1
|
Cojkic A, Hansson I, Morrell JM. Bacterial survival below zero: Impact of storage time on bacterial viability in bull semen. Cryobiology 2025; 119:105233. [PMID: 40112567 DOI: 10.1016/j.cryobiol.2025.105233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/02/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Although freezing methods have been optimized for preserving sperm integrity, their effectiveness in sustaining bacterial viability is unknown. Therefore, culturing thawed semen samples might not give an accurate picture of the bacteria in the original sample. The aim of this study was to assess how cryopreservation and storage duration influence bacterial populations and the survival of distinct bacterial species. Semen samples were collected from 14 bulls, samples were diluted in equal proportions of antibiotic-free semen extender and transported to the laboratory at 6 °C overnight. Aliquots of semen were cultured within 24 h after semen collection on Plate Count Agar to calculate number of bacteria, and blood agar plates (5 % bovine blood) for identification of bacterial species. The remaining samples were diluted 1:1 in Brain Heart Infusion (BHI) broth with 30 % glycerol and stored at -80 °C. The frozen samples were thawed and cultured for quantification of bacteria as described for fresh semen, after 6 and 13 days at -80 °C. The isolated bacteria were re-cultured on blood agar, incubated for one day at 37 °C before identification by Matrix assisted laser desorption ionization-time of flight mass spectrometry. Total bacterial counts remained consistent across fresh and cryopreserved samples regardless of storage duration. A total of 31 bacterial species were identified, with 20 detected in fresh samples, 16 present after 6 days of storage, and 18 observed after 13 days. Ten species persisted across all time points, while others were unique to a specific sampling day, including nine species on day 1, two species on day 6, and five species on day 13. These findings suggest that while cryopreservation does not alter the overall bacterial load, the survival of individual species varies depending on storage conditions.
Collapse
Affiliation(s)
- Aleksandar Cojkic
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Ingrid Hansson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Jane M Morrell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| |
Collapse
|
2
|
Tvrdá E, Bučko O, Ďuračka M, Kováčik A, Benko F, Kačániová M. Age-Related Dynamics in the Conventional, Non-Conventional, and Bacteriological Characteristics of Fresh and Liquid-Stored Porcine Semen. Animals (Basel) 2025; 15:377. [PMID: 39943147 PMCID: PMC11815876 DOI: 10.3390/ani15030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
This study strove to investigate the effect of boar age on conventional and non-conventional quality traits of fresh and liquid-stored semen. Sixty boars were allocated into 3 groups: 8-12 months (young); 24-36 months (adult); and 48-60 months (senior). Ejaculates were divided into two parts; the first one was assessed in native state while the second one was extended in the Androstar Plus extender containing gentamycin, stored at 5 °C and evaluated following 72 h. Young animals presented with a significantly lower sperm motility (p < 0.01), membrane and acrosome integrity (p < 0.0001), and mitochondrial activity (p < 0.0001) against adult boars. Significantly higher levels of free radicals and tumor necrosis factor alpha (p < 0.001), interleukin 1 and 6 (p < 0.0001) were found in young boars in comparison to adult boars. The assessment of liquid-stored semen revealed a significantly lower sperm motility, membrane, and acrosome integrity (p < 0.0001) in young boars when compared to adult boars. Moreover, Clostridium difficile, Escherichia coli, Pseudomonas aeruginosa, and Rothia nasimurium remained in liquid-stored semen obtained from young boars, while Corynebacterium sp. and Escherichia coli continued to be identified in samples collected from adult boars. In conclusion, age contributes to the overall quality of fresh as well as liquid-stored boar semen.
Collapse
Affiliation(s)
- Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (E.T.); (F.B.)
| | - Ondřej Bučko
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Michal Ďuračka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Anton Kováčik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Filip Benko
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (E.T.); (F.B.)
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- School of Medical and Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 010 43 Warsaw, Poland
| |
Collapse
|
3
|
Shrestha A, Joshi DR, Vaidya D, Shrestha SM, Singh A. Bacteriospermia in men among infertile couples in the Nepalese population. Syst Biol Reprod Med 2024; 70:240-248. [PMID: 39169640 DOI: 10.1080/19396368.2024.2391052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Infection of the male urogenital tract or male accessory glands is considered one of the important causes of male infertility, and results in the presence of bacteria in semen affecting the fertility potential of men. This study aims to understand the rate of seminal infection in infertile men, and its association with semen parameters related to fertility potential. The study was carried out from June 2021 to July 2022, in which 217 semen samples were collected from male partners of couples consulting for fertility complaints in a fertility center in Nepal. Analysis of semen parameters was done following the WHO guidelines for human semen analysis, 2021. Microbiological assessment of semen by culture-based approach showed bacteriospermia among 25.3% of samples. Staphylococcus aureus was the predominant isolate in semen. The volume of semen was reduced (p = 0.001 at 95% confidence interval) with bacteriospermia. The concentration, total motility, morphology, and vitality of spermatozoa in the samples tended to be negatively impacted due to bacteriospermia, however, the associations were insignificant at 95% CI. Our study indicates impairment of semen parameters is partially associated with bacterial infection, and hence bacteriospermia may be an important cause of male infertility. Our data represent a baseline for future in-depth studies on bacterial infection in the semen of infertile men in Nepal.
Collapse
Affiliation(s)
- Anima Shrestha
- Central Department of Microbiology, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal
- Department of Microbiology, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal
| | | | | | - Anjana Singh
- Central Department of Microbiology, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
4
|
Miao X, Zhao Y, Zhu L, Zeng Y, Yang C, Zhang R, Lund AK, Zhang M. The Equilibrium of Bacterial Microecosystem: Probiotics, Pathogenic Bacteria, and Natural Antimicrobial Substances in Semen. Microorganisms 2024; 12:2253. [PMID: 39597642 PMCID: PMC11596911 DOI: 10.3390/microorganisms12112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Semen is a complex fluid that contains spermatozoa and also functions as a dynamic bacterial microecosystem, comprising probiotics, pathogenic bacteria, and natural antimicrobial substances. Probiotic bacteria, such as Lactobacillus and Bifidobacterium, along with pathogenic bacteria like Pseudomonas aeruginosa and Escherichia coli, play significant roles in semen preservation and reproductive health. Studies have explored the impact of pathogenic bacteria on sperm quality, providing insights into the bacterial populations in mammalian semen and their influence on sperm function. These reviews highlight the delicate balance between beneficial and harmful bacteria, alongside the role of natural antimicrobial substances that help maintain this equilibrium. Moreover, we discuss the presence and roles of antimicrobial substances in semen, such as lysozyme, secretory leukocyte peptidase inhibitors, lactoferrin, and antimicrobial peptides, as well as emerging antibacterial substances like amyloid proteins. Understanding the interactions among probiotics, pathogens, and antimicrobial agents is crucial for elucidating semen preservation and fertility mechanisms. Additionally, the potential for adding probiotic bacteria with recombinant antibacterial properties presents a promising avenue for the development of new semen extenders. This review offers updated insights to understand the equilibrium of the bacterial microecosystem in semen and points toward innovative approaches for improving semen preservation.
Collapse
Affiliation(s)
- Xuelan Miao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Yanhua Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Lingxi Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Yutian Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Cuiting Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Run Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Arab Khan Lund
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
- Faculty of Animal Production and Technology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
5
|
Benko F, Baňas Š, Ďuračka M, Kačániová M, Tvrdá E. Cryoprotective Potential of Theobromine in the Improvement of the Post-Thaw Quality of Bovine Spermatozoa. Cells 2024; 13:1710. [PMID: 39451229 PMCID: PMC11505711 DOI: 10.3390/cells13201710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Theobromine (TBR) is a methylxanthine known for its bronchodilatory and stimulatory effects. This research evaluated the vitality, capacitation patterns, oxidative characteristics, microbial profile and expression of capacitation-associated proteins (CatSper1/2, sodium bicarbonate cotransporter [NBC], protein kinases A [PKA] and C [PKC] and adenylate cyclase 10 [ADCY10]) in cryopreserved bovine spermatozoa (n = 30) in the absence (cryopreserved control [CtrlC]) or presence of different TBR concentrations (12.5, 25, and 50 µM) in egg yolk extender. Fresh ejaculate served as a negative control (CtrlN). Significant post-thaw maintenance of the sperm motility, membrane and DNA integrity and mitochondrial activity (p < 0.001) were recorded following the administration of 25 μM and 50 μM TBR, then compared to CtrlC. All groups supplemented with TBR exhibited a significantly lower percentage of prematurely capacitated spermatozoa (p < 0.001) than CtrlC. Significantly decreased levels of global reactive oxygen species (ROS), hydrogen peroxide and hydroxyl radicals were observed in the presence of 25 μM and 50 μM TBR (p < 0.01). Western blot analysis revealed that supplementation with 50 μM TBR significantly prevented the loss of NBC and ADCY10 (p < 0.01), while all TBR doses stabilized the levels of PKC (p < 0.05 at 50 μM TBR; p < 0.001 at 12.5 μM and 25 μM TBR). In summary, we suggest that TBR is effective in protecting the spermatozoa during the cryopreservation process through its potential to stimulate energy synthesis while preventing ROS overproduction and the loss of proteins involved in the sperm activation process.
Collapse
Affiliation(s)
- Filip Benko
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (F.B.); (Š.B.)
| | - Štefan Baňas
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (F.B.); (Š.B.)
| | - Michal Ďuračka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- School of Medical and Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 010 43 Warsaw, Poland
| | - Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (F.B.); (Š.B.)
| |
Collapse
|
6
|
Kchikich A, Kirschvink N, Raes M, El Otmani S, Chebli Y, Bister JL, El Amiri B, Barrijal S, Chentouf M. Carvacrol and Thymol Enhance the Quality of Beni Arouss Buck Semen Stored at 4 °C Thanks to Their Antimicrobial Properties. Vet Sci 2024; 11:406. [PMID: 39330785 PMCID: PMC11435801 DOI: 10.3390/vetsci11090406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
This study aims to investigate the impact of carvacrol and thymol on the quality of Beni Arouss buck semen stored in skim milk at 4 °C. Ejaculates were collected from eight Beni Arouss bucks weekly for 11 weeks, pooled, and then divided into three equal parts. Samples were diluted to 400 × 106 sperm/mL in skim milk (control) and skim milk supplemented with a single dose of 200 µM carvacrol and thymol each. Evaluations of sperm motility, viability, abnormalities, membrane integrity, lipid peroxidation, and bacterial growth were conducted at 0, 6, 24, and 48 h of liquid storage at 4 °C. After 48 h of storage, the results indicate that the addition of carvacrol positively influences total and progressive motility and viability. However, it also leads to a decrease in lipid peroxidation and bacterial growth compared to the control group (p < 0.05). Thymol showed similar results to carvacrol, except for progressive motility (p > 0.05). Bacterial growth was negatively correlated with total and progressive motility and viability (p < 0.05), while no correlation between lipid peroxidation and these parameters was observed (p > 0.05). In conclusion, the addition of carvacrol and thymol to skim milk extender moderately improves the quality of Beni Arouss buck semen after 48 h storage at 4 °C due to its antimicrobial activity.
Collapse
Affiliation(s)
- Amr Kchikich
- Department of Biology, Abdelmalek Essaadi University, Tangier 93000, Morocco
- Regional Center of Agricultural Research of Tangier, National Institute of Agricultural Research, Rabat 10090, Morocco
| | - Nathalie Kirschvink
- Department of Medicine, Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Marianne Raes
- Department of Veterinary Medicine, Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Samira El Otmani
- Regional Center of Agricultural Research of Tangier, National Institute of Agricultural Research, Rabat 10090, Morocco
| | - Youssef Chebli
- Regional Center of Agricultural Research of Tangier, National Institute of Agricultural Research, Rabat 10090, Morocco
| | - Jean-Loup Bister
- Department of Veterinary Medicine, Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Bouchra El Amiri
- Regional Center of Agricultural Research Settat, National Institute of Agricultural Research, Rabat 10090, Morocco
| | - Said Barrijal
- Department of Biology, Abdelmalek Essaadi University, Tangier 93000, Morocco
| | - Mouad Chentouf
- Regional Center of Agricultural Research of Tangier, National Institute of Agricultural Research, Rabat 10090, Morocco
| |
Collapse
|
7
|
Cojkic A, Niazi A, Morrell JM. Metagenomic identification of bull semen microbiota in different seasons. Anim Reprod Sci 2024; 268:107569. [PMID: 39098060 DOI: 10.1016/j.anireprosci.2024.107569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
A seasonal effect on sperm quality parameters was observed previously. Although identification of the bull semen microbiota by 16S rRNA sequencing was performed previously, it has not been carried out in commercial semen samples from different seasons, and its connection with sperm quality parameters has not been evaluated yet. The objectives in this study were; (i) to evaluate diversity of bull semen microbiota and sperm quality parameters in different seasons, and (ii) to find if specific bacteria were associated with seasonal differences in specific sperm quality parameters. Bull semen microbiota was identified in 54 commercial bull semen samples from 3 seasons (winter, spring, summer). Sperm quality was analysed by Computer Assisted Sperm Analyses (CASA) and Flow Cytometry (FC). From 28 phyla in all samples, six phyla were identified in samples from all seasons, with observed seasonal differences in their distribution. At genus level, 388 genera were identified, of which 22 genera had a relative abundance over 1 % and showed seasonal differences in bacterial diversity, and 9 bacteria genera were present in all seasons. Differences between spring and summer (P < 0.05) were observed for live hydrogen peroxide positive sperm cells. A trend towards significance (0.10 > P > 0.05) was observed for some CASA kinematics (VCL and LIN) and FC parameters (High respiratory activity, and live hydrogen peroxide positive sperm cells) between seasons. Nevertheless, associations between sperm quality parameters and specific bacteria were observed in spring.
Collapse
Affiliation(s)
- Aleksandar Cojkic
- Swedish University of Agricultural Sciences (SLU), Department of Clinical Sciences, Uppsala 75007, Sweden.
| | - Adnan Niazi
- SLU Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden.
| | - Jane M Morrell
- Swedish University of Agricultural Sciences (SLU), Department of Clinical Sciences, Uppsala 75007, Sweden.
| |
Collapse
|
8
|
Sorkytė Š, Šiugždinienė R, Virgailis M, Vaičiulienė G, Wysokińska A, Wójcik E, Matusevičius P, Rekešiūtė A, Sutkevičienė N. The Interaction between Canine Semen Bacteria and Semen Quality Parameters. Animals (Basel) 2024; 14:2151. [PMID: 39123677 PMCID: PMC11311067 DOI: 10.3390/ani14152151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Assessing canine semen quality helps to detect infertility in males, but identifying factors that influence canine semen quality is a complicated task. The objective of this study was the assessment of the potential influence of bacteria found in canine semen samples on the characteristics of dogs' semen. In this study, semen samples were collected manually from 30 dogs and subjected to a comprehensive examination. The results of sperm motility, concentration, viability, and morphology were statistically analysed in relation to the number of bacteria in the semen (CFUs/mL) and the seminal microbiota. Samples with an increased bacterial count per millilitre were associated with lower-quality sperm motility (p < 0.05). The most frequently isolated bacterial genera from the analysed semen samples were Staphylococcus spp. (26.0%), Corynebacterium spp. (17.8%), and Streptococcus spp. (16.4%). The presence of β-haemolytic Escherichia coli bacteria was linked to suboptimal semen samples, characterised by significantly reduced semen viability and a lower proportion of morphologically normal spermatozoa (p < 0.05). Corynebacterium spp. was associated with reduced bacterial load and superior semen quality (p < 0.01). These findings highlight the importance of bacterial cell counts and microbiota diversity in relation to various factors influencing canine semen quality, providing a more comprehensive understanding of canine reproductive well-being.
Collapse
Affiliation(s)
- Šarūnė Sorkytė
- Animal Reproduction Laboratory, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania; (G.V.); (A.R.); (N.S.)
| | - Rita Šiugždinienė
- Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania; (R.Š.); (M.V.)
| | - Marius Virgailis
- Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania; (R.Š.); (M.V.)
| | - Gintarė Vaičiulienė
- Animal Reproduction Laboratory, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania; (G.V.); (A.R.); (N.S.)
| | - Anna Wysokińska
- Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of Siedlce, Konarskiego 2, 08110 Siedlce, Poland; (A.W.); (E.W.)
| | - Ewa Wójcik
- Institute of Animal Science and Fisheries, Faculty of Agricultural Sciences, University of Siedlce, Konarskiego 2, 08110 Siedlce, Poland; (A.W.); (E.W.)
| | - Paulius Matusevičius
- Department of Animal Nutrition, Faculty of Animal Sciences, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania;
| | - Audronė Rekešiūtė
- Animal Reproduction Laboratory, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania; (G.V.); (A.R.); (N.S.)
| | - Neringa Sutkevičienė
- Animal Reproduction Laboratory, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania; (G.V.); (A.R.); (N.S.)
| |
Collapse
|
9
|
Ďuračka M, Benko F, Chňapek M, Tvrdá E. Strategies for Bacterial Eradication from Human and Animal Semen Samples: Current Options and Future Alternatives. SENSORS (BASEL, SWITZERLAND) 2023; 23:6978. [PMID: 37571761 PMCID: PMC10422635 DOI: 10.3390/s23156978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
The primary role of semen processing and preservation is to maintain a high proportion of structurally and functionally competent and mature spermatozoa, that may be used for the purposes of artificial reproduction when needed, whilst minimizing any potential causes of sperm deterioration during ex vivo semen handling. Out of a multitude of variables determining the success of sperm preservation, bacterial contamination has been acknowledged with an increased interest because of its often unpredictable and complex effects on semen quality. Whilst antibiotics are usually the most straight-forward option to prevent the bacterial contamination of semen, antimicrobial resistance has become a serious threat requiring widespread attention. As such, besides discussing the consequences of bacteriospermia on the sperm vitality and the risks of antibiotic overuse in andrology, this paper summarizes the currently available evidence on alternative strategies to prevent bacterial contamination of semen prior to, during, and following sperm processing, selection, and preservation. Alternative antibacterial supplements are reviewed, and emphasis is given to modern methods of sperm selection that may be combined by the physical removal of bacteria prior to sperm preservation or by use in assisted reproductive technologies.
Collapse
Affiliation(s)
- Michal Ďuračka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Filip Benko
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Milan Chňapek
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
10
|
Tvrdá E, Petrovičová M, Ďuračka M, Benko F, Slanina T, Galovičová L, Kačániová M. Short-Term Storage of Rooster Ejaculates: Sperm Quality and Bacterial Profile Differences in Selected Commercial Extenders. Antibiotics (Basel) 2023; 12:1284. [PMID: 37627704 PMCID: PMC10451222 DOI: 10.3390/antibiotics12081284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Bacterial contamination of semen has become an important contributor to the reduced shelf life of insemination doses in the poultry industry, which is why antibiotics (ATBs) are an important component of semen extenders. Due to a global rise in antimicrobial resistance, the aim of this study was to assess the efficiency of selected commercially available semen extenders to prevent possible bacterial contamination of rooster ejaculates. Two selected extenders free from or containing 31.2 µg/mL kanamycin (KAN) were used to process semen samples from 63 healthy Lohmann Brown roosters. Phosphate-buffered saline without ATBs was used as a control. The extended samples were stored at 4 °C for 24 h. Sperm motility, viability, mitochondrial activity, DNA integrity and the oxidative profile of each extended sample were assessed following 2 h and 24 h of storage. Furthermore, selective media were used to quantify the bacterial load and specific bacterial species were identified with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The results indicate that semen extenders enriched with KAN ensured a significantly higher preservation of sperm quality in comparison to their KAN-free counterparts. Bacterial load was significantly decreased in diluents supplemented with ATBs (p ≤ 0.001); however, KAN alone was not effective enough to eradicate all bacteria since several Escherichia coli, Enterococcus faecalis, Enterococcus faecium and Micrococcus luteus were retrieved from samples extended in KAN-supplemented commercial extenders. As such, we may suggest that more focus should be devoted to the selection of an optimal combination and dose of antibiotics for poultry extenders, which should be accompanied by a more frequent bacteriological screening of native as well as extended poultry semen.
Collapse
Affiliation(s)
- Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Michaela Petrovičová
- Department of Neuroscience, Second Faculty of Medicine (2. LF UK), Charles University, V Úvalu 84, 15006 Prague, Czech Republic;
| | - Michal Ďuračka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Filip Benko
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Tomáš Slanina
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Lucia Galovičová
- Institute of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (L.G.); (M.K.)
| | - Miroslava Kačániová
- Institute of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (L.G.); (M.K.)
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland
| |
Collapse
|
11
|
Tvrdá E, Petrovičová M, Benko F, Ďuračka M, Kováč J, Slanina T, Galovičová L, Žiarovská J, Kačániová M. Seminal Bacterioflora of Two Rooster Lines: Characterization, Antibiotic Resistance Patterns and Possible Impact on Semen Quality. Antibiotics (Basel) 2023; 12:antibiotics12020336. [PMID: 36830247 PMCID: PMC9952488 DOI: 10.3390/antibiotics12020336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
This study aimed to characterize the bacterial profiles and their association with selected semen quality traits among two chicken breeds. Thirty Lohmann Brown and thirty ROSS 308 roosters were selected for semen quality estimation, including sperm motility, membrane and acrosome integrity, mitochondrial activity, and DNA fragmentation. The oxidative profile of the semen, including the production of reactive oxygen species (ROS), antioxidant capacity, protein, and lipid oxidation, were assessed as well. Moreover, the levels of pro-inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukins 1 and 6 (IL-1, IL-6) and C-reactive protein, as well as the concentrations of selected antibacterial proteins (cathelicidin, β-defensin and lysozyme) in the seminal plasma were evaluated with the enzyme-linked immunosorbent assay. The prevailing bacterial genera identified by the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were Citrobacter spp., Enterococcus spp., Escherichia spp. and Staphylococcus spp. While the bacterial load was significantly higher in the ROSS 308 line (p < 0.05), a higher number of potentially uropathogenic bacteria was found in the Lohmann Brown roosters. Antimicrobial susceptibility tests revealed a substantial resistance of randomly selected bacterial strains, particularly to ampicillin, tetracycline, chloramphenicol, and tobramycin. Furthermore, Lohmann Brown ejaculates containing an increased proportion of Escherichia coli presented with significantly (p < 0.05) elevated levels of TNF-α and IL-6, as well as ROS overproduction and lipid peroxidation. Inversely, significantly (p < 0.05) higher levels of β-defensin and lysozyme were found in the semen collected from the ROSS 308 roosters, which was characterized by a higher quality in comparison to the Lohmann Brown roosters. In conclusion, we emphasize the criticality of bacteriospermia in the poultry industry and highlight the need to include a more complex microbiological screening of semen samples designated for artificial insemination.
Collapse
Affiliation(s)
- Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Correspondence: ; Tel.: +421-37-641-4918
| | - Michaela Petrovičová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Neuroscience, Second Faculty of Medicine (2. LF UK), V Úvalu 84, 15006 Prague, Czech Republic
| | - Filip Benko
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Michal Ďuračka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Ján Kováč
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Tomáš Slanina
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Lucia Galovičová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Jana Žiarovská
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Miroslava Kačániová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland
| |
Collapse
|
12
|
Polo C, García-Seco T, Díez-Guerrier A, Briones V, Domínguez L, Pérez-Sancho M. What about the bull? A systematic review about the role of males in bovine infectious infertility within cattle herds. Vet Anim Sci 2023; 19:100284. [PMID: 36647444 PMCID: PMC9840180 DOI: 10.1016/j.vas.2023.100284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Numerous pathogens affect cow fertility. Nevertheless, little information has been published about microorganisms associated with cattle infertility focusing on bulls. The present review offers a current analysis and highlights potential key aspects on the relevance of bulls in the emergence of infertility problems of infectious origin within herds that are still not completely determined. The present systematic review was conducted using the PubMed, Web of Science, and Scopus databases on December 9, 2022. In total, 2,224 bibliographic records were reviewed and, according to strict inclusion criteria, 38 articles were selected from 1966 to 2022, from which we ranked more than 27 different microorganisms (fungi were not identified). The most cited pathogens were BoHV (described by 26.3% of the papers), Campylobacter fetus (23.7%), Tritrichomonas foetus (18.4%), and BVDV, Ureaplasma spp., and Mycoplasma spp. (10.5% each). Despite the general trend towards an increasing number of publications about bull-infertility problems, a number of pathogens potentially transmitted through both natural breeding and seminal doses given to females and associated with infertility within herds were not ranked in the study (e.g., Chlamydia spp.). This work highlights i) the need to clearly establish the role of certain microorganisms not traditionally associated with reproductive problems in bull infertility (e.g., Staphylococcus spp. or BoHV-4) and ii) the need to perform additional studies on breeding bulls to clarify their role in infertility problems within herds. This would allow monitoring for pathogens that have gone unnoticed and those that are fastidious to diagnose and/or potentially transmitted to females.
Collapse
Affiliation(s)
- Coral Polo
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain,MAEVA SERVET S.L., Calle de la Fragua 3, 28749 Alameda del Valle, Madrid, Spain
| | - Teresa García-Seco
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Alberto Díez-Guerrier
- MAEVA SERVET S.L., Calle de la Fragua 3, 28749 Alameda del Valle, Madrid, Spain,Department of Animal Health, Veterinary Faculty, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Víctor Briones
- Department of Animal Health, Veterinary Faculty, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain,Department of Animal Health, Veterinary Faculty, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Marta Pérez-Sancho
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain,Department of Animal Health, Veterinary Faculty, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain,Corresponding author at: VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain.
| |
Collapse
|
13
|
Li D, Xu Y, Wang M, Fang S, Li SH, Cui Y. Differences of semen microbiota among breeding boars with different reproductive ages. J Anim Sci 2023; 101:skad247. [PMID: 37478469 PMCID: PMC10424712 DOI: 10.1093/jas/skad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/21/2023] [Indexed: 07/23/2023] Open
Abstract
In this study, we investigated 18 healthy and fertile Duroc boars, dividing them into two groups based on their reproductive age: 9 boars aged 18 mo and 9 boars aged 36 mo. Prior to semen sampling, all boars were raised together under identical management conditions for a period of 3 mo. Our findings revealed that older boars exhibited lower sperm motility and a higher proportion of abnormal sperm morphology compared to younger boars. Furthermore, older boars demonstrated lower anti-oxidant capacity in their semen, as indicated by elevated levels of malondialdehyde and decreased levels of superoxide dismutase and glutathione peroxidase. Microbiota analysis utilizing the 16S rRNA technique showed that the semen microbiota of older boars had reduced alpha-diversity and beta-diversity in comparison to younger boars. We identified the Streptococcus genus and Streptococcus gallolyticus subsp macedonicus species served as biomarkers for semen from younger breeding boars, while the Bacteroides pyogenes species as a biomarker for semen from older breeding boars. Additionally, the semen from older boars exhibited a higher abundance of Aerococcus, Gallicola, Ulvibacter, and Proteiniphilum compared to younger boars. Spearman correlation analysis showed that these four bacteria were negatively correlated with semen quality. The abundance of Gallicola and Proteiniphilum were negatively correlated with semen anti-oxidant capacity. Additionally, the reduction of semen anti-oxidant capacity was correlated to the decrease of semen quality. Based on these findings, we concluded that the semen of older boars contains a higher abundance of harmful bacteria, which contributes to the observed reduction in semen anti-oxidant capacity and overall semen quality in this group.
Collapse
Affiliation(s)
- Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Yunhe Xu
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Mi Wang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Shan Fang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Shi Han Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Yan Cui
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|
14
|
Yang X, Hu R, Zhu Y, Wang Z, Hou Y, Su K, He X, Song G. Meta-analysis of Serum Vitamin B12 Levels and Diabetic Retinopathy in Type 2 Diabetes. Arch Med Res 2023; 54:64-73. [PMID: 36549948 DOI: 10.1016/j.arcmed.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/19/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Previous studies have shown an association between low serum vitamin B12 levels and the risk of diabetic retinopathy (DR) in type 2 diabetes, but the conclusions from various studies were inconsistent. Therefore, we collected relevant data from various databases to perform a meta-analysis and address the inconsistencies in these studies. METHODS We searched PubMed, Embase, Cochrane Library, CNKI, Wanfang and CQVIP for eligible studies published up to April 10, 2022, and performed a meta-analysis using Stata software to assess the association between serum vitamin B12 levels and DR. RESULTS A total of 15 studies were included in this meta-analysis. Statistical analysis showed that serum vitamin B12 levels were significantly reduced in patients with type 2 diabetic retinopathy ,WMD 95% CI = -68.91 (-76.76, -61.06) (p <0.00001, I2 = 88.30%). In subgroup analyses by ethnicity, an association between low serum vitamin B12 levels and DR risk was found in East Asian, South Asian and mixed populations, but not in Caucasian populations. CONCLUSIONS This meta-analysis analyzed vitamin B12 in patients with type 2 diabetic retinopathy and emphasized the importance of monitoring serum vitamin B12 levels in patients with type 2 diabetic retinopathy, but this meta-analysis still has deficiencies and limitations, and more clinical studies are needed to confirm this conclusion in the future.
Collapse
Affiliation(s)
- Xiaoyue Yang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Rui Hu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yajun Zhu
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Zhen Wang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yilin Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Kangkang Su
- Graduate School of Hebei North University, Zhangjiakou, Hebei, PR China
| | - Xiaoyu He
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, PR China; Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei, PR China; Graduate School of Hebei North University, Zhangjiakou, Hebei, PR China.
| |
Collapse
|
15
|
Tvrdá E, Petrovičová M, Benko F, Ďuračka M, Galovičová L, Slanina T, Kačániová M. Curcumin Attenuates Damage to Rooster Spermatozoa Exposed to Selected Uropathogens. Pharmaceutics 2022; 15:65. [PMID: 36678694 PMCID: PMC9861644 DOI: 10.3390/pharmaceutics15010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Artificial insemination, as an essential pillar of the modern poultry industry, primarily depends on the quality of semen collected from stud roosters. Since the collection and storage of ejaculates is not a sterile process, antimicrobial agents have become essential supplements to semen extenders. While the use of traditional antibiotics has been challenged because of rising bacterial resistance, natural biomolecules represent an appealing alternative because of their antibacterial and antioxidant properties. As such, this study strived to compare the effects of 50 μmol/L curcumin (CUR) with 31.2 µg/mL kanamycin (KAN) as a conventional antibiotic on rooster sperm quality in the presence of Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa. Changes in sperm structural integrity and functional activity were monitored at 2 and 24 h of culture. Computer-assisted semen analysis revealed significant sperm motility preservation following treatment with KAN, particularly in the case of Salmonella enterica and Pseudomonas aeruginosa (p < 0.001) after 24 h. On the other hand, CUR was more effective in opposing ROS overproduction by all bacteria (p < 0.05), as determined by luminol-based luminometry, and maintained sperm mitochondrial activity (p < 0.001 in the case of Salmonella enterica; p < 0.05 with respect to Escherichia coli and Pseudomonas aeruginosa), as assessed by the fluorometric JC-1 assay. The TUNEL assay revealed that CUR readily preserved the DNA integrity of rooster sperm exposed to Salmonella enterica (p < 0.01) and Escherichia coli (p < 0.001). The bacteriological analysis showed higher efficiency of KAN in preventing the growth of all selected bacterial species (p < 0.0001) as opposed to CUR. In conclusion, CUR provided protection to rooster spermatozoa against alterations caused by uropathogens, most likely through its antioxidant activity. Hence, CUR supplementation to poultry semen extenders in combination with properly selected antibacterial substances may become an interesting strategy in the management of bacterial contamination during semen storage.
Collapse
Affiliation(s)
- Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Michaela Petrovičová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- Department of Neuroscience, Second Faculty of Medicine (2. LF UK), V Úvalu 84, 150 06 Prague, Czech Republic
| | - Filip Benko
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Michal Ďuračka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Lucia Galovičová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Tomáš Slanina
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Miroslava Kačániová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland
| |
Collapse
|
16
|
Benko F, Mohammadi-Sangcheshmeh A, Ďuračka M, Lukáč N, Tvrdá E. In vitro versus cryo-induced capacitation of bovine spermatozoa, part 1: Structural, functional, and oxidative similarities and differences. PLoS One 2022; 17:e0276683. [PMID: 36269791 PMCID: PMC9586399 DOI: 10.1371/journal.pone.0276683] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Low temperatures during cryopreservation activate a cascade of changes, which may lead into irreversible damage and reduction of the fertilization potential, including the process of premature capacitation. The aim of our study was to evaluate the range of cell damage following the cryopreservation process and possible activation of cryocapacitation in bovine spermatozoa. For the experiments semen samples were obtained from 30 sexually mature Holstein bulls. Within the analysed parameters, we focused on the functional activity, structural integrity, capacitation status and oxidative profile. The samples were divided into three experimental groups, control (CTRL), in vitro capacitated (CAP) and cryopreserved (CRYO). Based on the collected data, there was a significant decrease in the sperm motility, mitochondrial membrane potential and concentration of cyclic adenosine monophosphate in the CRYO group when compared to CAP and CTRL (P<0.0001). A significant decrease (P<0.01; P<0.0001) in the membrane and acrosome integrity as well as DNA fragmentation index and a significant increase (P<0.0001) of necrotic cells were observed in the CRYO group. Following capacitation, a significant increase (P<0.01; P<0.0001) was recorded in the number of cells which underwent the acrosome reaction in the CRYO group against CAP and CTRL. Changes in the oxidative profile of the CRYO group indicates an increase (P<0.0001) in the reactive oxygen species generation, except for the superoxide radical, which was significantly higher (P<0.0001; P<0.001) in the CAP group in comparison with CRYO and CTRL. In summary, premature capacitation may be considered a consequence of cryopreservation and the assessed parameters could serve as physical markers of cryogenic damage to bovine spermatozoa in the future.
Collapse
Affiliation(s)
- Filip Benko
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture, Nitra, Slovak Republic
| | | | - Michal Ďuračka
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Norbert Lukáč
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Eva Tvrdá
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture, Nitra, Slovak Republic
| |
Collapse
|
17
|
Li N, Dong X, Fu S, Wang X, Li H, Song G, Huang D. C-Type Natriuretic Peptide (CNP) Could Improve Sperm Motility and Reproductive Function of Asthenozoospermia. Int J Mol Sci 2022; 23:ijms231810370. [PMID: 36142279 PMCID: PMC9499393 DOI: 10.3390/ijms231810370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
This study is to analyze the effect of C-type natriuretic peptide (CNP) on sperm motility of asthenozoospermia and explore the influence mechanism of CNP on the reproductive system and sperm motility. Our results showed that the concentration of CNP in asthenospermia patients’ semen was lower than in normal people’s. The motility of sperm could be improved markedly by CNP and 8-Br-cGMP, while the effect of CNP was inhibited by NPR-B antagonist and KT5823. In the asthenozoospermia mouse model induced by CTX, CNP injection could improve sperm motility in the epididymis, alleviate tissue damage in the testes and epididymis, and increase testosterone levels. The asthenospermia mouse model showed high activity of MDA and proinflammatory factors (TNF-α, IL-6), as well as low expression of antioxidants (SOD, GSH-Px, CAT) in the testis and epididymis, but this situation could be significantly ameliorated after being treated with CNP. Those studies indicated that the concentration of CNP in the semen of asthenospermia patients is lower than in normal people and could significantly promote sperm motility through the NPR-B/cGMP pathway. In the asthenospermia mouse model induced by CTX, CNP can alleviate the damage of cyclophosphamide to the reproductive system and sperm motility. The mechanism may involve increasing testosterone and reducing ROS and proinflammatory factors to damage the tissue and sperm.
Collapse
Affiliation(s)
- Na Li
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinyi Dong
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sen Fu
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyan Wang
- Reproductive Center, Qingdao Women and Children’s Hospital Affiliated to Qingdao University, Qingdao 266034, China
| | - Huaibiao Li
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ge Song
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou 510006, China
- Correspondence: (G.S.); (D.H.); Tel.: +86-13570493366 (G.S.); +86-18872262607 (D.H.)
| | - Donghui Huang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Huazhong University of Science and Technology, Shenzhen 518109, China
- Correspondence: (G.S.); (D.H.); Tel.: +86-13570493366 (G.S.); +86-18872262607 (D.H.)
| |
Collapse
|
18
|
Tvrdá E, Ďuračka M, Benko F, Lukáč N. Bacteriospermia - A formidable player in male subfertility. Open Life Sci 2022; 17:1001-1029. [PMID: 36060647 PMCID: PMC9386612 DOI: 10.1515/biol-2022-0097] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Bacterial colonization of male reproductive tissues, cells, and fluids, and the subsequent impact of bacteria on the sperm architecture, activity, and fertilizing potential, has recently gained increased attention from the medical and scientific community. Current evidence strongly emphasizes the fact that the presence of bacteria in semen may have dire consequences on the resulting male fertility. Nevertheless, the molecular basis underlying bacteriospermia-associated suboptimal semen quality is sophisticated, multifactorial, and still needs further understanding. Bacterial adhesion and subsequent sperm agglutination and immobilization represent the most direct pathway of sperm-bacterial interactions. Furthermore, the release of bacterial toxins and leukocytic infiltration, associated with a massive outburst of reactive oxygen species, have been repeatedly associated with sperm dysfunction in bacteria-infested semen. This review serves as a summary of the present knowledge on bacteriospermia-associated male subfertility. Furthermore, we strived to outline the currently available methods for assessing bacterial profiles in semen and to outline the most promising strategies for the prevention and/or management of bacteriospermia in practice.
Collapse
Affiliation(s)
- Eva Tvrdá
- Department of Animal Physiology, Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, Nitra-Chrenová, 949 76, Slovakia
| | - Michal Ďuračka
- Department of Animal Physiology, Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, Nitra-Chrenová, 949 76, Slovakia
| | - Filip Benko
- Department of Animal Physiology, Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, Nitra-Chrenová, 949 76, Slovakia
| | - Norbert Lukáč
- Department of Animal Physiology, Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, Nitra-Chrenová, 949 76, Slovakia
| |
Collapse
|
19
|
Possible Implications of Bacteriospermia on the Sperm Quality, Oxidative Characteristics, and Seminal Cytokine Network in Normozoospermic Men. Int J Mol Sci 2022; 23:ijms23158678. [PMID: 35955814 PMCID: PMC9369207 DOI: 10.3390/ijms23158678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
This study focused on the identification of bacterial profiles of semen in normozoospermic men and their possible involvement in changes to the sperm structural integrity and functional activity. Furthermore, we studied possible fluctuations of selected cytokines, oxidative markers, and antibacterial proteins as a result of bacterial presence in the ejaculate. Sperm motility was assessed with computer-assisted sperm analysis, while sperm apoptosis, necrosis and acrosome integrity were examined with fluorescent methods. Reactive oxygen species (ROS) generation was quantified via luminometry, sperm DNA fragmentation was evaluated using the TUNEL protocol and chromatin-dispersion test, while the JC-1 assay was applied to evaluate the mitochondrial membrane potential. Cytokine levels were quantified with the biochip assay, whilst selected antibacterial proteins were quantified using the ELISA method. The predominant species identified by the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry were Staphylococcus hominis, Staphylococcus capitis and Micrococcus luteus. The results revealed that the sperm quality decreased proportionally to the increasing bacterial load and occurrence of conditionally pathogenic bacteria, including Enterococcus faecalis, Staphylococcus aureus and Escherichia coli. Antimicrobial susceptibility tests revealed a substantial resistance of randomly selected bacterial strains to ampicillin, vancomycin, tobramycin, and tetracycline. Furthermore, an increased bacterial quantity in semen was accompanied by elevated levels of pro-inflammatory cytokines, including interleukin-1, interleukin-2, interleukin-6, tumor necrosis factor alpha as well as ROS overproduction and lipid peroxidation of the sperm membranes. Our results suggest that semen quality may be notably affected by the bacterial quantity as well as quality. It seems that bacteriospermia may be associated with inflammatory processes, oxidative stress, sperm structural deterioration, and a subsequent risk for the development of subfertility, even in normozoospermic males.
Collapse
|
20
|
Tvrdá E, Kačániová M, Baláži A, Vašíček J, Vozaf J, Jurčík R, Ďuračka M, Žiarovská J, Kováč J, Chrenek P. The Impact of Bacteriocenoses on Sperm Vitality, Immunological and Oxidative Characteristics of Ram Ejaculates: Does the Breed Play a Role? Animals (Basel) 2021; 12:ani12010054. [PMID: 35011159 PMCID: PMC8749681 DOI: 10.3390/ani12010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/27/2022] Open
Abstract
Bacterial contamination of semen is an often overlooked, yet important, factor contributing to decreased sperm vitality. Understanding the impact of bacterial presence on sperm structural integrity and functional activity may assist the development of effective strategies to prevent, or manage, bacteriospermia in the breeding practice. The aim of this study was to describe the bacterial profiles of ram semen (n = 35), and we also focused on the associations between bacteriospermia, sperm structure, and function, as well as oxidative and inflammatory characteristics of semen. For a better insight, the samples were divided into three groups, according to the breeds used in the study: native Wallachian (NW), improved Wallachian (IW), and Slovak dairy (SD) breeds. The results showed a significantly lower motility and membrane integrity in the NW group in comparison to the IW and SD groups, which was accompanied by a significantly higher concentration of leukocytes, increased reactive oxygen species (ROS) generation, and subsequent oxidative insults to the sperm lipids and proteins. Accordingly, the NW group presented with the highest bacterial load, in which Staphylococcus and Escherichia were the predominant representatives. The Pearson correlation analysis uncovered positive relationships amongst the bacterial load and leukocytospermia (r = 0.613), the extent of lipid peroxidation (r = 0.598), protein oxidation (r = 0.514), and DNA fragmentation (r = 0.638). Furthermore, positive correlations were found between the bacterial load and pro-inflammatory molecules, such as the C-reactive protein (r = 0.592), interleukin 1 (r = 0.709), and interleukin 6 (r = 0.474), indicating a possible involvement of the immune response in the process of bacteriospermia. Overall, our data indicate that ram semen quality may be equally affected by the bacterial load and diversity. Furthermore, we can assume that the presence of bacteria in ejaculates triggers inflammatory processes, causes ROS overproduction, and, thereby, contributes to alterations in the sperm structure, while at the same time compromising the fertilization ability of male gametes.
Collapse
Affiliation(s)
- Eva Tvrdá
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (E.T.); (J.V.); (J.V.); (M.Ď.); (J.K.)
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland
| | - Andrej Baláži
- NPPC, Research Institute for Animal Production Nitra, Hlohovecka 2, 95141 Luzianky, Slovakia; (A.B.); (R.J.)
| | - Jaromír Vašíček
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (E.T.); (J.V.); (J.V.); (M.Ď.); (J.K.)
- NPPC, Research Institute for Animal Production Nitra, Hlohovecka 2, 95141 Luzianky, Slovakia; (A.B.); (R.J.)
| | - Jakub Vozaf
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (E.T.); (J.V.); (J.V.); (M.Ď.); (J.K.)
| | - Rastislav Jurčík
- NPPC, Research Institute for Animal Production Nitra, Hlohovecka 2, 95141 Luzianky, Slovakia; (A.B.); (R.J.)
| | - Michal Ďuračka
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (E.T.); (J.V.); (J.V.); (M.Ď.); (J.K.)
| | - Jana Žiarovská
- Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Ján Kováč
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (E.T.); (J.V.); (J.V.); (M.Ď.); (J.K.)
| | - Peter Chrenek
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (E.T.); (J.V.); (J.V.); (M.Ď.); (J.K.)
- NPPC, Research Institute for Animal Production Nitra, Hlohovecka 2, 95141 Luzianky, Slovakia; (A.B.); (R.J.)
- Correspondence: ; Tel.: +421-37-654-6285
| |
Collapse
|
21
|
Medo J, Žiarovská J, Ďuračka M, Tvrdá E, Baňas Š, Gábor M, Kyseľ M, Kačániová M. Core Microbiome of Slovak Holstein Friesian Breeding Bulls' Semen. Animals (Basel) 2021; 11:ani11113331. [PMID: 34828061 PMCID: PMC8614657 DOI: 10.3390/ani11113331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary The aim of this study was to characterize the bacterial profile of semen collected from Holstein Friesian breeding bulls via a high-throughput sequencing approach for a 16S rRNA gene variability analysis. A total of 55 fresh semen samples of sexually mature breeding bulls were used in the study. They were gathered from Holstein Friesian breeding bulls at Slovak Biological Services in Nitra, Slovak Republic. To amplify the V4 region of the 16S rRNA bacterial gene, universal primers 515F and 806R enhanced by a 6 bp barcode identification sequence were used. The 16S rRNA high-throughput sequencing strategy was used. Two microbial clusters were identified among the analyzed samples—the first cluster was based on Actinobacteria and Firmicutes, while the second cluster contained a high prevalence of Fusobacteria. Abstract Bacterial contamination of semen is an important factor connected to the health status of bulls that may significantly affect semen quality for artificial insemination. Moreover, some important bovine diseases may be transmitted through semen. Up to now, only a very limited number of complex studies describing the semen microbiome of bulls have been published, as many bacteria are hard to cultivate using traditional techniques. The 16S rRNA high-throughput sequencing strategy allows for the reliable identification of bacterial profiles of bovine semen together with the detection of noncultivable bacterial species. Fresh samples from Holstein Friesian breeding bulls (n = 55) were examined for the natural variability in the present bacteria. Semen doses were selected randomly from Slovak Biological Services in Nitra, Slovak Republic. The most predominant phyla within the whole dataset were Firmicutes (31%), Proteobacteria (22%), Fusobacteria (18%), Actinobacteria (13%) and Bacteroidetes (12%). Samples of semen were divided into two separate clusters according to their microbiome compositions using a cording partition around a medoids analysis. Microbiomes of the first cluster (CL1) of samples (n = 20) were based on Actinobacteria (CL1 average = 25%; CL = 28%) and Firmicutes (CL1 = 38%; CL2 = 27%), while the second cluster (CL2; n = 35) contained samples characterized by a high prevalence of Fusobacteria (CL1 = 4%; CL2 = 26%). Some important indicator microbial groups were differentially distributed between the clusters.
Collapse
Affiliation(s)
- Juraj Medo
- Faculty of Biotechnology and Food Sciences, Institute of Biotechnology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Jana Žiarovská
- Faculty of Agrobiology and Food Resources, Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- Correspondence:
| | - Michal Ďuračka
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (M.Ď.); (E.T.); (Š.B.)
| | - Eva Tvrdá
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (M.Ď.); (E.T.); (Š.B.)
| | - Štefan Baňas
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (M.Ď.); (E.T.); (Š.B.)
| | - Michal Gábor
- Faculty of Agrobiology and Food Resources, Institute of Nutrition and Genomics, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Matúš Kyseľ
- Research Centre AgroBioTech, Laboratory of Agrobiodiversity and Genetic Technologies, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Miroslava Kačániová
- Faculty of Horticulture and Landscape Engineering, Institute of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland
| |
Collapse
|
22
|
The Efficiency of Selected Extenders against Bacterial Contamination of Boar Semen in a Swine Breeding Facility in Western Slovakia. Animals (Basel) 2021; 11:ani11113320. [PMID: 34828051 PMCID: PMC8614807 DOI: 10.3390/ani11113320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary This study evaluated the efficiency of selected semen extenders to prevent bacterial overgrowth in boar ejaculates stored for 72 h. Among the identified bacterial isolates, Escherichia coli and Pseudomonas aeruginosa were the most prevailing species. While all extenders supplemented with antibiotics ensured a satisfactory sperm vitality during the storage period, neither of them was able to achieve a complete elimination of bacteria from extended semen. Furthermore, a number of bacterial isolates exhibited resistance to several antibiotics chosen for the microbial susceptibility test (e.g., tigecyklin and ciprofloxacin). Abstract Bacteriospermia has become a serious factor affecting sperm quality in swine breeding, this is why antibiotics (ATBs) are a critical component of semen extenders. Due to ever-increasing antimicrobial resistance, the aim of this study was to assess the efficiency of selected commercially available semen extenders to prevent a possible bacterial contamination of boar ejaculates. Three Androstar Plus extenders containing different combinations of antibiotics were used to process ejaculates from 30 healthy Duroc breeding boars. Androstar Plus without antibiotics was used as a control. The extended samples were stored at 17 °C for 72 h. Sperm motility, viability, mitochondrial activity, DNA integrity and oxidative profile of each extended sample were assessed following 24 h, 48 h and 72 h. Furthermore, selective media were used to quantify the bacterial load and specific bacterial species were identified with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The results indicate that semen extenders enriched with ATBs ensured a significantly higher preservation of the sperm quality in comparison to the ATB-free control. The total bacterial count was significantly decreased in the extenders supplemented with ATBs (p < 0.001), however gentamycin alone was not effective enough against Gram-positive bacteria, while a few colonies of Enterococcus hirae, Bacillus subtilis and Corynebacterium spp. were present in the samples extended in the presence of a triple combination of ATBs. In conclusion, we may suggest that semen extenders enriched in antibiotics were not able to fully eliminate the bacteria present in the studied samples. Furthermore, selection of suitable antibiotics for semen extension should be accompanied by adequate hygiene standards during the collection and handling of boar ejaculates.
Collapse
|
23
|
Staphylococcus-Induced Bacteriospermia In Vitro: Consequences on the Bovine Spermatozoa Quality, Extracellular Calcium and Magnesium Content. Animals (Basel) 2021; 11:ani11113309. [PMID: 34828039 PMCID: PMC8614656 DOI: 10.3390/ani11113309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Livestock semen is often contaminated by opportunistic bacterial pathogens originating from an intrinsic environment of the urogenital tract. Particularly, species classified in the Staphylococcus genus are predominantly represented in bovine ejaculates. Until recently, it was believed that these are a negligible part of the bovine ejaculate; however, recent studies revealed their potentially adverse effects on the sperm quality. Hereby, we simulated staphylococcal infection of bovine semen under laboratory conditions and analyzed its consequences on the sperm quality. Abstract Bacterial contamination of bovine ejaculates intended for artificial insemination may be reflected in a significant economic loss due to unsuccessful fertilization as well as health issues of the recipients. The Staphylococcus genus represents a large part of bacteriocenosis of bovine ejaculates. Therefore, this study aims to get a closer look on the effects of Staphylococcus-induced bacteriospermia under in vitro conditions on bovine sperm quality. Prior to inducing bacteriospermia, spermatozoa were separated from each ejaculate using Percoll® Plus gradient medium in order to limit the effects only to the selected bacterial species. Seven Staphylococcus species previously isolated from bovine semen were used for our experiments at a turbidity of 0.5 McFarland (equivalent to 1.5 × 108 colony-forming units per mL). The contaminated semen samples were incubated at 37 °C and at times of 0, 2, and 4 h, motility, mitochondrial membrane potential, reactive oxygen species (ROS) generation, sperm DNA fragmentation, and magnesium (Mg) and calcium (Ca) extracellular concentration were analyzed and compared with the control group (uncontaminated). The results showed no significant changes at the initial measurement. However, significant adverse effects were observed after 2 h and 4 h of incubation. Most notably, the presence of S. aureus, S. warneri, S. kloosii, and S. cohnii caused a significantly increased ROS production, leading to sperm DNA fragmentation, changes in the mitochondrial membrane potential, and a decreased sperm motility. Furthermore, the presence of Staphylococcus species led to lower extracellular concentrations of Mg and Ca. In conclusion, the overgrowth of Staphylococcus bacteria in bovine semen may contribute to oxidative stress resulting in sperm DNA fragmentation, altered mitochondrial membrane potential, and diminished sperm motility.
Collapse
|