1
|
Eisinger M, Rahn H, Chen Y, Fernandes M, Lin Z, Hentze N, Tavella D, Moussa EM. Elucidation of the Reversible Self-Association Interface of a Diabody-Interleukin Fusion Protein Using Hydrogen-Exchange Mass Spectrometry and In Silico Modeling. Mol Pharm 2024; 21:4285-4296. [PMID: 38922328 DOI: 10.1021/acs.molpharmaceut.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Reversible self-association (RSA) of therapeutic proteins presents major challenges in the development of high-concentration formulations, especially those intended for subcutaneous administration. Understanding self-association mechanisms is therefore critical to the design and selection of candidates with acceptable developability to advance to clinical trials. The combination of experiments and in silico modeling presents a powerful tool to elucidate the interface of self-association. RSA of monoclonal antibodies has been studied extensively under different solution conditions and have been shown to involve interactions for both the antigen-binding fragment and the crystallizable fragment. Novel modalities such as bispecific antibodies, antigen-binding fragments, single-chain-variable fragments, and diabodies constitute a fast-growing class of antibody-based therapeutics that have unique physiochemical properties compared to monoclonal antibodies. In this study, the RSA interface of a diabody-interleukin 22 fusion protein (FP-1) was studied using hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) in combination with in silico modeling. Taken together, the results show that a complex solution behavior underlies the self-association of FP-1 and that the interface thereof can be attributed to a specific segment in the variable light chain of the diabody. These findings also demonstrate that the combination of HDX-MS with in silico modeling is a powerful tool to guide the design and candidate selection of novel biotherapeutic modalities.
Collapse
Affiliation(s)
- Martin Eisinger
- Biologics Analytical Research and Development, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen 67061, Germany
| | - Harri Rahn
- Biologics Analytical Research and Development, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen 67061, Germany
| | - Yong Chen
- Biologics Analytical Research and Development, AbbVie Inc., North Chicago, Illinois 60061, United States
| | - Melissa Fernandes
- Biologics Drug Product Development, AbbVie Inc., North Chicago, Illinois 60061, United States
| | - Zhiyi Lin
- Biologics Drug Product Development, AbbVie Inc., North Chicago, Illinois 60061, United States
| | - Nikolai Hentze
- Biologics Analytical Research and Development, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen 67061, Germany
| | - Davide Tavella
- Biotherapeutics and Genetic Medicine, AbbVie Inc., Worcester, Massachusetts 01604, United States
| | - Ehab M Moussa
- Biologics Drug Product Development, AbbVie Inc., North Chicago, Illinois 60061, United States
| |
Collapse
|
2
|
Correia JJ, Stafford WF, Erlandsen H, Cole JL, Premathilaka SH, Isailovic D, Dignam JD. Hydrodynamic and thermodynamic analysis of PEGylated human serum albumin. Biophys J 2024; 123:2506-2521. [PMID: 38898654 PMCID: PMC11365110 DOI: 10.1016/j.bpj.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024] Open
Abstract
Covalent labeling of therapeutic drugs and proteins with polyethylene glycol (PEGylation) is an important modification for improving stability, solubility, and half-life. PEGylation alters protein solution behavior through its impact on thermodynamic nonideality by increasing the excluded volume, and on hydrodynamic nonideality by increasing the frictional drag. To understand PEGylation's impact, we investigated the thermodynamic and hydrodynamic properties of a model system consisting of PEGylated human serum albumin derivatives using analytical ultracentrifugation (AUC) and dynamic light scattering (DLS). We constructed PEGylated human serum albumin derivatives of single, linear 5K, 10K, 20K, and 40K PEG chains and a single branched-chain PEG of 40K (2 × 20K). Sedimentation velocity (SV) experiments were analyzed using SEDANAL direct boundary fitting to extract ideal sedimentation coefficients so, hydrodynamic nonideality ks, and thermodynamic nonideality 2BM1SV terms. These quantities allow the determination of the Stokes radius Rs, the frictional ratio f/fo, and the swollen or entrained volume Vs/v, which measure size, shape, and solvent interaction. We performed sedimentation equilibrium experiments to obtain independent measurements of thermodynamic nonideality 2BM1SE. From DLS measurements, we determined the interaction parameter, kD, the concentration dependence of the apparent diffusion coefficient, D, and from extrapolation of D to c = 0 a second estimate of Rs. Rs values derived from SV and DLS measurements and ensemble model calculations (see complementary study) are then used to show that ks + kD = theoretical 2B22M1. In contrast, experimental BM1 values from SV and sedimentation equilibrium data collectively allow for similar analysis for protein-PEG conjugates and show that ks + kD = 1.02-1.07∗BM1, rather than the widely used ks + kD = 2BM1 developed for hard spheres. The random coil behavior of PEG dominates the colloidal properties of PEG-protein conjugates and exceeds the sum of a random coil and hard-sphere volume due to excess entrained water.
Collapse
Affiliation(s)
- John J Correia
- Department of Cell & Molecular Biology, University of Miss Medical Center, Jackson, Mississippi.
| | - Walter F Stafford
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - Heidi Erlandsen
- Center for Open Research Resources and Equipment, University of Connecticut, Storrs, Connecticut
| | - James L Cole
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | | | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio
| | - John David Dignam
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio
| |
Collapse
|
3
|
Larsen HA, Atkins WM, Nath A. The origins of nonideality exhibited by monoclonal antibodies and Fab fragments in human serum. Protein Sci 2023; 32:e4812. [PMID: 37861473 PMCID: PMC10659951 DOI: 10.1002/pro.4812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
The development of therapeutic antibodies remains challenging, time-consuming, and expensive. A key contributing factor is a lack of understanding of how proteins are affected by complex biological environments such as serum and plasma. Nonideality due to attractive or repulsive interactions with cosolutes can alter the stability, aggregation propensity, and binding interactions of proteins in solution. Fluorescence correlation spectroscopy (FCS) can be used to measure apparent second virial coefficient (B2,app ) values for therapeutic and model monoclonal antibodies (mAbs) that capture the nature and strength of interactions with cosolutes directly in undiluted serum and similar complex biological media. Here, we use FCS-derived B2,app measurements to identify the components of human serum responsible for nonideal interactions with mAbs and Fab fragments. Most mAbs exhibit neutral or slightly attractive interactions with intact serum. Generally, mAbs display repulsive interactions with albumin and mildly attractive interactions with IgGs in the context of whole serum. Crucially, however, these attractive interactions are much stronger with pooled IgGs isolated from other serum components, indicating that the effects of serum nonideality can only be understood by studying the intact medium (rather than isolated components). Moreover, Fab fragments universally exhibited more attractive interactions than their parental mAbs, potentially rendering them more susceptible to nonideality-driven perturbations. FCS-based B2,app measurements have the potential to advance our understanding of how physiological environments impact protein-based therapeutics in general. Furthermore, incorporating such assays into preclinical biologics development may help de-risk molecules and make for a faster and more efficient development process.
Collapse
Affiliation(s)
- Hayli A. Larsen
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - William M. Atkins
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Abhinav Nath
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
4
|
Schuck P, To SC, Zhao H. An automated interface for sedimentation velocity analysis in SEDFIT. PLoS Comput Biol 2023; 19:e1011454. [PMID: 37669309 PMCID: PMC10503714 DOI: 10.1371/journal.pcbi.1011454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Sedimentation velocity analytical ultracentrifugation (SV-AUC) is an indispensable tool for the study of particle size distributions in biopharmaceutical industry, for example, to characterize protein therapeutics and vaccine products. In particular, the diffusion-deconvoluted sedimentation coefficient distribution analysis, in the software SEDFIT, has found widespread applications due to its relatively high resolution and sensitivity. However, a lack of suitable software compatible with Good Manufacturing Practices (GMP) has hampered the use of SV-AUC in this regulatory environment. To address this, we have created an interface for SEDFIT so that it can serve as an automatically spawned module with controlled data input through command line parameters and output of key results in files. The interface can be integrated in custom GMP compatible software, and in scripts that provide documentation and meta-analyses for replicate or related samples, for example, to streamline analysis of large families of experimental data, such as binding isotherm analyses in the study of protein interactions. To test and demonstrate this approach we provide a MATLAB script mlSEDFIT.
Collapse
Affiliation(s)
- Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Samuel C. To
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Pedersen JM, Hansen AS, Skejø C, Juul-Madsen K, Junker P, Hørslev-Petersen K, Hetland ML, Stengaard-Pedersen K, Østergaard M, Møller BK, Dreyer L, Hauge EM, Hvid M, Greisen S, Deleuran B. Lymphocyte activation gene 3 is increased and affects cytokine production in rheumatoid arthritis. Arthritis Res Ther 2023; 25:97. [PMID: 37287025 DOI: 10.1186/s13075-023-03073-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/20/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Lymphocyte activation gene-3 (LAG-3) inhibits T cell activation and interferes with the immune response by binding to MHC-II. As antigen presentation is central in rheumatoid arthritis (RA) pathogenesis, we studied aspects of LAG-3 as a serological marker and mediator in the pathogenesis of RA. Since Galectin-3 (Gal-3) is described as an additional binding partner for LAG-3, we also aimed to study the functional importance of this interaction. METHODS Plasma levels of soluble (s) LAG-3 were measured in early RA patients (eRA, n = 99) at baseline and after 12 months on a treat-to-target protocol, in self-reportedly healthy controls (HC, n = 32), and in paired plasma and synovial fluid (SF) from chronic RA patients (cRA, n = 38). Peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) were examined for LAG-3 expression by flow cytometry. The binding and functional outcomes of LAG-3 and Gal-3 interaction were assessed with surface plasmon resonance (SPR) and in cell cultures using rh-LAG3, an antagonistic LAG-3 antibody and a Gal-3 inhibitor. RESULTS Baseline sLAG-3 in the plasma was increased in eRA compared to HC and remained significantly elevated throughout 12 months of treatment. A high level of sLAG-3 at baseline was associated with the presence of IgM-RF and anti-CCP as well as radiographic progression. In cRA, sLAG-3 was significantly increased in SF compared with plasma, and LAG-3 was primarily expressed by activated T cells in SFMCs compared to PBMCs. Adding recombinant human LAG-3 to RA cell cultures resulted in decreased cytokine secretion, whereas blocking LAG-3 with an antagonistic antibody resulted in increased cytokine secretion. By SPR, we found a dose-dependent binding between LAG-3 and Gal-3. However, inhibiting Gal-3 in cultures did not further change cytokine production. CONCLUSIONS sLAG-3 in the plasma and synovial fluid is increased in both early and chronic RA patients, particularly in the inflamed joint. High levels of sLAG-3 are associated with autoantibody seropositivity and radiographic progression in eRA, and LAG-3 plays a biologically active role in cRA by decreasing inflammatory cytokine production. This functional outcome is not affected by Gal-3 interference. Our results suggest that LAG-3 is a faceted regulator of inflammation in early and chronic RA.
Collapse
Affiliation(s)
- Janni Maria Pedersen
- Department of Biomedicine, Aarhus University, C.F. Møllers Alle 6, 8000, Aarhus C, Denmark.
- Department of Acute Medicine and Trauma Care, Aalborg University Hospital, Aalborg, Denmark.
| | - Aida Solhøj Hansen
- Department of Biomedicine, Aarhus University, C.F. Møllers Alle 6, 8000, Aarhus C, Denmark
| | - Cæcilie Skejø
- Department of Biomedicine, Aarhus University, C.F. Møllers Alle 6, 8000, Aarhus C, Denmark
| | - Kristian Juul-Madsen
- Department of Biomedicine, Aarhus University, C.F. Møllers Alle 6, 8000, Aarhus C, Denmark
| | - Peter Junker
- Department of Rheumatology C, Odense University Hospital & Institute for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kim Hørslev-Petersen
- Danish Hospital for the Rheumatic Diseases, University of Southern Denmark, Odense, Denmark
| | - Merete Lund Hetland
- DANBIO and Copenhagen Centre for Arthritis Research (COPECARE), Centre for Rheumatology and Spine Diseases, Centre of Head and Orthopaedics, Rigshospitalet Glostrup, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | | | - Mikkel Østergaard
- DANBIO and Copenhagen Centre for Arthritis Research (COPECARE), Centre for Rheumatology and Spine Diseases, Centre of Head and Orthopaedics, Rigshospitalet Glostrup, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Bjarne Kuno Møller
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Lene Dreyer
- Center for Rheumatic Research Aalborg, Department of Rheumatology, Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | - Ellen-Margrethe Hauge
- Department of Acute Medicine and Trauma Care, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Malene Hvid
- Department of Biomedicine, Aarhus University, C.F. Møllers Alle 6, 8000, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Stinne Greisen
- Department of Biomedicine, Aarhus University, C.F. Møllers Alle 6, 8000, Aarhus C, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, C.F. Møllers Alle 6, 8000, Aarhus C, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Schuck P, To SC, Zhao H. An automated interface for sedimentation velocity analysis in SEDFIT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.14.540690. [PMID: 37425873 PMCID: PMC10327192 DOI: 10.1101/2023.05.14.540690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Sedimentation velocity analytical ultracentrifugation (SV-AUC) is an indispensable tool for the study of particle size distributions in biopharmaceutical industry, for example, to characterize protein therapeutics and vaccine products. In particular, the diffusion-deconvoluted sedimentation coefficient distribution analysis, in the software SEDFIT, has found widespread applications due to its relatively high resolution and sensitivity. However, a lack of available software compatible with Good Manufacturing Practices (GMP) has hampered the use of SV-AUC in this regulatory environment. To address this, we have created an interface for SEDFIT so that it can serve as an automatically spawned module with controlled data input through command line parameters and output of key results in files. The interface can be integrated in custom GMP compatible software, and in scripts that provide documentation and meta-analyses for replicate or related samples, for example, to streamline analysis of large families of experimental data, such as binding isotherm analyses in the study of protein interactions. To test and demonstrate this approach we provide a MATLAB script mlSEDFIT.
Collapse
Affiliation(s)
- Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samuel C. To
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Shahfar H, O'Brien CJ, Budyak IL, Roberts CJ. Predicting Experimental B22 Values and the Effects of Histidine Charge States for Monoclonal Antibodies Using Coarse-Grained Molecular Simulations. Mol Pharm 2022; 19:3820-3830. [PMID: 36194430 DOI: 10.1021/acs.molpharmaceut.2c00337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Static light scattering (SLS) was used to characterize five monoclonal antibodies (MAbs) as a function of total ionic strength (TIS) at pH values between 5.5 and 7.0. Second osmotic virial coefficient (B22) values were determined experimentally for each MAb as a function of TIS using low protein concentration SLS data. Coarse-grained molecular simulations were performed to predict the B22 values for each MAb at a given pH and TIS. To include the effect of charge fluctuations of titratable residues in the B22 calculations, a statistical approach was introduced in the Monte Carlo algorithm based on the protonation probability based on a given pH value and the Henderson-Hasselbalch equation. The charged residues were allowed to fluctuate individually, based on the sampled microstates and the influence of electrostatic interactions on net protein-protein interactions during the simulations. Compared to static charge simulations, the new approach provided improved results compared to experimental B22 values at pH conditions near the pKa of titratable residues.
Collapse
Affiliation(s)
- Hassan Shahfar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware19716, United States
| | - Christopher J O'Brien
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware19716, United States
| | - Ivan L Budyak
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana46285, United States
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware19716, United States
| |
Collapse
|
8
|
Uttinger MJ, Hundschell CS, Lautenbach V, Pusara S, Bäther S, Heyn TR, Keppler JK, Wenzel W, Walter J, Kozlowska M, Wagemans AM, Peukert W. Determination of specific and non-specific protein-protein interactions for beta-lactoglobulin by analytical ultracentrifugation and membrane osmometry experiments. SOFT MATTER 2022; 18:6739-6756. [PMID: 36040122 DOI: 10.1039/d2sm00908k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein-protein interactions are essential for the understanding of biological processes. Specific protein aggregation is an important aspect for many biological systems. In particular, electrostatic interactions play the key role for protein-protein interactions, as many amino acids have pH-dependent charge states. Moreover, protein dissociation is directly related to the solution pH, ionic strength, temperature and protein concentration. The subtle interplay between different specific and non-specific interactions is demonstrated for beta-lactoglobulin (BLG) with a focus on low salt concentrations, thus mimicking technically relevant processing conditions. BLG is a well-characterized model system, proven to attain its monomer-dimer equilibrium strongly dependent upon the pH of the solution. In this manuscript, we present a unique combination of analytical ultracentrifugation and membrane osmometry experiments, which quantifies specific and non-specific interactions, i.e. in terms of the dimer dissociation constants and the second osmotic virial coefficient, at pH 3 and 7 and sodium chloride concentrations of 10 mM and 100 mM. This provides direct insight to protein-protein interactions for a system with a concentration-dependent monomer-dimer equilibrium. Moreover, using a coarse-grained extended DLVO model in combination with molecular dynamics simulations, we quantify non-specific monomer-monomer, monomer-dimer and dimer-dimer interactions as well as the binding free energy of BLG dimerization from theoretical calculations. The experimentally determined interactions are shown to be mainly governed by electrostatic interactions and further agree with free energy calculations. Our experimental protocol aims to determine non-specific and specific interactions for a dynamically interacting system and provides an understanding of protein-protein interactions for BLG at low salt concentrations.
Collapse
Affiliation(s)
- M J Uttinger
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstraße 9a, 91058 Erlangen, Germany.
| | - C S Hundschell
- Institute of Food Technology and Food Chemistry, Department of Food Colloids, Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - V Lautenbach
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstraße 9a, 91058 Erlangen, Germany.
| | - S Pusara
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - S Bäther
- Institute of Food Technology and Food Chemistry, Department of Food Colloids, Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - T R Heyn
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118 Kiel, Germany
| | - J K Keppler
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands
| | - W Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - J Walter
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstraße 9a, 91058 Erlangen, Germany.
| | - M Kozlowska
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - A M Wagemans
- Institute of Food Technology and Food Chemistry, Department of Food Colloids, Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - W Peukert
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstraße 9a, 91058 Erlangen, Germany.
| |
Collapse
|
9
|
Effects of Monovalent Salt on Protein-Protein Interactions of Dilute and Concentrated Monoclonal Antibody Formulations. Antibodies (Basel) 2022; 11:antib11020024. [PMID: 35466277 PMCID: PMC9036246 DOI: 10.3390/antib11020024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, we used sodium chloride (NaCl) to extensively modulate non-specific protein-protein interactions (PPI) of a humanized anti-streptavidin monoclonal antibody class 2 molecule (ASA-IgG2). The changes in PPI with varying NaCl (CNaCl) and monoclonal antibody (mAb) concentration (CmAb) were assessed using the diffusion interaction parameter kD and second virial coefficient B22 measured from solutions with low to moderate CmAb. The effective structure factor S(q)eff measured from concentrated mAb solutions using small-angle X-ray and neutron scattering (SAXS/SANS) was also used to characterize the PPI. Our results found that the nature of net PPI changed not only with CNaCl, but also with increasing CmAb. As a result, parameters measured from dilute and concentrated mAb samples could lead to different predictions on the stability of mAb formulations. We also compared experimentally determined viscosity results with those predicted from interaction parameters, including kD and S(q)eff. The lack of a clear correlation between interaction parameters and measured viscosity values indicates that the relationship between viscosity and PPI is concentration-dependent. Collectively, the behavior of flexible mAb molecules in concentrated solutions may not be correctly predicted using models where proteins are considered to be uniform colloid particles defined by parameters derived from low CmAb.
Collapse
|
10
|
Bou-Assaf GM, Budyak IL, Brenowitz M, Day ES, Hayes D, Hill J, Majumdar R, Ringhieri P, Schuck P, Lin JC. Best Practices for Aggregate Quantitation of Antibody Therapeutics by Sedimentation Velocity Analytical Ultracentrifugation. J Pharm Sci 2022; 111:2121-2133. [PMID: 34986360 DOI: 10.1016/j.xphs.2021.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 11/18/2022]
Abstract
Analytical ultracentrifugation (AUC) is a critical analytical tool supporting the development and manufacture of protein therapeutics. AUC is routinely used as an assay orthogonal to size exclusion chromatography for aggregate quantitation. This article distills the experimental and analysis procedures used by the authors for sedimentation velocity AUC into a series of best-practices considerations. The goal of this distillation is to help harmonize aggregate quantitation approaches across the biopharmaceutical industry. We review key considerations for sample and instrument suitability, experimental design, and data analysis best practices and conversely, highlight potential pitfalls to accurate aggregate analysis. Our goal is to provide experienced users benchmarks against which they can standardize their analyses and to provide guidance for new AUC analysts that will aid them to become proficient in this fundamental technique.
Collapse
Affiliation(s)
| | - Ivan L Budyak
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Michael Brenowitz
- Departments of Biochemistry and Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Eric S Day
- Pharmaceutical Development, Genentech a Member of the Roche Group, 1 DNA Way, South San Francisco, CA 94080
| | - David Hayes
- IntlSoSci, 23 Washington St., Gorham, NH 03581
| | - John Hill
- Department of Bioengineering, University of Washington, Seattle, WA 98105
| | - Ranajoy Majumdar
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Paola Ringhieri
- Analytical Development Biotech Department, Merck Serono S.p.a, Guidonia, RM, Italy; an affiliate of Merck KGaA
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 13 South Drive, Bethesda, MD 20892
| | - Jasper C Lin
- Pharmaceutical Development, Genentech a Member of the Roche Group, 1 DNA Way, South San Francisco, CA 94080.
| |
Collapse
|
11
|
Vallerinteavide Mavelli G, Sadeghi S, Vaidya SS, Kong SN, Drum CL. Nanoencapsulation as a General Solution for Lyophilization of Labile Substrates. Pharmaceutics 2021; 13:1790. [PMID: 34834205 PMCID: PMC8622885 DOI: 10.3390/pharmaceutics13111790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Protein macromolecules occur naturally at the nanoscale. The use of a dedicated nanoparticle as a lyophilization excipient, however, has not been reported. Because biopolymeric and lipid nanoparticles often denature protein macromolecules and commonly lack the structural rigidity to survive the freeze-drying process, we hypothesized that surrounding an individual protein substrate with a nanoscale, thermostable exoshell (tES) would prevent aggregation and protect the substrate from denaturation during freezing, sublimation, and storage. We systematically investigated the properties of tES, including secondary structure and its homogeneity, throughout the process of lyophilization and found that tES have a near 100% recovery following aqueous reconstitution. We then tested the hypothesis that tES could encapsulate a model substrate, horseradish peroxidase (HRP), using charge complementation and pH-mediated controlled assembly. HRP were encapsulated within the 8 nm internal tES aqueous cavity using a simplified loading procedure. Time-course experiments demonstrated that unprotected HRP loses 95% of activity after 1 month of lyophilized storage. After encapsulation within tES nanoparticles, 70% of HRP activity was recovered, representing a 14-fold improvement and this effect was reproducible across a range of storage temperatures. To our knowledge, these results represent the first reported use of nanoparticle encapsulation to stabilize a functional macromolecule during lyophilization. Thermostable nanoencapsulation may be a useful method for the long-term storage of labile proteins.
Collapse
Affiliation(s)
- Girish Vallerinteavide Mavelli
- Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (G.V.M.); (S.S.); (S.S.V.); (S.N.K.)
| | - Samira Sadeghi
- Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (G.V.M.); (S.S.); (S.S.V.); (S.N.K.)
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*Star), Singapore 138672, Singapore
| | - Siddhesh Sujit Vaidya
- Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (G.V.M.); (S.S.); (S.S.V.); (S.N.K.)
| | - Shik Nie Kong
- Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (G.V.M.); (S.S.); (S.S.V.); (S.N.K.)
| | - Chester Lee Drum
- Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (G.V.M.); (S.S.); (S.S.V.); (S.N.K.)
| |
Collapse
|
12
|
Characterization of DNA-protein complexes by nanoparticle tracking analysis and their association with systemic lupus erythematosus. Proc Natl Acad Sci U S A 2021; 118:2106647118. [PMID: 34301873 DOI: 10.1073/pnas.2106647118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanotechnology enables investigations of single biomacromolecules, but technical challenges have limited the application in liquid biopsies, for example, blood plasma. Nonetheless, tools to characterize single molecular species in such samples represent a significant unmet need with the increasing appreciation of the physiological importance of protein structural changes at nanometer scale. Mannose-binding lectin (MBL) is an oligomeric plasma protein and part of the innate immune system through its ability to activate complement. MBL also serves a role as a scavenger for cellular debris, especially DNA. This may link functions of MBL with several inflammatory diseases in which cell-free DNA now appears to play a role, but mechanistic insight has been lacking. By making nanoparticle tracking analysis possible in human plasma, we now show that superoligomeric structures of MBL form nanoparticles with DNA. These oligomers correlate with disease activity in systemic lupus erythematosus patients. With the direct quantification of the hydrodynamic radius, calculations following the principles of Taylor dispersion in the blood stream connect the size of these complexes to endothelial inflammation, which is among the most important morbidities in lupus. Mechanistic insight from an animal model of lupus supported that DNA-stabilized superoligomers stimulate the formation of germinal center B cells and drive loss of immunological tolerance. The formation involves an inverse relationship between the concentration of MBL superoligomers and antibodies to double-stranded DNA. Our approach implicates the structure of DNA-protein nanoparticulates in the pathobiology of autoimmune diseases.
Collapse
|
13
|
Ye Y, Huo X, Yin Z. Protein-protein interactions at high concentrations: Effects of ArgHCl and NaCl on the stability, viscosity and aggregation mechanisms of protein solution. Int J Pharm 2021; 601:120535. [PMID: 33811966 DOI: 10.1016/j.ijpharm.2021.120535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The aim of this work was to use the diffusion coefficient ration (Dm/Dline) as a parameter to characterize the stability of protein at high concentration, to compare the effects of ArgHCl and NaCl on the interaction of highly concentrated proteins under different pH conditions, and to explore the correlation with protein stability. For this purpose, a high-concentration bovine serum albumin solution (BSA) was selected as the model system, and the diffusion coefficient, aggregation degree, conformational stability, and solution viscosity of the protein were studied by dynamic light scattering (DLS) and spectral detection techniques. The result showed that there was a significant correlation between the Dm/Dline and the protein aggregation. The Dm/Dline of the protein was minimum at pH 7.4, which corresponded to the maximum degree of aggregation and the highest solution viscosity. At pH 7.4, the hydrophobic interactions and the increased conformational stability of ArgHCl maximized the stability of the protein and reduced the viscosity of the solution by 69.3%. At pH 3.0, the strong charge shielding effect of ArgHCl and NaCl and the decreased conformational stability induced protein aggregation and the gel formation. These findings provided valuable insights into the mechanism of protein aggregation and the diffusion coefficient ration (Dm/Dline) could be a potential tool for the pre-formulation studies.
Collapse
Affiliation(s)
- Yalin Ye
- Key Laboratory of Drug Targeting and Novel Drug Delivery System Ministry of Education, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Xingli Huo
- Key Laboratory of Drug Targeting and Novel Drug Delivery System Ministry of Education, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zongning Yin
- Key Laboratory of Drug Targeting and Novel Drug Delivery System Ministry of Education, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
14
|
Uttinger MJ, Jung D, Dao N, Canziani H, Lübbert C, Vogel N, Peukert W, Harting J, Walter J. Probing sedimentation non-ideality of particulate systems using analytical centrifugation. SOFT MATTER 2021; 17:2803-2814. [PMID: 33554981 DOI: 10.1039/d0sm01805h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Analytical centrifugation is a versatile technique for the quantitative characterization of colloidal systems including colloidal stability. The recent developments in data acquisition and evaluation allow the accurate determination of particle size, shape anisotropy and particle density. High precision analytical centrifugation is in particular suited for the study of particle interactions and concentration-dependent sedimentation coefficients. We present a holistic approach for the quantitative determination of sedimentation non-ideality via analytical centrifugation for polydisperse, plain and amino-functionalized silica particles spanning over one order of magnitude in particle size between 100 nm and 1200 nm. These systems typically behave as neutral hard spheres as predicted by auxiliary lattice Boltzmann simulations. The extent of electrostatic interactions and their impact on sedimentation non-ideality can be quantified by the repulsion range, which is the ratio of the Debye length and the average interparticle distance. Experimental access to the repulsion range is provided through conductivity measurements. With the experimental repulsion range at hand, we estimate the effect of polydispersity on concentration-dependent sedimentation properties through a combination of lattice Boltzmann and Brownian dynamics simulations. Finally, we determine the concentration-dependent sedimentation properties of charge-stabilized, fluorescently-labeled silica particles with a nominal particle size of 30 nm and reduced interparticle distance, hence an elevated repulsion range. Overall, our results demonstrate how the influence of hard-sphere type and electrostatic interactions can be quantified when probing sedimentation non-ideality of particulate systems using analytical centrifugation even for systems exhibiting moderate sample heterogeneity and complex interactions.
Collapse
Affiliation(s)
- M J Uttinger
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| | - D Jung
- Forschungszentrum Jülich, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Fürther Straße 248, 90429 Nürnberg, Germany
| | - N Dao
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
| | - H Canziani
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| | - C Lübbert
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| | - N Vogel
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| | - W Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| | - J Harting
- Forschungszentrum Jülich, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Fürther Straße 248, 90429 Nürnberg, Germany and Department of Chemical and Biological Engineering and Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 248, 90429 Nürnberg, Germany
| | - J Walter
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| |
Collapse
|
15
|
Global multi-method analysis of interaction parameters for reversibly self-associating macromolecules at high concentrations. Sci Rep 2021; 11:5741. [PMID: 33707571 PMCID: PMC7952917 DOI: 10.1038/s41598-021-84946-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/23/2021] [Indexed: 01/12/2023] Open
Abstract
Weak macromolecular interactions assume a dominant role in the behavior of highly concentrated solutions, and are at the center of a variety of fields ranging from colloidal chemistry to cell biology, neurodegenerative diseases, and manufacturing of protein drugs. They are frequently measured in different biophysical techniques in the form of second virial coefficients, and nonideality coefficients of sedimentation and diffusion, which may be related mechanistically to macromolecular distance distributions in solution and interparticle potentials. A problem arises for proteins where reversible self-association often complicates the concentration-dependent behavior, such that grossly inconsistent coefficients are measured in experiments based on different techniques, confounding quantitative conclusions. Here we present a global multi-method analysis that synergistically bridges gaps in resolution and sensitivity of orthogonal techniques. We demonstrate the method with a panel of monoclonal antibodies exhibiting different degrees of self-association. We show how their concentration-dependent behavior, examined by static and dynamic light scattering and sedimentation velocity, can be jointly described in a self-consistent framework that separates nonideality coefficients from self-association properties, and thereby extends the quantitative interpretation of nonideality coefficients to probe dynamics in highly concentrated protein solutions.
Collapse
|