1
|
Wang Y, Qian X, Wang Y, Yu C, Feng L, Zheng X, Wang Y, Gong Q. Turn TRAIL Into Better Anticancer Therapeutic Through TRAIL Fusion Proteins. Cancer Med 2025; 14:e70517. [PMID: 39740038 DOI: 10.1002/cam4.70517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/17/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND TNF-related apoptosis-inducing ligand (TRAIL) belongs to the tumor necrosis factor superfamily. TRAIL selectively induces apoptosis in tumor cells while sparing normal cells, which makes it an attractive candidate for cancer therapy. Recombinant soluble TRAIL and agonistic antibodies against TRAIL receptors have demonstrated safety and tolerability in clinical trials. However, they have failed to exhibit expected clinical efficacy. Consequently, extensive research has focused on optimizing TRAIL-based therapies, with one of the most common approaches being the construction of TRAIL fusion proteins. METHODS An extensive literature search was conducted to identify studies published over the past three decades related to TRAIL fusion proteins. These various TRAIL fusion strategies were categorized based on their effects achieved. RESULTS The main fusion strategies for TRAIL include: 1. Construction of stable TRAIL trimers; 2. Enhancing the polymerization capacity of soluble TRAIL; 3. Increasing the accumulation of TRAIL at tumor sites by fusing with antibody fragments or peptides; 4. Decorating immune cells with TRAIL; 5. Prolonging the half-life of TRAIL in vivo; 6. Sensitizing cancer cells to overcome resistance to TRAIL treatment. CONCLUSION This work focuses on the progress in recombinant TRAIL fusion proteins and aims to provide more rational and effective fusion strategies to enhance the efficacy of recombinant soluble TRAIL, facilitating its translation from bench to bedside as an effective anti-cancer therapeutic.
Collapse
Affiliation(s)
- Yan Wang
- College of Agroforestry and Medicine, The Open University of China, Beijing, China
| | - Xin Qian
- Endocrinology Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yubo Wang
- Department of Pharmacy, Beijing Ditan Hospital Capital Medical University, Beijing, China
| | - Caiyuan Yu
- College of Agroforestry and Medicine, The Open University of China, Beijing, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Li Feng
- College of Agroforestry and Medicine, The Open University of China, Beijing, China
| | - Xiaoyan Zheng
- College of Agroforestry and Medicine, The Open University of China, Beijing, China
| | - Yaya Wang
- College of Agroforestry and Medicine, The Open University of China, Beijing, China
| | - Qiuhong Gong
- Endocrinology Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Gao C, Li X, Xu Y, Zhang T, Zhu H, Yao D. Recent advances in CAR-T cell therapy for acute myeloid leukaemia. J Cell Mol Med 2024; 28:e18369. [PMID: 38712978 PMCID: PMC11075639 DOI: 10.1111/jcmm.18369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/18/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Acute myeloid leukaemia (AML) is a fatal and refractory haematologic cancer that primarily affects adults. It interferes with bone marrow cell proliferation. Patients have a 5 years survival rate of less than 30% despite the availability of several treatments, including chemotherapy, allogeneic haematopoietic stem cell transplantation (Allo-HSCT), and receptor antagonist drugs. Allo-HSCT is the mainstay of acute myeloid leukaemia treatment. Although it does work, there are severe side effects, such as graft-versus-host disease (GVHD). In recent years, chimeric antigen receptor (CAR)-T cell therapies have made significant progress in the treatment of cancer. These engineered T cells can locate and recognize tumour cells in vivo and release a large number of effectors through immune action to effectively kill tumour cells. CAR-T cells are among the most effective cancer treatments because of this property. CAR-T cells have demonstrated positive therapeutic results in the treatment of acute myeloid leukaemia, according to numerous clinical investigations. This review highlights recent progress in new targets for AML immunotherapy, and the limitations, and difficulties of CAR-T therapy for AML.
Collapse
Affiliation(s)
- Chi Gao
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| | - Xin Li
- College of BiotechnologyTianjin University of Science and TechnologyTianjinChina
| | - Yao Xu
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| | - Tongcun Zhang
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
- Institute of Biology and MedicineWuhan University of Science and TechnologyWuhanChina
| | - Haichuan Zhu
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| | - Di Yao
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| |
Collapse
|
3
|
Emerging CAR T Cell Strategies for the Treatment of AML. Cancers (Basel) 2022; 14:cancers14051241. [PMID: 35267549 PMCID: PMC8909045 DOI: 10.3390/cancers14051241] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Chimeric antigen receptors (CARs) targeting CD19 have emerged as a new treatment for hematological malignancies. As a “living therapy”, CARs can precisely target and eliminate tumors while proliferating inside the patient’s body. Various preclinical and clinical studies are ongoing to identify potential CAR-T cell targets for acute myeloid leukemia (AML). We shed light on the continuing efforts of CAR development to overcome tumor escape, exhaustion, and toxicities. Furthermore, we summarize the recent progress of a range of putative targets exploring this unmet need to treat AML. Lastly, we discuss the advances in preclinical models that built the foundation for ongoing clinical trials. Abstract Engineered T cells expressing chimeric antigen receptors (CARs) on their cell surface can redirect antigen specificity. This ability makes CARs one of the most promising cancer therapeutic agents. CAR-T cells for treating patients with B cell hematological malignancies have shown impressive results. Clinical manifestation has yielded several trials, so far five CAR-T cell therapies have received US Food and Drug Administration (FDA) approval. However, emerging clinical data and recent findings have identified some immune-related toxicities due to CAR-T cell therapy. Given the outcome and utilization of the same proof of concept, further investigation in other hematological malignancies, such as leukemias, is warranted. This review discusses the previous findings from the pre-clinical and human experience with CAR-T cell therapy. Additionally, we describe recent developments of novel targets for adoptive immunotherapy. Here we present some of the early findings from the pre-clinical studies of CAR-T cell modification through advances in genetic engineering, gene editing, cellular programming, and formats of synthetic biology, along with the ongoing efforts to restore the function of exhausted CAR-T cells through epigenetic remodeling. We aim to shed light on the new targets focusing on acute myeloid leukemia (AML).
Collapse
|
4
|
Asaadi Y, Jouneghani FF, Janani S, Rahbarizadeh F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark Res 2021; 9:87. [PMID: 34863296 PMCID: PMC8642758 DOI: 10.1186/s40364-021-00332-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
By the emergence of recombinant DNA technology, many antibody fragments have been developed devoid of undesired properties of natural immunoglobulins. Among them, camelid heavy-chain variable domains (VHHs) and single-chain variable fragments (scFvs) are the most favored ones. While scFv is used widely in various applications, camelid antibodies (VHHs) can serve as an alternative because of their superior chemical and physical properties such as higher solubility, stability, smaller size, and lower production cost. Here, these two counterparts are compared in structure and properties to identify which one is more suitable for each of their various therapeutic, diagnosis, and research applications.
Collapse
Affiliation(s)
- Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Fazlollahi Jouneghani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sara Janani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Sanders JA, Frasier C, Matulay JT, Steuerwald NM, Zhu J, Grigg CM, Kearns JT, Riggs SB, Gaston KE, Brouwer CR, Burks RT, Hartman AL, Foureau DM, Burgess EF, Clark PE. Genomic analysis of response to bacillus Calmette-Guérin (BCG) treatment in high-grade stage 1 bladder cancer patients. Transl Androl Urol 2021; 10:2998-3009. [PMID: 34430403 PMCID: PMC8350238 DOI: 10.21037/tau-21-158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/16/2021] [Indexed: 11/18/2022] Open
Abstract
Background Intravesical bacillus Calmette-Guérin (BCG) therapy is standard treatment for high-risk non-muscle invasive bladder cancer (NMIBC) but overall efficacy is low, and no reliable predictive biomarkers currently exist to refine patient selection. We performed genomic analysis on high-grade (HG) T1 NMIBCs to determine if response to therapy is predicted by certain mutational and/or expressional changes. Methods Patients with HG T1 NMIBC treated with induction BCG were stratified by response into durable and non-durable responders. Baseline tumor samples were subjected to targeted DNA sequencing and whole-exome RNAseq. Genomic variants differing significantly between response groups were analyzed using Ingenuity Pathway Analysis (IPA) software. Variant selection was refined to target potential biomarker candidates for responsiveness to BCG. Results Among 42 patients, the median follow-up was 51.7 months and 40.5% (n=17) were durable BCG responders. Deleterious mutations in the RNA sequence of JCHAIN, S100A7, CLEC2B, and ANXA10 were more common in non-durable responders. Mutations in MCL1 and MSH6 detected on targeted sequencing were more commonly found in durable responders. Of all deleterious DNA and RNA mutations identified, only MCL1 was significantly associated with longer recurrence free survival (RFS) (P=0.031). Conclusions Differences in the genomic profiles of HG T1 NMIBC tumors exist between those who show durable response to BCG and those who do not. Using pathway analysis, those differences imply upregulation of several interconnected inflammatory pathways among responders. Specific variants identified here, namely MCL1, are candidates for further study and, if clinically validated, may serve as useful biomarkers in the future.
Collapse
Affiliation(s)
- J Alexa Sanders
- Department of Bioinformatics & Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA.,Bioinformatics Services Division, University of North Carolina at Charlotte, Kannapolis, NC, USA
| | - Connor Frasier
- Department of Bioinformatics & Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA.,Bioinformatics Services Division, University of North Carolina at Charlotte, Kannapolis, NC, USA
| | - Justin T Matulay
- Department of Urology, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA
| | - Nury M Steuerwald
- Molecular Biology and Microarray Core Facilities, Atrium Health, Charlotte, NC, USA
| | - Jason Zhu
- Department of Medical Oncology, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA
| | - Claud M Grigg
- Department of Medical Oncology, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA
| | - James T Kearns
- Department of Urology, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA
| | - Stephen B Riggs
- Department of Urology, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA
| | - Kris E Gaston
- Department of Urology, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA
| | - Cory R Brouwer
- Department of Bioinformatics & Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA.,Bioinformatics Services Division, University of North Carolina at Charlotte, Kannapolis, NC, USA
| | | | | | - David M Foureau
- Immune Monitoring Core Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA
| | - Earle F Burgess
- Department of Medical Oncology, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA
| | - Peter E Clark
- Department of Urology, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA
| |
Collapse
|
6
|
Marofi F, Rahman HS, Al-Obaidi ZMJ, Jalil AT, Abdelbasset WK, Suksatan W, Dorofeev AE, Shomali N, Chartrand MS, Pathak Y, Hassanzadeh A, Baradaran B, Ahmadi M, Saeedi H, Tahmasebi S, Jarahian M. Novel CAR T therapy is a ray of hope in the treatment of seriously ill AML patients. Stem Cell Res Ther 2021; 12:465. [PMID: 34412685 PMCID: PMC8377882 DOI: 10.1186/s13287-021-02420-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a serious, life-threatening, and hardly curable hematological malignancy that affects the myeloid cell progenies and challenges patients of all ages but mostly occurs in adults. Although several therapies are available including chemotherapy, allogeneic hematopoietic stem cell transplantation (alloHSCT), and receptor-antagonist drugs, the 5-year survival of patients is quietly disappointing, less than 30%. alloHSCT is the major curative approach for AML with promising results but the treatment has severe adverse effects such as graft-versus-host disease (GVHD). Therefore, as an alternative, more efficient and less harmful immunotherapy-based approaches such as the adoptive transferring T cell therapy are in development for the treatment of AML. As such, chimeric antigen receptor (CAR) T cells are engineered T cells which have been developed in recent years as a breakthrough in cancer therapy. Interestingly, CAR T cells are effective against both solid tumors and hematological cancers such as AML. Gradually, CAR T cell therapy found its way into cancer therapy and was widely used for the treatment of hematologic malignancies with successful results particularly with somewhat better results in hematological cancer in comparison to solid tumors. The AML is generally fatal, therapy-resistant, and sometimes refractory disease with a disappointing low survival rate and weak prognosis. The 5-year survival rate for AML is only about 30%. However, the survival rate seems to be age-dependent. Novel CAR T cell therapy is a light at the end of the tunnel. The CD19 is an important target antigen in AML and lymphoma and the CAR T cells are engineered to target the CD19. In addition, a lot of research goes on the discovery of novel target antigens with therapeutic efficacy and utilizable for generating CAR T cells against various types of cancers. In recent years, many pieces of research on screening and identification of novel AML antigen targets with the goal of generation of effective anti-cancer CAR T cells have led to new therapies with strong cytotoxicity against cancerous cells and impressive clinical outcomes. Also, more recently, an improved version of CAR T cells which were called modified or smartly reprogrammed CAR T cells has been designed with less unwelcome effects, less toxicity against normal cells, more safety, more specificity, longer persistence, and proliferation capability. The purpose of this review is to discuss and explain the most recent advances in CAR T cell-based therapies targeting AML antigens and review the results of preclinical and clinical trials. Moreover, we will criticize the clinical challenges, side effects, and the different strategies for CAR T cell therapy.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Chaq-Chaq Qularaise, Sulaimaniyah, Iraq
| | - Zaid Mahdi Jaber Al-Obaidi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Alkafeel, Najaf, 54001, Iraq.,Department of Chemistry and Biochemistry, College of Medicine, University of Kerbala, Karbala, 56001, Iraq
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | | | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yashwant Pathak
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Ali Hassanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy, No. 2, Floor 4 Unit (G401), 69120, Heidelberg, Germany.
| |
Collapse
|
7
|
Ngai LL, Ma CY, Maguire O, Do AD, Robert A, Logan AC, Griffiths EA, Nemeth MJ, Green C, Pourmohamad T, van Kuijk BJ, Snel AN, Kwidama ZW, Venniker-Punt B, Cooper J, Manz MG, Gjertsen BT, Smit L, Ossenkoppele GJ, Janssen JJWM, Cloos J, Sumiyoshi T. Bimodal expression of potential drug target CLL-1 (CLEC12A) on CD34+ blasts of AML patients. Eur J Haematol 2021; 107:343-353. [PMID: 34053123 PMCID: PMC8457079 DOI: 10.1111/ejh.13672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/26/2021] [Indexed: 12/17/2022]
Abstract
Objectives This study aims to retrospectively assess C‐lectin‐like molecule 1 (CLL‐1) bimodal expression on CD34+ blasts in acute myeloid leukemia (AML) patients (total N = 306) and explore potential CLL‐1 bimodal associations with leukemia and patient‐specific characteristics. Methods Flow cytometry assays were performed to assess the deeper immunophenotyping of CLL‐1 bimodality. Cytogenetic analysis was performed to characterize the gene mutation on CLL‐1‐negative subpopulation of CLL‐1 bimodal AML samples. Results The frequency of a bimodal pattern of CLL‐1 expression of CD34+ blasts ranged from 8% to 65% in the different cohorts. Bimodal CLL‐1 expression was most prevalent in patients with MDS‐related AML (P = .011), ELN adverse risk (P = .002), NPM1 wild type (WT, P = .049), FLT3 WT (P = .035), and relatively low percentages of leukemia‐associated immunophenotypes (P = .006). Additional immunophenotyping analysis revealed the CLL‐1− subpopulation may consist of pre‐B cells, immature myeloblasts, and hematopoietic stem cells. Furthermore, (pre)‐leukemic mutations were detected in both CLL‐1+ and CLL‐1− subfractions of bimodal samples (N = 3). Conclusions C‐lectin‐like molecule 1 bimodality occurs in about 25% of AML patients and the CLL‐1− cell population still contains malignant cells, hence it may potentially limit the effectiveness of CLL‐1‐targeted therapies and warrant further investigation.
Collapse
Affiliation(s)
- Lok Lam Ngai
- Department of Hematology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Connie Y Ma
- Department of Development of Science, Genentech, South San Francisco, CA, USA
| | - Orla Maguire
- Flow and Image Cytometry Shared Resource, Buffalo, NY, USA
| | - An D Do
- Department of Development of Science, Genentech, South San Francisco, CA, USA
| | - Alberto Robert
- Department of Development of Science, Genentech, South San Francisco, CA, USA
| | - Aaron C Logan
- Department of Medicine, UCSF, San Francisco, CA, USA
| | | | | | - Cherie Green
- Department of Development of Science, Genentech, South San Francisco, CA, USA
| | | | - Bo J van Kuijk
- Department of Hematology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alexander N Snel
- Department of Hematology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Zinia W Kwidama
- Department of Hematology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bianca Venniker-Punt
- Department of Hematology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - James Cooper
- Department of Early Clinical Development, Genentech, South San Francisco, CA, USA
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University and University Hospital, Zurich, Switzerland
| | - Bjørn T Gjertsen
- Section for Hematology, Institute of Clinical Science, University of Bergen, Bergen, Norway
| | - Linda Smit
- Department of Hematology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gert J Ossenkoppele
- Department of Hematology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jeroen J W M Janssen
- Department of Hematology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Teiko Sumiyoshi
- Department of Development of Science, Genentech, South San Francisco, CA, USA
| |
Collapse
|
8
|
Wang J, Wang W, Chen H, Li W, Huang T, Zhang W, Ling W, Lai P, Wang Y, Geng S, Li M, Du X, Weng J. C-Type Lectin-Like Molecule-1 as a Biomarker for Diagnosis and Prognosis in Acute Myeloid Leukemia: A Preliminary Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6643948. [PMID: 33778076 PMCID: PMC7979301 DOI: 10.1155/2021/6643948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE AML is a heterogeneous disease both in genomic and proteomic backgrounds, and variable outcomes may appear in the same cytogenetic risk group. Therefore, it is still necessary to identify new antigens that contribute to diagnostic information and to refine the current risk stratification. METHODS The expression of C-type lectin-like molecule-1 (CLL-1) in AML blasts was examined in 52 patients with newly diagnosed or relapsed/refractory AML and was compared with two other classic markers CD33 and CD34 in AML, in order to assess the value of CLL-1 as an independent biomarker or in combination with other markers for diagnosis in AML. Subsequently, the value of CLL-1 as a biomarker for prognosis was assessed in this malignant tumor. RESULTS The results showed that CLL-1 was expressed on the cell surface of the majority of AML blasts (78.8%) and also expressed on leukemic stem cells in varying degree but absent on normal hematopoietic stem cells. Notably, CLL-1 was able to complement the classic markers CD33 or CD34. After dividing the cases into CLL-1high and CLL-1low groups according to cutoff 59.0%, we discovered that event-free survival and overall survival (OS) of the CLL-1low group were significantly lower than that of the CLL-1high group, and low CLL-1 expression seems to be independently associated with shorter OS. CONCLUSIONS These preliminary observations identified CLL-1 as a biomarker for diagnosis and prognosis of AML.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Biomarkers, Tumor/blood
- Child
- Disease-Free Survival
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Lectins, C-Type/blood
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/mortality
- Male
- Middle Aged
- Neoplasm Proteins/blood
- Receptors, Mitogen/blood
- Survival Rate
Collapse
Affiliation(s)
- Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weida Wang
- Department of Hematology Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wenmin Li
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tian Huang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weiya Zhang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei Ling
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yulian Wang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Suxia Geng
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Minming Li
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
9
|
Deng D, Shah K. TRAIL of Hope Meeting Resistance in Cancer. Trends Cancer 2020; 6:989-1001. [PMID: 32718904 PMCID: PMC7688478 DOI: 10.1016/j.trecan.2020.06.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis selectively via its interaction with the death receptors TRAILR1/DR4 and TRAILR2/DR5 in a wide range of cancers, while sparing normal cells. Despite its tremendous potential for cancer therapeutics, the translation of TRAIL into the clinic has been confounded by TRAIL-resistant cancer populations. We discuss different molecular mechanisms underlying TRAIL-mediated apoptosis and resistance to TRAIL. We also discuss the successes and failures of recent preclinical and clinical studies of TRAIL-induced apoptosis, and current attempts to overcome TRAIL resistance, and we provide a perspective for improving the prospects of future clinical implementation.
Collapse
Affiliation(s)
- David Deng
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
10
|
Ackun-Farmmer MA, Alatise KL, Cross G, Benoit DSW. Ligand Density Controls C-Type Lectin-Like Molecule-1 Receptor-Specific Uptake of Polymer Nanoparticles. ADVANCED BIOSYSTEMS 2020; 4:e2000172. [PMID: 33073549 PMCID: PMC7959326 DOI: 10.1002/adbi.202000172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/01/2020] [Indexed: 01/13/2023]
Abstract
The newest generation of drug delivery systems (DDSs) exploits ligands to mediate specific targeting of cells and/or tissues. However, studies investigating the link between ligand density and nanoparticle (NP) uptake are limited to a small number of ligand-receptor systems. C-type lectin-like molecule-1 (CLL1) is uniquely expressed on myeloid cells, which enables the development of receptors specifically targeting treat various diseases. This study aims to investigate how NPs with different CLL1 targeting peptide density impact cellular uptake. To this end, poly(styrene-alt-maleic anhydride)-b-poly(styrene) NPs are functionalized with cyclized CLL1 binding peptides (cCBP) ranging from 240 ± 12 to 31 000 ± 940 peptides per NP. Unexpectedly, the percentage of cells with internalized NPs is decreased for all cCBP-NP designs regardless of ligand density compared to unmodified NPs. Internalization through CLL1 receptor-mediated processes is further investigated without confounding the effects of NP size and surface charge. Interestingly, high density cCBP-NPs (>7000 cCBP per NP) uptake is dominated by CLL1 receptor-mediated processes while low density cCBP-NPs (≈200 cCBP per NP) and untargeted NP occurred through non-specific clathrin and caveolin-mediated endocytosis. Altogether, these studies show that ligand density and uptake mechanism should be carefully investigated for specific ligand-receptor systems for the design of targeted DDSs to achieve effective drug delivery.
Collapse
Affiliation(s)
- Marian A Ackun-Farmmer
- University of Rochester, Department of Biomedical Engineering, Rochester, NY, USA
- University of Rochester Medical Center, Department of Orthopaedics and Center for Musculoskeletal Research, Rochester, NY, USA
| | - Kharimat L Alatise
- University of Rochester, Department of Biomedical Engineering, Rochester, NY, USA
| | - Griffin Cross
- Washington University in St. Louis, Biomedical/Medical Engineering, St. Louis, MO, USA
| | - Danielle S W Benoit
- University of Rochester, Department of Biomedical Engineering, Rochester, NY, USA
- University of Rochester Medical Center, Department of Orthopaedics and Center for Musculoskeletal Research, Rochester, NY, USA
- University of Rochester, Materials Science Program, Rochester, NY, USA
- University of Rochester, Department of Chemical Engineering, Rochester, NY, USA
| |
Collapse
|
11
|
Ustyanovska Avtenyuk N, Visser N, Bremer E, Wiersma VR. The Neutrophil: The Underdog That Packs a Punch in the Fight against Cancer. Int J Mol Sci 2020; 21:E7820. [PMID: 33105656 PMCID: PMC7659937 DOI: 10.3390/ijms21217820] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
The advent of immunotherapy has had a major impact on the outcome and overall survival in many types of cancer. Current immunotherapeutic strategies typically aim to (re)activate anticancer T cell immunity, although the targeting of macrophage-mediated anticancer innate immunity has also emerged in recent years. Neutrophils, although comprising ≈ 60% of all white blood cells in the circulation, are still largely overlooked in this respect. Nevertheless, neutrophils have evident anticancer activity and can induce phagocytosis, trogocytosis, as well as the direct cytotoxic elimination of cancer cells. Furthermore, therapeutic tumor-targeting monoclonal antibodies trigger anticancer immune responses through all innate Fc-receptor expressing cells, including neutrophils. Indeed, the depletion of neutrophils strongly reduced the efficacy of monoclonal antibody treatment and increased tumor progression in various preclinical studies. In addition, the infusion of neutrophils in murine cancer models reduced tumor progression. However, evidence on the anticancer effects of neutrophils is fragmentary and mostly obtained in in vitro assays or murine models with reports on anticancer neutrophil activity in humans lagging behind. In this review, we aim to give an overview of the available knowledge of anticancer activity by neutrophils. Furthermore, we will describe strategies being explored for the therapeutic activation of anticancer neutrophil activity.
Collapse
Affiliation(s)
| | | | - Edwin Bremer
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| | - Valerie R. Wiersma
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| |
Collapse
|
12
|
Klesmith JR, Su L, Wu L, Schrack IA, Dufort FJ, Birt A, Ambrose C, Hackel BJ, Lobb RR, Rennert PD. Retargeting CD19 Chimeric Antigen Receptor T Cells via Engineered CD19-Fusion Proteins. Mol Pharm 2019; 16:3544-3558. [PMID: 31242389 DOI: 10.1021/acs.molpharmaceut.9b00418] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CD19-targeted chimeric antigen receptor (CAR) T-cells (CAR19s) show remarkable efficacy in the treatment of relapsed/refractory acute lymphocytic leukemia and Non-Hodgkin's lymphoma. However, the use of CAR T-cell therapy against CD19-negative hematological cancers and solid tumors has been challenging. We propose CD19-fusion proteins (CD19-FPs) to leverage the benefits of CAR19s while retargeting this validated cellular therapy to alternative tumor antigens. We demonstrate the ability of a fusion of CD19 extracellular domain (ECD) and a human epidermal growth factor receptor 2 (HER2) single-chain antibody fragment to retarget CAR19s to kill HER2+ CD19- tumor cells. To enhance the modularity of this technology, we engineered a more robust CD19 ECD via deep mutational scanning with yeast display and flow cytometric selections for improved protease resistance and anti-CD19 antibody binding. These enhanced CD19 ECDs significantly increase, and in some cases recover, fusion protein expression while maintaining target antigen affinity. Importantly, CD19-FPs retarget CAR19s to kill tumor cells expressing multiple distinct antigens, including HER2, CD20, EGFR, BCMA, and Clec12A as N- or C-terminal fusions and linked to both antibody fragments and fibronectin ligands. This study provides fundamental insights into CD19 sequence-function relationships and defines a flexible and modular platform to retarget CAR19s to any tumor antigen.
Collapse
Affiliation(s)
- Justin R Klesmith
- Department of Chemical Engineering and Materials Science , University of Minnesota Twin Cities , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Lihe Su
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Lan Wu
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Ian A Schrack
- Department of Chemical Engineering and Materials Science , University of Minnesota Twin Cities , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Fay J Dufort
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Alyssa Birt
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Christine Ambrose
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science , University of Minnesota Twin Cities , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Roy R Lobb
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Paul D Rennert
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| |
Collapse
|
13
|
Molecular Mode of Action of TRAIL Receptor Agonists-Common Principles and Their Translational Exploitation. Cancers (Basel) 2019; 11:cancers11070954. [PMID: 31284696 PMCID: PMC6678900 DOI: 10.3390/cancers11070954] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAILR1/death receptor 4 (DR4) and TRAILR2/DR5 trigger cell death in many cancer cells but rarely exert cytotoxic activity on non-transformed cells. Against this background, a variety of recombinant TRAIL variants and anti-TRAIL death receptor antibodies have been developed and tested in preclinical and clinical studies. Despite promising results from mice tumor models, TRAIL death receptor targeting has failed so far in clinical studies to show satisfying anti-tumor efficacy. These disappointing results can largely be explained by two issues: First, tumor cells can acquire TRAIL resistance by several mechanisms defining a need for combination therapies with appropriate sensitizing drugs. Second, there is now growing preclinical evidence that soluble TRAIL variants but also bivalent anti-TRAIL death receptor antibodies typically require oligomerization or plasma membrane anchoring to achieve maximum activity. This review discusses the need for oligomerization and plasma membrane attachment for the activity of TRAIL death receptor agonists in view of what is known about the molecular mechanisms of how TRAIL death receptors trigger intracellular cell death signaling. In particular, it will be highlighted which consequences this has for the development of next generation TRAIL death receptor agonists and their potential clinical application.
Collapse
|
14
|
Ma H, Padmanabhan IS, Parmar S, Gong Y. Targeting CLL-1 for acute myeloid leukemia therapy. J Hematol Oncol 2019; 12:41. [PMID: 31014360 PMCID: PMC6480870 DOI: 10.1186/s13045-019-0726-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/27/2019] [Indexed: 02/05/2023] Open
Abstract
Despite major scientific discoveries and novel therapies over the past four decades, the treatment outcomes of acute myeloid leukemia (AML), especially in the adult patient population remain dismal. In the past few years, an increasing number of targets such as CD33, CD123, CLL-1, CD47, CD70, and TIM3, have been developed for immunotherapy of AML. Among them, CLL-1 has attracted the researchers’ attention due to its high expression in AML while being absent in normal hematopoietic stem cell. Accumulating evidence have demonstrated CLL-1 is an ideal target for AML. In this paper, we will review the expression of CLL-1 on normal cells and AML, the value of CLL-1 in diagnosis and follow-up, and targeting CLL-1 therapy-based antibody and chimeric antigen receptor T cell therapy as well as providing an overview of CLL-1 as a target for AML.
Collapse
Affiliation(s)
- Hongbing Ma
- Hematology Department, West China Hospital, Sichuan University, Chengdu, China
| | | | - Simrit Parmar
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Texas University, Houston, USA.
| | - Yuping Gong
- Hematology Department, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Wang J, Chen S, Xiao W, Li W, Wang L, Yang S, Wang W, Xu L, Liao S, Liu W, Wang Y, Liu N, Zhang J, Xia X, Kang T, Chen G, Cai X, Yang H, Zhang X, Lu Y, Zhou P. CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia. J Hematol Oncol 2018; 11:7. [PMID: 29316944 PMCID: PMC5761206 DOI: 10.1186/s13045-017-0553-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/29/2017] [Indexed: 01/08/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in selected patients; however, a majority of patients eventually relapse and succumb to the disease. Thus, the development of novel therapeutics for AML is urgently needed. Human C-type lectin-like molecule-1 (CLL-1) is a type II transmembrane glycoprotein, and its expression is restricted to myeloid cells and the majority of AML blasts. Moreover, CLL-1 is expressed in leukemia stem cells (LSCs), but absent in hematopoietic stem cells (HSCs), which may provide a potential therapeutic target for AML treatment. Methods We tested the expression of CLL-1 antigen on peripheral blood cells and bone marrow cells in healthy donor and AML patients. Then, we developed a chimeric antigen receptor (CAR) containing a CLL1-specific single-chain variable fragment, in combination with CD28, 4-1BB costimulatory domains, and CD3-ζ signaling domain. We further investigate the function of CLL-1 CAR-T cells. Results The CLL-1 CAR-T cells specifically lysed CLL-1+ cell lines as well as primary AML patient samples in vitro. Strong anti-leukemic activity was observed in vivo by using a xenograft model of disseminated AML. Importantly, CLL-1+ myeloid progenitor cells and mature myeloid cells were specifically eliminated by CLL-1 CAR-T cells, while normal HSCs were not targeted due to the lack of CLL-1 expression. Conclusions CLL-1 CAR-T represents a promising immunotherapy for the treatment of AML. Electronic supplementary material The online version of this article (10.1186/s13045-017-0553-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinghua Wang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Siyu Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Wei Xiao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Wende Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Liang Wang
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, China
| | - Shuo Yang
- Department of Hematology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Weida Wang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Liping Xu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Shuangye Liao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wenjian Liu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yang Wang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Nawei Liu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jianeng Zhang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Gong Chen
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Xiuyu Cai
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Han Yang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Xing Zhang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yue Lu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China. .,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
16
|
Dubuisson A, Micheau O. Antibodies and Derivatives Targeting DR4 and DR5 for Cancer Therapy. Antibodies (Basel) 2017; 6:E16. [PMID: 31548531 PMCID: PMC6698863 DOI: 10.3390/antib6040016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023] Open
Abstract
Developing therapeutics that induce apoptosis in cancer cells has become an increasingly attractive approach for the past 30 years. The discovery of tumor necrosis factor (TNF) superfamily members and more specifically TNF-related apoptosis-inducing ligand (TRAIL), the only cytokine of the family capable of eradicating selectively cancer cells, led to the development of numerous TRAIL derivatives targeting death receptor 4 (DR4) and death receptor 5 (DR5) for cancer therapy. With a few exceptions, preliminary attempts to use recombinant TRAIL, agonistic antibodies, or derivatives to target TRAIL agonist receptors in the clinic have been fairly disappointing. Nonetheless, a tremendous effort, worldwide, is being put into the development of novel strategic options to target TRAIL receptors. Antibodies and derivatives allow for the design of novel and efficient agonists. We summarize and discuss here the advantages and drawbacks of the soar of TRAIL therapeutics, from the first developments to the next generation of agonistic products, with a particular insight on new concepts.
Collapse
Affiliation(s)
- Agathe Dubuisson
- University Bourgogne Franche-Comté, INSERM, LNC UMR1231, F-21079 Dijon, France.
- CovalAb, Research Department, 11 Avenue Albert Einstein, 69100 Villeurbanne, Lyon, France.
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, F-21079 Dijon, France.
| | - Olivier Micheau
- University Bourgogne Franche-Comté, INSERM, LNC UMR1231, F-21079 Dijon, France.
- CovalAb, Research Department, 11 Avenue Albert Einstein, 69100 Villeurbanne, Lyon, France.
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, F-21079 Dijon, France.
| |
Collapse
|
17
|
A versatile pretargeting approach for tumour-selective delivery and activation of TNF superfamily members. Sci Rep 2017; 7:13301. [PMID: 29038485 PMCID: PMC5643434 DOI: 10.1038/s41598-017-13530-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/25/2017] [Indexed: 11/08/2022] Open
Abstract
TNFR superfamily (TNFRSF) members have important immunoregulatory functions and are of clear interest for cancer immunotherapy. Various TNFRSF agonists have been clinically evaluated, but have met with limited efficacy and/or toxicity. Recent insights indicate that 'first-generation' TNFRSF agonists lack efficacy as they do not effectively cross-link their corresponding receptor. Reversely, ubiquitous TNFRSF receptor(s) cross-linking by CD40 and Fas agonistic antibodies resulted in dose-limiting liver toxicity. To overcome these issues, we developed a novel pretargeting strategy exploiting recombinant fusion proteins in which a soluble form of TRAIL, FasL or CD40L is genetically fused to a high-affinity anti-fluorescein scFv antibody fragment (scFvFITC). Fusion proteins scFvFITC:sTRAIL and scFvFITC:sFasL induced potent target antigen-restricted apoptosis in a panel of cancer lines and in primary patient-derived cancer cells, but only when pretargeted with a relevant FITC-labelled antitumour antibody. In a similar pretargeting setting, fusion protein scFvFITC:sCD40L promoted tumour-directed maturation of immature monocyte-derived dendritic cells (iDCs). This novel tumour-selective pretargeting approach may be used to improve efficacy and/or reduce possible off-target toxicity of TNFSF ligands for cancer immunotherapy.
Collapse
|
18
|
Hendriks D, Choi G, de Bruyn M, Wiersma VR, Bremer E. Antibody-Based Cancer Therapy: Successful Agents and Novel Approaches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:289-383. [PMID: 28325214 DOI: 10.1016/bs.ircmb.2016.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since their discovery, antibodies have been viewed as ideal candidates or "magic bullets" for use in targeted therapy in the fields of cancer, autoimmunity, and chronic inflammatory disorders. A wave of antibody-dedicated research followed, which resulted in the clinical approval of a first generation of monoclonal antibodies for cancer therapy such as rituximab (1997) and cetuximab (2004), and infliximab (2002) for the treatment of autoimmune diseases. More recently, the development of antibodies that prevent checkpoint-mediated inhibition of T cell responses invigorated the field of cancer immunotherapy. Such antibodies induced unprecedented long-term remissions in patients with advanced stage malignancies, most notably melanoma and lung cancer, that do not respond to conventional therapies. In this review, we will recapitulate the development of antibody-based therapy, and detail recent advances and new functions, particularly in the field of cancer immunotherapy. With the advent of recombinant DNA engineering, a number of rationally designed molecular formats of antibodies and antibody-derived agents have become available, and we will discuss various molecular formats including antibodies with improved effector functions, bispecific antibodies, antibody-drug conjugates, antibody-cytokine fusion proteins, and T cells genetically modified with chimeric antigen receptors. With these exciting advances, new antibody-based treatment options will likely enter clinical practice and pave the way toward more successful control of malignant diseases.
Collapse
Affiliation(s)
- D Hendriks
- Department of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - G Choi
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - M de Bruyn
- Department of Obstetrics & Gynecology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - V R Wiersma
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands.
| | - E Bremer
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands; University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
19
|
Hendriks D, He Y, Koopmans I, Wiersma VR, van Ginkel RJ, Samplonius DF, Helfrich W, Bremer E. Programmed Death Ligand 1 (PD-L1)-targeted TRAIL combines PD-L1-mediated checkpoint inhibition with TRAIL-mediated apoptosis induction. Oncoimmunology 2016; 5:e1202390. [PMID: 27622071 PMCID: PMC5007955 DOI: 10.1080/2162402x.2016.1202390] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/07/2016] [Accepted: 06/12/2016] [Indexed: 01/18/2023] Open
Abstract
Antibodies that block PD-L1/PD-1 immune checkpoints restore the activity of functionally-impaired antitumor T cells. These antibodies show unprecedented clinical benefit in various advanced cancers, particularly in melanoma. However, only a subset of cancer patients responds to current PD-L1/PD-1-blocking strategies, highlighting the need for further advancements in PD-L1/PD-1-based immunotherapy. Here, we report on a novel approach designed to combine PD-L1 checkpoint inhibition with the tumor-selective induction of apoptosis by TNF-related Apoptosis Inducing Ligand (TRAIL). In brief, a new bi-functional fusion protein, designated anti-PD-L1:TRAIL, was constructed comprising a PD-L1-blocking antibody fragment genetically fused to the extracellular domain of the pro-apoptotic tumoricidal protein TRAIL. Treatment of PD-L1-expressing cancer cells with anti-PD-L1:TRAIL induced PD-L1-directed TRAIL-mediated cancer cell death. Treatment of T cells with anti-PD-L1:TRAIL augmented T cell activation, as evidenced by increased proliferation, secretion of IFNγ and enhanced killing of cancer cell lines and primary patient-derived cancer cells in mixed T cell/cancer cell culture experiments. Of note, elevated levels of IFNγ further upregulated PD-L1 on cancer cells and simultaneously sensitized cancer cells to TRAIL-mediated apoptosis by anti-PD-L1:TRAIL. Additionally, anti-PD-L1:TRAIL converted immunosuppressive PD-L1-expressing myeloid cells into pro-apoptotic effector cells that triggered TRAIL-mediated cancer cell death. In conclusion, combining PD-L1 checkpoint inhibition with TRAIL-mediated induction of apoptosis using anti-PD-L1:TRAIL yields promising multi-fold and mutually reinforcing anticancer activity that may be exploited to enhance the efficacy of therapeutic PD-L1/PD-1 checkpoint inhibition.
Collapse
Affiliation(s)
- Djoke Hendriks
- University of Groningen, University Medical Center Groningen (UMCG), Department of Surgery, Laboratory for Translational Surgical Oncology , Groningen, the Netherlands
| | - Yuan He
- University of Groningen, University Medical Center Groningen (UMCG), Department of Surgery, Laboratory for Translational Surgical Oncology , Groningen, the Netherlands
| | - Iris Koopmans
- University of Groningen, University Medical Center Groningen (UMCG), Department of Surgery, Laboratory for Translational Surgical Oncology , Groningen, the Netherlands
| | - Valerie R Wiersma
- University of Groningen, University Medical Center Groningen (UMCG), Department of Surgery, Laboratory for Translational Surgical Oncology , Groningen, the Netherlands
| | - Robert J van Ginkel
- University of Groningen, University Medical Center Groningen (UMCG), Department of Surgery, Laboratory for Translational Surgical Oncology , Groningen, the Netherlands
| | - Douwe F Samplonius
- University of Groningen, University Medical Center Groningen (UMCG), Department of Surgery, Laboratory for Translational Surgical Oncology , Groningen, the Netherlands
| | - Wijnand Helfrich
- University of Groningen, University Medical Center Groningen (UMCG), Department of Surgery, Laboratory for Translational Surgical Oncology , Groningen, the Netherlands
| | - Edwin Bremer
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon, UK; University of Groningen, University Medical Center Groningen, Department of Experimental Hematology, Section Immunohematology, Cancer Research Center Groningen (CRCG), Groningen, the Netherlands
| |
Collapse
|
20
|
de Miguel D, Lemke J, Anel A, Walczak H, Martinez-Lostao L. Onto better TRAILs for cancer treatment. Cell Death Differ 2016; 23:733-47. [PMID: 26943322 PMCID: PMC4832109 DOI: 10.1038/cdd.2015.174] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/11/2015] [Accepted: 12/17/2015] [Indexed: 01/01/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. By cross-linking TRAIL-Receptor (TRAIL-R) 1 or TRAIL-R2, also known as death receptors 4 and 5 (DR4 and DR5), TRAIL has the capability to induce apoptosis in a wide variety of tumor cells while sparing vital normal cells. The discovery of this unique property among TNF superfamily members laid the foundation for testing the clinical potential of TRAIL-R-targeting therapies in the cancer clinic. To date, two of these therapeutic strategies have been tested clinically: (i) recombinant human TRAIL and (ii) antibodies directed against TRAIL-R1 or TRAIL-R2. Unfortunately, however, these TRAIL-R agonists have basically failed as most human tumors are resistant to apoptosis induction by them. It recently emerged that this is largely due to the poor agonistic activity of these agents. Consequently, novel TRAIL-R-targeting agents with increased bioactivity are currently being developed with the aim of rendering TRAIL-based therapies more active. This review summarizes these second-generation novel formulations of TRAIL and other TRAIL-R agonists, which exhibit enhanced cytotoxic capacity toward cancer cells, thereby providing the potential of being more effective when applied clinically than first-generation TRAIL-R agonists.
Collapse
Affiliation(s)
- D de Miguel
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - J Lemke
- UCL Cancer Institute, Faculty of Medical Sciences, University College London, London, UK
| | - A Anel
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - H Walczak
- UCL Cancer Institute, Faculty of Medical Sciences, University College London, London, UK
| | - L Martinez-Lostao
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
- Instituto de Nanociencia de Aragón, Zaragoza, Spain
| |
Collapse
|
21
|
Safdari Y, Ahmadzadeh V, Khalili M, Jaliani HZ, Zarei V, Erfani-Moghadam V. Use of single chain antibody derivatives for targeted drug delivery. Mol Med 2016; 22:258-270. [PMID: 27249008 DOI: 10.2119/molmed.2016.00043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/22/2016] [Indexed: 01/01/2023] Open
Abstract
Single chain antibodies (scFvs), which contain only the variable domains of full-length antibodies, are relatively small molecules that can be used for selective drug delivery. In this review, we display how scFv antibodies help improve the specificity and efficiency of drugs. Small interfering RNA (siRNA) delivery using scFv-drug fusion peptides, siRNA delivery using scFv-conjugated nanoparticles, targeted delivery using scFv-viral peptide- fusion proteins, use of scFv in fusion with cell penetrating peptides for effective targeted drug delivery, scFv-mediated targeted delivery of inorganic nanoparticles, scFv-mediated increase of tumor killing activity of granulocytes, use of scFv for tumor imaging, site-directed conjugation of scFv molecules to drug carrier systems, use of scFv to relieve pain, use of scFv for increasing drug loading efficiency are among the topics that are discussed here.
Collapse
Affiliation(s)
- Yaghoub Safdari
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahideh Ahmadzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Khalili
- Golestan Research Center of Gastroenterology and Hepatology (GRCGH), Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Zarei Jaliani
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vahid Zarei
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Vahid Erfani-Moghadam
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
22
|
Xu S, Liang T, Li S. Correlation between Polymorphism of TRAIL Gene and Condition of Intervertebral Disc Degeneration. Med Sci Monit 2015; 21:2282-7. [PMID: 26245704 PMCID: PMC4532195 DOI: 10.12659/msm.894157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been suggested to be related with the pathogenesis and progression of osteoarticular degenerations. This study therefore aimed to investigate the relationship between the polymorphism of the TRAIL gene and the pathogenesis and severity of intervertebral disc degeneration (IDD) via detection of serum TRAIL expression levels. Material/Methods A total of 100 IDD patients in our hospital were recruited in the experimental group, while another cohort of 100 healthy individuals was employed as the control group. Blood samples collected from all people were quantified for TRAIL level using enzyme-linked immunosorbent assay (ELISA), in addition to allele and genotype frequency analysis via fluorescent PCR for TRAIL gene. Results At loci 1525 and 1529 in 3′-untranslated region (UTR) of 5th exon of TRAIL gene, 3 different genotypes were identified: experimental group had higher frequency of 1525CG/1595CC, 1525G and 1595C alleles, compared to the control group (p<0.05). Patients under Schneiderman grade IV had significantly higher allele frequency compared to those at grade II or III. Serum TRAIL level was also higher in the experimental group compared to the control group, and in grade IV patients compared to grade II or III patients (p<0.05). Conclusions The G/C mutation at loci 1525/1595 of TRAIL gene may induce the progression of IDD, as the down-regulation of TRAIL can aggravate the severity of the disease.
Collapse
Affiliation(s)
- Shimin Xu
- Department of Orthopaedics, Qingdao University, Qingdao, Shandong, China (mainland)
| | - Ting Liang
- Department of Orthopaedics, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Shuzhong Li
- Department of Orthopaedics, Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|