zinedine
- Laboratory of Marine Biotechnologies and Environment (BIOMARE), Faculty of Sciences, Chouaib Doukkali University, P.O. Box. 20, El Jadida 24000, Morocco; (A.E.J.); (S.E.)
- Correspondence:
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, E-46100 Valencia, Spain; (A.J.-G.); (J.M.); (C.J.)
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, E-46100 Valencia, Spain; (A.J.-G.); (J.M.); (C.J.)
| | - Samira Etahiri
- Laboratory of Marine Biotechnologies and Environment (BIOMARE), Faculty of Sciences, Chouaib Doukkali University, P.O. Box. 20, El Jadida 24000, Morocco; (A.E.J.); (S.E.)
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, E-46100 Valencia, Spain; (A.J.-G.); (J.M.); (C.J.)
| |
Collapse
|
24
|
Multi-mycotoxin contamination of green tea infusion and dietary exposure assessment in Moroccan population. Food Res Int 2020; 140:109958. [PMID: 33648210 DOI: 10.1016/j.foodres.2020.109958] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 12/23/2022]
Abstract
Green tea infusion is one of the most widely drunk beverages worldwide due to its health benefits associated with microelements, essential oils, and polyphenols, etc. Several studies have reported that green tea is subjected to contamination by various toxigenic fungi. Thus, this work aims to investigate the co-occurrence of 15 mycotoxins [four aflatoxins (AFB1, AFB2, AFG1, AFG2), ochratoxin A (OTA), beauvericin (BEA), four enniatins (ENA, ENA1, ENB, ENB1), zearalenone (ZEN), alternariol (AOH), tentoxin (TENT), T-2 and HT-2 toxins] in green tea samples available in Morocco by liquid chromatography tandem mass spectrometry method. Analytical and consumption data were then used to assess the dietary exposure for the population. Out of 111 total green tea samples, 62 (56%) were contaminated by at least one mycotoxin. The most found mycotoxins in samples were AOH (40%), ZEN (35%), AFG1 (2%), AFB2 (2%), ENB (2%) and TENT (1%). The highest level was found for ZEN with 45.8 ng/g. There is no sample that exceeded the recommended levels set by European Pharmacopoeia for certain mycotoxins in plant material. Although multi-mycotoxin co-occurred in samples (33%), the probable estimated daily intake values show that the intake of mycotoxins through the consumption of green tea does not represent a risk for the population.
Collapse
|
25
|
Vadopalas L, Ruzauskas M, Lele V, Starkute V, Zavistanaviciute P, Zokaityte E, Bartkevics V, Pugajeva I, Reinolds I, Badaras S, Klupsaite D, Mozuriene E, Dauksiene A, Gruzauskas R, Bartkiene E. Combination of Antimicrobial Starters for Feed Fermentation: Influence on Piglet Feces Microbiota and Health and Growth Performance, Including Mycotoxin Biotransformation in vivo. Front Vet Sci 2020; 7:528990. [PMID: 33178725 PMCID: PMC7596189 DOI: 10.3389/fvets.2020.528990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to apply a combination of the microbial starters Lactobacillus uvarum LUHS245, Lactobacillus casei LUHS210, Pediococcus acidilactici LUHS29, and Pediococcus pentosaceus LUHS183 for feed fermentation and to evaluate the influence of fermentation on feed acidity and microbiological characteristics, as well as on the piglet feces microbiota, health, and growth performance. Additionally, mycotoxin biotransformation was analyzed, including masked mycotoxins, in feed and piglet feces samples. The 36-day experiment was conducted using 25-day-old Large White/Norwegian Landrace (LW/NL) piglets with an initial body weight of 6.9–7.0 kg, which were randomly distributed into two groups (in each 100 piglets): control group, fed with basal diet (based on barley, wheat, potato protein, soybean protein concentrate, and whey powder), and treated group, fed with fermented feed at 500 g kg−1 of total feed. Compared to a commercially available lactic acid bacteria (LAB) combination, the novel LAB mixture effectively reduced feed pH (on average pH 3.65), produced a 2-fold higher content of L(+) lactic acid, increased viable LAB count [on average 8.8 log10 colony-forming units (CFU) g−1], and led to stable feed fermentation during the entire test period (36 days). Fecal microbiota analysis showed an increased number of probiotic bacteria in the treated group, particularly Lactobacillus, when compared with the control group at the end of experiment. This finding indicates that fermented feed can modify microbial profile change in the gut of pigs. In treated piglets' blood (at day 61), the serum high-density lipoprotein (HDL) cholesterol and triglycerides (TG) were significantly higher, but the levels of T4, glucose, K, alkaline phosphatase (AP), and urea were significantly decreased (p ≤ 0.05) compared with the control group. Mycotoxin analysis showed that alternariol monomethyl ether (AME) and altenuene were found in 61-day-old control piglets' feces and in fermented feed samples. However, AME was not found in treated piglets' feces. Feed fermentation with the novel LAB combination is a promising means to modulate piglets' microbiota, which is essential to improve nutrient absorption, growth performance, and health parameters. The new LAB composition suggests a novel dietary strategy to positively manipulate fermented feed chemicals and bio-safety and the piglet gut microbial ecology to reduce antimicrobials use in pig production and increase local feed stock uses and economical effectiveness of the process.
Collapse
Affiliation(s)
- Laurynas Vadopalas
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Modestas Ruzauskas
- Microbiology and Virology Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Physiology and Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vita Lele
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Paulina Zavistanaviciute
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Iveta Pugajeva
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Ingars Reinolds
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Sarunas Badaras
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Erika Mozuriene
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Agila Dauksiene
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Physiology and Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Romas Gruzauskas
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
26
|
Pallarés N, Berrada H, Fernández-Franzón M, Ferrer E. Risk Assessment and Mitigation of the Mycotoxin Content in Medicinal Plants by the Infusion Process. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:362-368. [PMID: 32388807 DOI: 10.1007/s11130-020-00820-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Medicinal plants are often consumed as infusions with boiled water. Scarce information is available in the literature about the migration of mycotoxins into the resulting beverage and/or the effects of the infusion procedure on the final mycotoxin contents. The aim of the present study was to investigate the impact of the infusion process on mycotoxin contents during medicinal plant preparation. For this purpose, the contents of aflatoxins (AFs) [aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2)], zearalenone (ZEA), enniatins (ENNs) [enniatin B (ENNB), enniatin B1 (ENNB1), enniatin A (ENNA), enniatin A1 (ENNA1)] and beauvericin (BEA) were analyzed in 224 samples of medicinal plants and in their resulting beverages. The quick, easy, cheap, effective, rugged and safe extraction method (QuEChERS) was applied to the medicinal plants while the dispersive liquid-liquid microextraction procedure (DLLME) was applied to their infusions, and the mycotoxins were determined by liquid chromatography coupled to ion trap tandem mass spectrometry (LC-MS/MS-IT). The results revealed that ZEA, ENNB, ENNB1, AFB2, AFG1 and AFG2 were detected in the beverages with incidences of ≤6% and at concentrations from less than the limit of quantification (LOQ) to 82.2 μg/L. Mycotoxins reduction ranged from 74 to 100% after the infusion process. The risk assessment revealed that the estimated daily intakes (EDIs) obtained for ZEA, ENNB and ENNB1 were far below the tolerable daily intakes (TDIs) established.
Collapse
Affiliation(s)
- Noelia Pallarés
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Houda Berrada
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Mónica Fernández-Franzón
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Emilia Ferrer
- Laboratory of Toxicology and Food Chemistry, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
27
|
Reinholds I, Bogdanova E, Pugajeva I, Alksne L, Stalberga D, Valcina O, Bartkevics V. Determination of Fungi and Multi-Class Mycotoxins in Camelia Sinensis and Herbal Teas and Dietary Exposure Assessment. Toxins (Basel) 2020; 12:toxins12090555. [PMID: 32872457 PMCID: PMC7551389 DOI: 10.3390/toxins12090555] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
In this paper, a study of fungal and multi-mycotoxin contamination in 140 Camellia sinensis and 26 herbal teas marketed in Latvia is discussed. The analysis was performed using two-dimensional liquid chromatography with time-of-flight mass spectrometry (2D-LC-TOF-MS) and MALDI-TOF-MS. In total, 87% of the tea samples tested positive for 32 fungal species belonging to 17 genera, with the total enumeration of moulds ranging between 1.00 × 101 and 9.00 × 104 CFU g−1. Moreover, 42% of the teas (n = 70) were contaminated by 1 to 16 mycotoxins, and 37% of these samples were positive for aflatoxins at concentrations ranging between 0.22 and 41.7 µg kg−1. Deoxynivalenol (DON) and its derivatives co-occurred in 63% of the tea samples, with their summary concentrations reaching 81.1 to 17,360 µg kg−1. Ochratoxin A (OTA), enniatins, and two Alternaria toxins were found in 10–37% of the teas at low concentrations. The dietary exposure assessment based on the assumption of a probable full transfer of determined mycotoxins into infusions indicated that the analysed teas are safe for consumers: the probable maximum daily exposure levels to OTA and the combined DON mycotoxins were only 0.88 to 2.05% and 2.50 to 78.9% of the tolerable daily intake levels.
Collapse
Affiliation(s)
- Ingars Reinholds
- Institute of Food Safety, Animal Health and Environment “BIOR”, Riga LV-1076, Latvia; (E.B.); (I.P.); (L.A.); (O.V.); (V.B.)
- Faculty of Chemistry, University of Latvia, Riga LV-1004, Latvia
- Correspondence: ; Tel.: +371-2680-2448
| | - Estefanija Bogdanova
- Institute of Food Safety, Animal Health and Environment “BIOR”, Riga LV-1076, Latvia; (E.B.); (I.P.); (L.A.); (O.V.); (V.B.)
| | - Iveta Pugajeva
- Institute of Food Safety, Animal Health and Environment “BIOR”, Riga LV-1076, Latvia; (E.B.); (I.P.); (L.A.); (O.V.); (V.B.)
| | - Laura Alksne
- Institute of Food Safety, Animal Health and Environment “BIOR”, Riga LV-1076, Latvia; (E.B.); (I.P.); (L.A.); (O.V.); (V.B.)
| | - Darta Stalberga
- Faculty of Medicine and Health Sciences, Linköping University, SE-581 83 Linköping, Sweden;
| | - Olga Valcina
- Institute of Food Safety, Animal Health and Environment “BIOR”, Riga LV-1076, Latvia; (E.B.); (I.P.); (L.A.); (O.V.); (V.B.)
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment “BIOR”, Riga LV-1076, Latvia; (E.B.); (I.P.); (L.A.); (O.V.); (V.B.)
- Faculty of Chemistry, University of Latvia, Riga LV-1004, Latvia
| |
Collapse
|
28
|
Abstract
Consumer dietary habits have drastically changed in recent decades and functional beverages now have a strong position in the market. The majority of these beverages are produced using simple processes that use raw products, such as cereals, legumes, fruits, and nuts, among others, and these are known to be frequently contaminated with mycotoxins. This review is focused on the occurrence of these toxic compounds in plant-based milks, fruit juices, and herbal teas. The fate of the toxins during processing is discussed to establish the potential risk posed by the consumption of these kind of beverages regarding mycotoxin uptake.
Collapse
|
29
|
Bogdanova E, Pugajeva I, Reinholds I, Bartkevics V. Two-dimensional liquid chromatography - high resolution mass spectrometry method for simultaneous monitoring of 70 regulated and emerging mycotoxins in Pu-erh tea. J Chromatogr A 2020; 1622:461145. [PMID: 32381303 DOI: 10.1016/j.chroma.2020.461145] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Affiliation(s)
| | - Iveta Pugajeva
- Institute of Food Safety, Animal Health and Environment, Riga, Latvia
| | - Ingars Reinholds
- Institute of Food Safety, Animal Health and Environment, Riga, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment, Riga, Latvia; University of Latvia, Riga, Latvia
| |
Collapse
|
30
|
Arroyo-Manzanares N, Hamed AM, García-Campaña AM, Gámiz-Gracia L. Plant-based milks: unexplored source of emerging mycotoxins. A proposal for the control of enniatins and beauvericin using UHPLC-MS/MS. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2019; 12:296-302. [PMID: 31791225 DOI: 10.1080/19393210.2019.1663276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mycotoxins have become one of the most common contaminants reported worldwide. Current legislation has established maximum levels only for some well-known mycotoxins; however, there are many other "emerging mycotoxins" for which there is no regulation, as enniatins and beauvericin. An analytical method based on salting-out assisted liquid-liquid extraction followed by ultra-high performance liquid chromatography tandem mass spectrometry is proposed for determination of enniatin A, A1, B, B1, and beauvericin in different plant-based milks, as a possible source of these contaminants, is proposed. The method showed good precision and trueness (RSD <8% and recoveries between 84-97%) with a moderate matrix effect. From a total of 32 samples of plant-based milks of different compositions (including 8 rice milks, 8 oat milks and 16 soy milks), 3 samples were contaminated with the five mycotoxins, while 5 samples were contaminated with four of them, being oat milk the most susceptible for contamination.
Collapse
Affiliation(s)
- Natalia Arroyo-Manzanares
- Department Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain.,Department Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Ahmed M Hamed
- Department Dairy Science, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ana M García-Campaña
- Department Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Laura Gámiz-Gracia
- Department Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|