1
|
Fawcett C, Tickle JR, Coles CH. Facilitating high throughput bispecific antibody production and potential applications within biopharmaceutical discovery workflows. MAbs 2024; 16:2311992. [PMID: 39674918 DOI: 10.1080/19420862.2024.2311992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 12/17/2024] Open
Abstract
A major driver for the recent investment surge in bispecific antibody (bsAb) platforms and products is the multitude of distinct mechanisms of action that bsAbs offer compared to a combination of two monoclonal antibodies. Four bsAb products were granted first regulatory approvals in the US or EU during 2023 and the biopharmaceutical industry pipeline is brimming with bsAb candidates across a broad range of therapeutic applications. In previously reported bsAb discovery campaigns, following a hypothesis-based choice of two specific target proteins, selections and screening activities have often been performed in mono-specific formats. The conversion to bispecific modalities has usually been positioned toward the end of the discovery process and has involved small numbers of lead molecules, largely due to challenges in expressing, purifying, and analyzing large numbers of bsAbs. In this review, we discuss emerging strategies to facilitate the production of expanded bsAb panels, focusing particularly upon combinatorial methods to generate bsAb matrices. Such technologies will enable screening in. bispecific formats at earlier stages of discovery campaigns, not only widening the accessible protein space to maximize chances of success, but also advancing empirical bi-target validation activities to assess initial target selection hypotheses.
Collapse
Affiliation(s)
- Caitlin Fawcett
- Large Molecule Discovery, GSK, GSK Medicines Research Centre, Stevenage, UK
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Joseph R Tickle
- Large Molecule Discovery, GSK, GSK Medicines Research Centre, Stevenage, UK
| | - Charlotte H Coles
- Large Molecule Discovery, GSK, GSK Medicines Research Centre, Stevenage, UK
| |
Collapse
|
2
|
Guo X, Wu Y, Xue Y, Xie N, Shen G. Revolutionizing cancer immunotherapy: unleashing the potential of bispecific antibodies for targeted treatment. Front Immunol 2023; 14:1291836. [PMID: 38106416 PMCID: PMC10722299 DOI: 10.3389/fimmu.2023.1291836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Recent progressions in immunotherapy have transformed cancer treatment, providing a promising strategy that activates the immune system of the patient to find and eliminate cancerous cells. Bispecific antibodies, which engage two separate antigens or one antigen with two distinct epitopes, are of tremendous concern in immunotherapy. The bi-targeting idea enabled by bispecific antibodies (BsAbs) is especially attractive from a medical standpoint since most diseases are complex, involving several receptors, ligands, and signaling pathways. Several research look into the processes in which BsAbs identify different cancer targets such angiogenesis, reproduction, metastasis, and immune regulation. By rerouting cells or altering other pathways, the bispecific proteins perform effector activities in addition to those of natural antibodies. This opens up a wide range of clinical applications and helps patients with resistant tumors respond better to medication. Yet, further study is necessary to identify the best conditions where to use these medications for treating tumor, their appropriate combination partners, and methods to reduce toxicity. In this review, we provide insights into the BsAb format classification based on their composition and symmetry, as well as the delivery mode, focus on the action mechanism of the molecule, and discuss the challenges and future perspectives in BsAb development.
Collapse
Affiliation(s)
- Xiaohan Guo
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ying Xue
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
3
|
Thoreau F, Chudasama V. Enabling the next steps in cancer immunotherapy: from antibody-based bispecifics to multispecifics, with an evolving role for bioconjugation chemistry. RSC Chem Biol 2022; 3:140-169. [PMID: 35360884 PMCID: PMC8826860 DOI: 10.1039/d1cb00082a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
In the past two decades, immunotherapy has established itself as one of the leading strategies for cancer treatment, as illustrated by the exponentially growing number of related clinical trials. This trend was, in part, prompted by the clinical success of both immune checkpoint modulation and immune cell engagement, to restore and/or stimulate the patient's immune system's ability to fight the disease. These strategies were sustained by progress in bispecific antibody production. However, despite the decisive progress made in the treatment of cancer, toxicity and resistance are still observed in some cases. In this review, we initially provide an overview of the monoclonal and bispecific antibodies developed with the objective of restoring immune system functions to treat cancer (cancer immunotherapy), through immune checkpoint modulation, immune cell engagement or a combination of both. Their production, design strategy and impact on the clinical trial landscape are also addressed. In the second part, the concept of multispecific antibody formats, notably MuTICEMs (Multispecific Targeted Immune Cell Engagers & Modulators), as a possible answer to current immunotherapy limitations is investigated. We believe it could be the next step to take for cancer immunotherapy research and expose why bioconjugation chemistry might play a key role in these future developments.
Collapse
Affiliation(s)
- Fabien Thoreau
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
4
|
Dimasi N, Kumar A, Gao C. Generation of bispecific antibodies using chemical conjugation methods. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 40:13-24. [PMID: 34916015 DOI: 10.1016/j.ddtec.2021.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
Bispecific antibodies combine the specificity of two antibodies into one molecule. During the past two decades, advancement in protein engineering enabled the development of more than 100 bispecific formats, three of which are approved by the FDA for clinical use. In parallel to protein engineering methods, advancement in conjugation chemistries have spurred the use of chemical engineering approaches to generate bispecific antibodies. Herein, we review selected chemical strategies employed to generate bispecific antibodies that cannot be made using protein engineering methods.
Collapse
Affiliation(s)
- Nazzareno Dimasi
- Antibody Discovery and Protein Engineering, AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Amit Kumar
- Antibody Discovery and Protein Engineering, AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Changshou Gao
- Antibody Discovery and Protein Engineering, AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA.
| |
Collapse
|
5
|
Bhatta P, Whale KD, Sawtell AK, Thompson CL, Rapecki SE, Cook DA, Twomey BM, Mennecozzi M, Starkie LE, Barry EMC, Peters SJ, Kamal AM, Finney HM. Bispecific antibody target pair discovery by high-throughput phenotypic screening using in vitro combinatorial Fab libraries. MAbs 2021; 13:1859049. [PMID: 33487120 PMCID: PMC7849716 DOI: 10.1080/19420862.2020.1859049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bispecific antibodies can uniquely influence cellular responses, but selecting target combinations for optimal functional activity remains challenging. Here we describe a high-throughput, combinatorial, phenotypic screening approach using a new bispecific antibody target discovery format, allowing screening of hundreds of target combinations. Simple in vitro mixing of Fab-fusion proteins from a diverse library enables the generation of thousands of screen-ready bispecific antibodies for high-throughput, biologically relevant assays. We identified an obligate bispecific co-targeting CD79a/b and CD22 as a potent inhibitor of human B cell activation from a short-term flow cytometry signaling assay. A long-term, high-content imaging assay identified anti-integrin bispecific inhibitors of human cell matrix accumulation targeting integrins β1 and β6 or αV and β1. In all cases, functional activity was conserved from the bispecific screening format to a therapeutically relevant format. We also introduce a broader type of mechanistic screen whereby functional modulation of different cell subsets in peripheral blood mononuclear cells was evaluated simultaneously. We identified bispecific antibodies capable of activating different T cell subsets of potential interest for applications in oncology or infectious disease, as well as bispecifics abrogating T cell activity of potential interest to autoimmune or inflammatory disease. The bispecific target pair discovery technology described herein offers access to new target biology and unique bispecific therapeutic opportunities in diverse disease indications.
Collapse
Affiliation(s)
- Pallavi Bhatta
- New Modalities and Therapeutics Group, UCB Pharma, Slough , Berkshire UK
| | - Kevin D Whale
- In Vitro Pharmacology Group, UCB Pharma, Slough , Berkshire, UK
| | - Amy K Sawtell
- In Vitro Pharmacology Group, UCB Pharma, Slough , Berkshire, UK
| | | | - Stephen E Rapecki
- New Modalities and Therapeutics Group, UCB Pharma, Slough , Berkshire UK
| | - David A Cook
- In Vitro Pharmacology Group, UCB Pharma, Slough , Berkshire, UK
| | - Breda M Twomey
- In Vitro Pharmacology Group, UCB Pharma, Slough , Berkshire, UK
| | | | - Laura E Starkie
- New Modalities and Therapeutics Group, UCB Pharma, Slough , Berkshire UK
| | - Emily M C Barry
- New Modalities and Therapeutics Group, UCB Pharma, Slough , Berkshire UK
| | - Shirley J Peters
- New Modalities and Therapeutics Group, UCB Pharma, Slough , Berkshire UK
| | - Ahmad M Kamal
- Immunology Partnering Group, UCB Pharma , Slough, Berkshire UK
| | - Helene M Finney
- In Vitro Pharmacology Group, UCB Pharma, Slough , Berkshire, UK
| |
Collapse
|
6
|
Abstract
Bispecific antibodies (bsAbs) target two different epitopes. These are an up-and-coming class of biologics, with two such therapeutics (emicizumab and blinatumomab) FDA approved and on the market, and many more in clinical trials. While the first reported bsAbs were constructed by chemical methods, this approach has fallen out of favour with the advent of modern genetic engineering techniques and, nowadays, the vast majority of bsAbs are produced by protein engineering. However, in recent years, relying on innovations in the fields of bioconjugation and bioorthogonal click chemistry, new chemical methods have appeared that have the potential to be competitive with protein engineering techniques and, indeed, hold some advantages. These approaches offer modularity, reproducibility and batch-to-batch consistency, as well as the integration of handles, whereby additional cargo molecules can be attached easily, e.g. to generate bispecific antibody-drug conjugates. The linker between the antibodies/antibody fragments can also be easily varied, and new formats (types, defined by structural properties or by construction methodology) can be generated rapidly. These attributes offer the potential to revolutionize the field. Here, we review chemical methods for the generation of bsAbs, showing that the newest examples of these techniques are worthy competitors to the industry-standard expression-based strategies.
Collapse
|
7
|
Maruani A, Szijj PA, Bahou C, Nogueira JCF, Caddick S, Baker JR, Chudasama V. A Plug-and-Play Approach for the De Novo Generation of Dually Functionalized Bispecifics. Bioconjug Chem 2020; 31:520-529. [DOI: 10.1021/acs.bioconjchem.0c00002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Antoine Maruani
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Peter A. Szijj
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Calise Bahou
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - João C. F. Nogueira
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Stephen Caddick
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - James R. Baker
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Vijay Chudasama
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
8
|
Mabfilin and Fabfilin - New antibody-scaffold fusion formats for multispecific targeting concepts. Protein Expr Purif 2018; 149:51-65. [DOI: 10.1016/j.pep.2018.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/16/2018] [Accepted: 04/19/2018] [Indexed: 01/07/2023]
|
9
|
Verdino P, Atwell S, Demarest SJ. Emerging trends in bispecific antibody and scaffold protein therapeutics. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Sun Z, Yan L, Tang J, Qian Q, Lenberg J, Zhu D, Liu W, Wu K, Wang Y, Lu S. Brief introduction of current technologies in isolation of broadly neutralizing HIV-1 antibodies. Virus Res 2017; 243:75-82. [PMID: 29051051 PMCID: PMC7114535 DOI: 10.1016/j.virusres.2017.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/11/2022]
Abstract
HIV/AIDS has become a worldwide pandemic. Before an effective HIV-1 vaccine eliciting broadly neutralizing monoclonal antibodies (bnmAbs) is fully developed, passive immunization for prevention and treatment of HIV-1 infection may alleviate the burden caused by the pandemic. Among HIV-1 infected individuals, about 20% of them generated cross-reactive neutralizing antibodies two to four years after infection, the details of which could provide knowledge for effective vaccine design. Recent progress in techniques for isolation of human broadly neutralizing antibodies has facilitated the study of passive immunization. The isolation and characterization of large panels of potent human broadly neutralizing antibodies has revealed new insights into the principles of antibody-mediated neutralization of HIV. In this paper, we review the current effective techniques in broadly neutralizing antibody isolation.
Collapse
Affiliation(s)
- Zehua Sun
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States.
| | - Lixin Yan
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China.
| | - Jiansong Tang
- Department of Technical Specialist, China Bioengineering Technology Group Limited, Unit 209,Building 16W, Hong Kong Science Park, Shatin, NT, HK, 999077, Hong Kong
| | - Qian Qian
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States
| | - Jerica Lenberg
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States; Augustana University, 2001 S Summit Avenue, Sioux Falls, SD, 571977, United States
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, 77030, United States
| | - Wan Liu
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China
| | - Kao Wu
- Glyn O. Philips Hydrocolloid Research Center at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Yilin Wang
- University of California, Irvine. 100 Pacific, Irvine, CA, 92618, United States
| | - Shiqiang Lu
- AIDS Institute, Faculty of Medicine, The University of Hong Kong, No21 Sassoon Road, 999077, Hong Kong, Hong Kong.
| |
Collapse
|
11
|
Patterson JT, Isaacson J, Kerwin L, Atassi G, Duggal R, Bresson D, Zhu T, Zhou H, Fu Y, Kaufmann GF. PSMA-targeted bispecific Fab conjugates that engage T cells. Bioorg Med Chem Lett 2017; 27:5490-5495. [PMID: 29126850 DOI: 10.1016/j.bmcl.2017.09.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 01/06/2023]
Abstract
Bioconjugate formats provide alternative strategies for antigen targeting with bispecific antibodies. Here, PSMA-targeted Fab conjugates were generated using different bispecific formats. Interchain disulfide bridging of an αCD3 Fab enabled installation of either the PSMA-targeting small molecule DUPA (SynFab) or the attachment of an αPSMA Fab (BisFab) by covalent linkage. Optimization of the reducing conditions was critical for selective interchain disulfide reduction and good bioconjugate yield. Activity of αPSMA/CD3 Fab conjugates was tested by in vitro cytotoxicity assays using prostate cancer cell lines. Both bispecific formats demonstrated excellent potency and antigen selectivity.
Collapse
Affiliation(s)
- James T Patterson
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA.
| | - Jason Isaacson
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Lisa Kerwin
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Ghazi Atassi
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Rohit Duggal
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Damien Bresson
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Tong Zhu
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Heyue Zhou
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Yanwen Fu
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Gunnar F Kaufmann
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA.
| |
Collapse
|
12
|
Patterson JT, Gros E, Zhou H, Atassi G, Kerwin L, Carmody L, Zhu T, Jones B, Fu Y, Kaufmann GF. Chemically generated IgG2 bispecific antibodies through disulfide bridging. Bioorg Med Chem Lett 2017; 27:3647-3652. [PMID: 28720505 DOI: 10.1016/j.bmcl.2017.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 01/06/2023]
Abstract
Bispecific antibodies (BsAbs) are designed to engage two antigens simultaneously, thus, effectively expanding the ability of antibody-based therapeutics to target multiple pathways within the same cell, engage two separate soluble antigens, bind the same antigen with distinct paratopes, or crosslink two different cell types. Many recombinant BsAb formats have emerged, however, expression and purification of such constructs can often be challenging. To this end, we have developed a chemical strategy for generating BsAbs using native IgG2 architecture. Full-length antibodies can be conjugated via disulfide bridging with linkers bearing orthogonal groups to produce BsAbs. We report that an αHER2/EGFR BsAb was successfully generated by this approach and retained the ability to bind both antigens with no significant loss of potency.
Collapse
Affiliation(s)
- James T Patterson
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA.
| | - Edwige Gros
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Heyue Zhou
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Ghazi Atassi
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Lisa Kerwin
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Lisa Carmody
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Tong Zhu
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Bryan Jones
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Yanwen Fu
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Gunnar F Kaufmann
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA.
| |
Collapse
|