1
|
Soman S, Christiansen A, Florinski R, Bharat G, Steindal EH, Nizzetto L, Chakraborty P. An updated status of currently used pesticides in India: Human dietary exposure from an Indian food basket. ENVIRONMENTAL RESEARCH 2024; 242:117543. [PMID: 38008203 DOI: 10.1016/j.envres.2023.117543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/28/2023]
Abstract
Currently used pesticides (CUPs) were introduced to have lower persistence and bioaccumulation, and lesser bioavailability towards non-target species. Nevertheless, CUPs still represent a concern for both human health and the environment. India is an important agricultural country experiencing a conversion from the use of obsolete organochlorine pesticides to a newer generation of phytosanitary products. As for other developing countries, very little is known about the transfer of CUPs to the human diet in India, where systematic monitoring is not in place. In this study, we analyzed ninety four CUPs and detected thirty CUPs in several food products belonging to five types: cereals and pulses, vegetables, fruits, animal-based foods, and water. Samples were taken from markets in Delhi (aggregating food produced all over India) and in the periurban area of Dehradun (northern India) (representing food produced locally and through more traditional practices). Overall, chlorpyrifos and chlorpropham were the most detected CUPs with a detection frequency of 33% and 25%, respectively. Except for vegetables and fruits, the levels of CUPs in all other food types were significantly higher in samples from Delhi (p < 0.05). Exposure dosage of CUPs through different food matrices was calculated, and chlorpropham detected in potatoes had the maximum exposure dosage to humans (2.46 × 10-6 mg/kg/day). Risk analysis based on the hazard quotient technique indicated that chlorpyrifos in rice (2.76 × 10-2) can be a concern.
Collapse
Affiliation(s)
- Sidhi Soman
- Department of Chemistry, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India; Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability and Climate Change, Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India
| | | | - Roman Florinski
- Norwegian Institute of Bioeconomy Research, 1431, Ås, Norway
| | | | - Eirik Hovland Steindal
- Norwegian Institute for Water Research, Økernveien 94, 0579, Oslo, Norway; Norwegian University of Life Sciences (NMBU), Universitetstunet 3, 1432, Ås, Norway
| | - Luca Nizzetto
- Norwegian Institute for Water Research, Økernveien 94, 0579, Oslo, Norway; Research Centre for Toxic Compounds in the Environment, Masaryk University, 62500, Brno, Czech Republic
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability and Climate Change, Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India; The Faculty of Biology and Environmental Protection, The University of Lodz, Poland.
| |
Collapse
|
2
|
Šulc L, Figueiredo D, Huss A, Kalina J, Gregor P, Janoš T, Šenk P, Dalecká A, Andrýsková L, Kodeš V, Čupr P. Current-use pesticide exposure pathways in Czech adults and children from the CELSPAC-SPECIMEn cohort. ENVIRONMENT INTERNATIONAL 2023; 181:108297. [PMID: 37939438 DOI: 10.1016/j.envint.2023.108297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION In this study, we aimed to characterise exposure to pyrethroids, organophosphates, and tebuconazole through multiple pathways in 110 parent-child pairs participating in the CELSPAC-SPECIMEn study. METHODS First, we estimated the daily intake (EDI) of pesticides based on measured urinary metabolites. Second, we compared EDI with estimated pesticide intake from food. We used multiple linear regression to identify the main predictors of urinary pesticide concentrations. We also assessed the relationship between urinary pesticide concentrations and organic and non-organic food consumption while controlling for a range of factors. Finally, we employed a model to estimate inhalation and dermal exposure due to spray drift and volatilization after assuming pesticide application in crop fields. RESULTS EDI was often higher in children in comparison to adults, especially in the winter season. A comparison of food intake estimates and EDI suggested diet as a critical pathway of tebuconazole exposure, less so in the case of organophosphates. Regression models showed that consumption per g of peaches/apricots was associated with an increase of 0.37% CI [0.23% to 0.51%] in urinary tebuconazole metabolite concentrations. Consumption of white bread was associated with an increase of 0.21% CI [0.08% to 0.35%], and consumption of organic strawberries was inversely associated (-61.52% CI [-79.34% to -28.32%]), with urinary pyrethroid metabolite concentrations. Inhalation and dermal exposure seemed to represent a relatively small contribution to pesticide exposure as compared to dietary intake. CONCLUSION In our study population, findings indicate diet plays a significant role in exposure to the analysed pesticides. We found an influence of potential exposure due to spray drift and volatilization among the subpopulation residing near presumably sprayed crop fields to be minimal in comparison. However, the lack of data indicating actual spraying occurred during the critical 24-hour period prior to urine sample collection could be a significant contributing factor.
Collapse
Affiliation(s)
- Libor Šulc
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Daniel Figueiredo
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jiří Kalina
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Petr Gregor
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Tomáš Janoš
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Petr Šenk
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Andrea Dalecká
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Lenka Andrýsková
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Vít Kodeš
- Czech Hydrometeorological Institute, Prague, Czech Republic
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic.
| |
Collapse
|
3
|
Liu Y, Zhang Q, Dong W, Li Z, Liu T, Wei W, Zuo M. Autoformer-Based Model for Predicting and Assessing Wheat Quality Changes of Pesticide Residues during Storage. Foods 2023; 12:1833. [PMID: 37174371 PMCID: PMC10178581 DOI: 10.3390/foods12091833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Proper grain storage plays a critical role in maintaining food quality. Among a variety of grains, wheat has emerged as one of the most important grain reserves globally due to its short growing period, high yield, and storage resistance. To improve the quality assessment of wheat during storage, this study collected and analyzed monitoring data from more than 20 regions in China, including information on storage environmental parameters and changes in wheat pesticide residue concentrations. Based on these factors, an Autoformer-based model was developed to predict the changes in wheat pesticide residue concentrations during storage. A comprehensive wheat quality assessment index Q was set for the predicted and true values of pesticide residue concentrations, then combined with the K-means++ algorithm to assess the quality of wheat during storage. The results of the study demonstrate that the Autoformer model achieved the optimal prediction results and the smallest error values. The mean absolute error (MAE) and the other four error values are 0.11017, 0.01358, 0.04681, 0.11654, and 0.13005. The findings offer technical assistance and a scientific foundation for enhancing the quality of stored wheat.
Collapse
Affiliation(s)
- Yingjie Liu
- National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Qingchuan Zhang
- National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Wei Dong
- National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Zihan Li
- National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Tianqi Liu
- National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Wei Wei
- School of Modern Post, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Min Zuo
- National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Armenova N, Tsigoriyna L, Arsov A, Petrov K, Petrova P. Microbial Detoxification of Residual Pesticides in Fermented Foods: Current Status and Prospects. Foods 2023; 12:foods12061163. [PMID: 36981090 PMCID: PMC10048192 DOI: 10.3390/foods12061163] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The treatment of agricultural areas with pesticides is an indispensable approach to improve crop yields and cannot be avoided in the coming decades. At the same time, significant amounts of pesticides remain in food and their ingestion causes serious damage such as neurological, gastrointestinal, and allergic reactions; cancer; and even death. However, during the fermentation processing of foods, residual amounts of pesticides are significantly reduced thanks to enzymatic degradation by the starter and accompanying microflora. This review concentrates on foods with the highest levels of pesticide residues, such as milk, yogurt, fermented vegetables (pickles, kimchi, and olives), fruit juices, grains, sourdough, and wines. The focus is on the molecular mechanisms of pesticide degradation due to the presence of specific microbial species. They contain a unique genetic pool that confers an appropriate enzymological profile to act as pesticide detoxifiers. The prospects of developing more effective biodetoxification strategies by engaging probiotic lactic acid bacteria are also discussed.
Collapse
Affiliation(s)
- Nadya Armenova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
5
|
Choubbane H, Ouakhssase A, Chahid A, Taourirte M, Aamouche A. Pesticides in fruits and vegetables from the Souss Massa region, Morocco. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2022; 15:79-88. [PMID: 35076356 DOI: 10.1080/19393210.2022.2028196] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
This survey reports the monitoring of multi-pesticide residues of some fruits and vegetables sold in the local markets, sampled in 2018-2019, in the Souss Massa region in Morocco. A QuEChERS-LC-MS/MS method for 202 pesticides, belonging to different classes (carbamates, organophosphorus and organonitrogen pesticides) was applied and 51 samples were randomly bought from the local market, belonging to different products (tomato, cucumber, coriander, apricot, parsley, potato, zucchini, green bean, lettuce, strawberry and orange) and analysed for pesticide residues, which were detected in 69% of the samples, below the maximum residue limits (MRLs) for some pesticides which represent 14% of the targeted compounds. The most frequently detected compounds were acetamiprid, acibenzolar-s-methyl, abamectin, azoxystrobin, bifenazate, bitertanol, bromuconazole, butoxycarboxim, cyromazine, difenoconazole, epoxiconazole, fenbuconazole, fluometuron, linuron, metaflumizone, metconazole, metribuzin, myclobutanil, pirimicarb, pyraclostrobin, propamocarb, rotenone, trichlorfon, tebuconazole, tetraconazole, thiamethoxam and thiophanate-methyl. The obtained results provide a value to the situation of pesticide residues in Morocco.
Collapse
Affiliation(s)
- Hanane Choubbane
- Laboratoire Ingénierie des Systèmes et Applications (LISA), Ecole Nationale des Sciences Appliquées de Marrakech, Université Cadi Ayyad, Guéliz-Marrakech, Morocco
- Laboratoire de Recherche en Développement Durable et Santé (LRDDS), Faculté des Sciences et Technique Gueliz, Université Cadi Ayyad, Guéliz Marrakech, Morocco
| | - Abdallah Ouakhssase
- Equipe Génie des Procédés et Ingénierie Chimique (GPIC), Ecole Supérieure de Technologie d'agadir, Université Ibn Zohr, Agadir, Morocco
| | - Adil Chahid
- Laboratoire Régional d'analyses et de Recherche Agadir (LRARA), Office National de Sécurité Sanitaire des Produits Alimentaires (ONSSA), Agadir, Morocco
| | - Moha Taourirte
- Laboratoire de Recherche en Développement Durable et Santé (LRDDS), Faculté des Sciences et Technique Gueliz, Université Cadi Ayyad, Guéliz Marrakech, Morocco
| | - Ahmed Aamouche
- Laboratoire Ingénierie des Systèmes et Applications (LISA), Ecole Nationale des Sciences Appliquées de Marrakech, Université Cadi Ayyad, Guéliz-Marrakech, Morocco
| |
Collapse
|
6
|
Targuma S, Njobeh PB, Ndungu PG. Current Applications of Magnetic Nanomaterials for Extraction of Mycotoxins, Pesticides, and Pharmaceuticals in Food Commodities. Molecules 2021; 26:4284. [PMID: 34299560 PMCID: PMC8303358 DOI: 10.3390/molecules26144284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022] Open
Abstract
Environmental pollutants, such as mycotoxins, pesticides, and pharmaceuticals, are a group of contaminates that occur naturally, while others are produced from anthropogenic sources. With increased research on the adverse ecological and human health effects of these pollutants, there is an increasing need to regularly monitor their levels in food and the environment in order to ensure food safety and public health. The application of magnetic nanomaterials in the analyses of these pollutants could be promising and offers numerous advantages relative to conventional techniques. Due to their ability for the selective adsorption, and ease of separation as a result of magnetic susceptibility, surface modification, stability, cost-effectiveness, availability, and biodegradability, these unique magnetic nanomaterials exhibit great achievement in the improvement of the extraction of different analytes in food. On the other hand, conventional methods involve longer extraction procedures and utilize large quantities of environmentally unfriendly organic solvents. This review centers its attention on current applications of magnetic nanomaterials and their modifications in the extraction of pollutants in food commodities.
Collapse
Affiliation(s)
- Sarem Targuma
- Energy, Sensors and Multifunctional Nanomaterials Research Group, Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Patrick B. Njobeh
- Department of Biotechnology and Food Technology, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Patrick G. Ndungu
- Energy, Sensors and Multifunctional Nanomaterials Research Group, Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
7
|
Moreau J, Monceau K, Crépin M, Tochon FD, Mondet C, Fraikin M, Teixeira M, Bretagnolle V. Feeding partridges with organic or conventional grain triggers cascading effects in life-history traits. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116851. [PMID: 33711629 DOI: 10.1016/j.envpol.2021.116851] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Farmland birds are declining across Europe and North America and the research of factors behind is the subject of extensive researches. Agricultural intensification is now recognized as a major factor governing the loss of biodiversity with strong evidence that pesticides induced direct bird mortality at a high dose. However, less attention has been given to the long-term effects of chronic exposure to low dose of pesticides. Here, we used an experimental procedure in which grey partridges were fed with untreated grains obtained from either organic (no pesticide) or conventional agriculture (with pesticide) for 26 weeks, thus strictly mimicking wild birds foraging on fields. We then examined a suite of life-history traits (ecophysiological and behavioural) that may ultimately, influence population dynamics. We show for the first time that ingesting low pesticide doses over a long period has long-term consequences on several major physiological pathways without inducing differential mortality. Compared to control partridges, birds exposed to chronic doses i) had less developed carotenoid-based ornaments due to lower concentrations of plasmatic carotenoids, ii) had higher activated immune system, iii) showed signs of physiological stress inducing a higher intestinal parasitic load, iv) had higher behavioural activity and body condition and v) showed lower breeding investment. Our results are consistent with a hormetic effect, in which exposure to a low dose of a chemical agent may induce a positive response, but our results also indicate that breeding adults may show impaired fitness traits bearing population consequences through reduced breeding investment or productivity. Given the current scale of use of pesticides in agrosystems, we suggest that such shifts in life-history traits may have a negative long-term impact on wild bird populations across agrosystems. We stress that long-term effects should no longer be ignored in pesticide risk assessment, where currently, only short-term effects are taken into account.
Collapse
Affiliation(s)
- Jérôme Moreau
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France; Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France.
| | - Karine Monceau
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France
| | - Malaury Crépin
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France
| | - Flavie Derouin Tochon
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France
| | - Cécilia Mondet
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France
| | - Marie Fraikin
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France
| | - Maria Teixeira
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Vincent Bretagnolle
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France; LTSER "Zone Atelier Plaine & Val de Sèvre", Villiers-en-Bois, 79360, France
| |
Collapse
|
8
|
Torović L, Vuković G, Dimitrov N. Pesticide active substances in infant food in Serbia and risk assessment. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2020; 14:30-39. [PMID: 33272121 DOI: 10.1080/19393210.2020.1852609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Risks posed by pesticide residues in infant food urge for protection of the most vulnerable part of our population. In the current study a total of 54 samples of infant food (juice and purée) were collected on the Serbian market. Liquid chromatography-tandem mass spectrometry with electrospray ionization method detected 18 out of 69 analyzed pesticide active substances in 55.6% of the samples, most frequently carbendazim and acetamiprid. Domestic products as opposed to the imported ones showed a substantially higher proportion of positive (85% vs 38%) and noncompliant (10% vs 0%) samples, a number of pesticides detected (15 vs 8), the proportion of the samples with multiple residues (85% vs 15%), the maximum number of residues in an individual sample (7 vs 2). Risk assessment was performed for the present pesticide active substances, which was estimated to remain below the level of concern for both acute and chronic adverse health effects.
Collapse
Affiliation(s)
- Ljilja Torović
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad , Novi Sad, Serbia.,Department for Hygiene and Human Ecology, Institute of Public Health of Vojvodina , Novi Sad, Serbia
| | - Gorica Vuković
- Department for Hygiene and Human Ecology, Institute of Public Health of Belgrade , Belgrade, Serbia
| | - Nina Dimitrov
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad , Novi Sad, Serbia
| |
Collapse
|
9
|
Akgün B, Hamzaoğlu M, Tosunoğlu H, Demir S, Deniz A, Zengingönül Gökçay R. A survey of 59 pesticide residues in Turkish chicken eggs using LC-MS/MS. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2020; 13:252-259. [PMID: 32498611 DOI: 10.1080/19393210.2020.1767218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An LC-MS/MS multi-residue method was validated for the determination of 59 pesticide residue levels in a chicken egg by using QuEChERS extraction method. The validation parameters used were taken from the SANTE/11813/2017 guideline. The calibration curves for each target pesticide had a good linearity in a range of 1.0 or 2.5 to 100.0 µg kg-1 (r2 ≥ 0.995). Ten per cent of the total pesticides had LOQ values less than 5.0 µg kg-1 or LOQ values from 5.0 to 10.0 µg kg-1. The LOQ values were below the MRLs set by the European Commision (EC). Average recoveries (70-120%) and relative standard deviations (RSDs≤20%) were achieved for 59 selected pesticides at different concentrations (5 or 10 and 200 µg kg-1). All expanded measurement uncertainties were lower than 50%. The occurrence of these pesticides was evaluated in 35 commercially available chicken eggs. No MRL exceedance was identified.
Collapse
Affiliation(s)
- Banu Akgün
- Food Additives and Residues Department, Central Research Institute of Food and Feed Control , Bursa, Turkey
| | - Mertin Hamzaoğlu
- Food Additives and Residues Department, Central Research Institute of Food and Feed Control , Bursa, Turkey
| | - Hakan Tosunoğlu
- Food Additives and Residues Department, Central Research Institute of Food and Feed Control , Bursa, Turkey
| | - Sema Demir
- Food Additives and Residues Department, Central Research Institute of Food and Feed Control , Bursa, Turkey
| | - Altan Deniz
- Food Additives and Residues Department, Central Research Institute of Food and Feed Control , Bursa, Turkey
| | - Remziye Zengingönül Gökçay
- Food Additives and Residues Department, Central Research Institute of Food and Feed Control , Bursa, Turkey
| |
Collapse
|