1
|
McKeon HP, Hoogenveen R, Sopel MM, Schepens MAA, Mengelers MJB, van den Brand AD, de Heer JA, Brantsæter AL, Kalyva M, Husøy T. Exploring the relationship between daily intake and urinary excretion of the mycotoxins T-2 and HT-2 toxin in humans. Food Chem Toxicol 2025; 201:115491. [PMID: 40306543 DOI: 10.1016/j.fct.2025.115491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
T-2 toxin (T-2) and HT-2 toxin (HT-2) are mycotoxins that can contaminate food, especially cereals. Exposure to T-2 and HT-2 has mainly been estimated using dietary exposure assessment, however, human biomonitoring presents another valuable approach. The relationship between daily intake and urinary excretion of T-2 and HT-2 over time in 40 Norwegian adults was modelled. T-2, HT-2 and T-2 triol were analysed in 24-h urine samples using LC-MS/MS. Dietary exposure of T-2 and HT-2 was calculated using 24-h weighed dietary records and concentration data in food derived from measured concentrations in raw food commodities. A statistical model was developed and fit to estimate the excreted fraction (fabs_excr) and residence time parameters. Without deconjugation prior to analysis, T-2, HT-2 or T-2 triol were not detected in the urine of the 40 adults. Applying a deconjugation step, total HT-2 (HT-2 and its glucuronides) was detected in almost all samples. Using the statistical model, the mean fabs_excr was estimated to be 0.184, equivalent to 18.4 %. The estimated time in which 97.5 % of the ingested T-2 and HT-2 was excreted as total HT-2 was 14.3 h, and the elimination half-life was 4.0 h. This study highlights the challenges involved in modelling the relationship between daily intake and urinary excretion of T-2 and HT-2 over time in humans. The findings indicate that approximately 20 % of the external exposure can be traced back in the urine within 24 h. However, additional research is required to support and strengthen these findings.
Collapse
Affiliation(s)
- Hannah P McKeon
- National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, the Netherlands.
| | - Rudolf Hoogenveen
- National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, the Netherlands
| | - Marta M Sopel
- Wageningen Food Safety Research (WFSR), 6708 WB, Wageningen, the Netherlands
| | - Marloes A A Schepens
- National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, the Netherlands
| | - Marcel J B Mengelers
- National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, the Netherlands
| | - Annick D van den Brand
- National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, the Netherlands
| | - Judith A de Heer
- National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, the Netherlands
| | | | - Maria Kalyva
- Norwegian Institute of Public Health (NIPH), N-0213, Oslo, Norway
| | - Trine Husøy
- Norwegian Institute of Public Health (NIPH), N-0213, Oslo, Norway
| |
Collapse
|
2
|
Vorob’eva IG, Toropova EY. Ecological Niches of Fusarium poae (Peck) Wollenw. in Western Siberia. CONTEMP PROBL ECOL+ 2022. [DOI: 10.1134/s1995425522040114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Hafez M, Gourlie R, Telfer M, Schatz N, Turkington TK, Beres B, Aboukhaddour R. Diversity of Fusarium spp. Associated with Wheat Node and Grain in Representative Sites Across the Western Canadian Prairies. PHYTOPATHOLOGY 2022; 112:1003-1015. [PMID: 34818906 DOI: 10.1094/phyto-06-21-0241-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fusarium head blight (FHB) and Fusarium crown and root rot (FCRR) are major wheat diseases. Populations of FHB and FCRR pathogens are highly dynamic, and shifts in these populations in different regions is reported. Analyzing fungal populations associated with wheat node and grain tissues collected from different regions can provide useful information and predict diseases that might affect subsequent crops and effective disease management practices. In this study, wheat node and grain samples were collected from four representative sites across the western Canadian prairies in the 2018 growing season to characterize the major Fusarium spp. and other mycobiota associated with wheat in these regions. In total, 994 fungal isolates were recovered, and based on culture and molecular diagnostic methods, three genera constituted over 90% of all fungal isolates, namely Alternaria (39.6%), Fusarium (27.8%), and Parastagonospora (23.9%). A quantitative PCR (qPCR) diagnostic toolkit was developed to quantify the most frequently isolated Fusarium spp. in infected wheat tissues: Fusarium avenaceum, F. culmorum, F. graminearum, and F. poae. This qPCR specificity was validated in silico, in vitro, and in planta and proved specific to the target species. The qPCR results showed that F. graminearum was not detected frequently from wheat node and grain samples collected from four locations in this study. F. poae was the most abundant Fusarium species in grain samples in all tested locations. However, in node samples, F. culmorum (Beaverlodge and Scott) and F. avenaceum (Lacombe and Lethbridge) were the most abundant species. Trichothecene genotyping showed that the 3ADON is the most dominant trichothecene genotype (68%), followed by type-A trichothecenes (29.5%), whereas the 15ADON trichothecene genotype was least dominant (2.5%) and the NIV genotype was not detected. Moreover, a total of 129 translation elongation factor 1-alpha (TEF1α) sequences from nine Fusarium spp. were compared at the haplotype level to evaluate genetic variability and distribution. F. avenaceum and F. poae exhibited higher diversity as reflected by higher number of haplotypes present in these two species compared with the rest.
Collapse
Affiliation(s)
- Mohamed Hafez
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta T1J 4B1, Canada
| | - Ryan Gourlie
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta T1J 4B1, Canada
| | - Melissa Telfer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta T1J 4B1, Canada
| | - Nicola Schatz
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta T1J 4B1, Canada
| | - Thomas K Turkington
- Agriculture and Agri-Food Canada, Lacombe Research and Development Center, Lacombe, Alberta T4L 1V7, Canada
| | - Brian Beres
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta T1J 4B1, Canada
| | - Reem Aboukhaddour
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta T1J 4B1, Canada
| |
Collapse
|
4
|
Okorski A, Milewska A, Pszczółkowska A, Karpiesiuk K, Kozera W, Dąbrowska JA, Radwińska J. Prevalence of Fusarium fungi and Deoxynivalenol Levels in Winter Wheat Grain in Different Climatic Regions of Poland. Toxins (Basel) 2022; 14:102. [PMID: 35202130 PMCID: PMC8877411 DOI: 10.3390/toxins14020102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 01/03/2023] Open
Abstract
Fusarium head blight (FHB) caused by fungi of the genus Fusarium is one of the most dangerous crop diseases, which has a wide geographic distribution and causes severe economic losses in the production of major cereal species. The infection leads to the accumulation of mycotoxins in grains, which compromises its suitability for human and animal consumption. The study demonstrated that grain samples from warmer regions of Poland, including Sulejów and Tomaszów Bolesławicki (results differed across years of the study), were colonized mainly by F. graminearum and were most highly contaminated with deoxynivalenol (DON). Samples from Northeastern Poland, i.e., Ruska Wieś, which is located in a cooler region, were characterized by a predominance of Fusarium species typical of the cold climate, i.e., Fusarium poae and Penicillium verrucosum. A Spearman's rank correlation analysis revealed that the severity of grain infection with F. avenaceum/F. tricinctum was affected by the mean daily temperature and high humidity in May, and the corresponding values of the correlation coefficient were determined at R = 0.54 and R = 0.50. Competitive interactions were observed between the F. avenaceum/F. tricinctum genotype and DON-producing F. culmorum and F. graminearum, because the severity of grain infections caused by these pathogens was bound by a negative correlation.
Collapse
Affiliation(s)
- Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 5, 10-727 Olsztyn, Poland; (A.M.); (A.P.); (J.A.D.)
| | - Alina Milewska
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 5, 10-727 Olsztyn, Poland; (A.M.); (A.P.); (J.A.D.)
| | - Agnieszka Pszczółkowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 5, 10-727 Olsztyn, Poland; (A.M.); (A.P.); (J.A.D.)
| | - Krzysztof Karpiesiuk
- Department of Pig Breeding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland; (K.K.); (W.K.)
| | - Wojciech Kozera
- Department of Pig Breeding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland; (K.K.); (W.K.)
| | - Joanna Agnieszka Dąbrowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 5, 10-727 Olsztyn, Poland; (A.M.); (A.P.); (J.A.D.)
| | - Justyna Radwińska
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-718 Olsztyn, Poland;
| |
Collapse
|
5
|
Leslie JF, Moretti A, Mesterházy Á, Ameye M, Audenaert K, Singh PK, Richard-Forget F, Chulze SN, Ponte EMD, Chala A, Battilani P, Logrieco AF. Key Global Actions for Mycotoxin Management in Wheat and Other Small Grains. Toxins (Basel) 2021; 13:725. [PMID: 34679018 PMCID: PMC8541216 DOI: 10.3390/toxins13100725] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/23/2023] Open
Abstract
Mycotoxins in small grains are a significant and long-standing problem. These contaminants may be produced by members of several fungal genera, including Alternaria, Aspergillus, Fusarium, Claviceps, and Penicillium. Interventions that limit contamination can be made both pre-harvest and post-harvest. Many problems and strategies to control them and the toxins they produce are similar regardless of the location at which they are employed, while others are more common in some areas than in others. Increased knowledge of host-plant resistance, better agronomic methods, improved fungicide management, and better storage strategies all have application on a global basis. We summarize the major pre- and post-harvest control strategies currently in use. In the area of pre-harvest, these include resistant host lines, fungicides and their application guided by epidemiological models, and multiple cultural practices. In the area of post-harvest, drying, storage, cleaning and sorting, and some end-product processes were the most important at the global level. We also employed the Nominal Group discussion technique to identify and prioritize potential steps forward and to reduce problems associated with human and animal consumption of these grains. Identifying existing and potentially novel mechanisms to effectively manage mycotoxin problems in these grains is essential to ensure the safety of humans and domesticated animals that consume these grains.
Collapse
Affiliation(s)
- John F. Leslie
- Throckmorton Plant Sciences Center, Department of Plant Pathology, 1712 Claflin Avenue, Kansas State University, Manhattan, KS 66506, USA;
| | - Antonio Moretti
- Institute of the Science of Food Production, National Research Council (CNR-ISPA), Via Amendola 122/O, 70126 Bari, Italy;
| | - Ákos Mesterházy
- Cereal Research Non-Profit Ltd., Alsókikötő sor 9, H-6726 Szeged, Hungary;
| | - Maarten Ameye
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.A.); (K.A.)
| | - Kris Audenaert
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.A.); (K.A.)
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico 06600, DF, Mexico;
| | | | - Sofía N. Chulze
- Research Institute on Mycology and Mycotoxicology (IMICO), National Scientific and Technical Research Council-National University of Río Cuarto (CONICET-UNRC), 5800 Río Cuarto, Córdoba, Argentina;
| | - Emerson M. Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil;
| | - Alemayehu Chala
- College of Agriculture, Hawassa University, P.O. Box 5, Hawassa 1000, Ethiopia;
| | - Paola Battilani
- Department of Sustainable Crop Production, Faculty of Agriculture, Food and Environmental Sciences, Universitá Cattolica del Sacro Cuore, via E. Parmense, 84-29122 Piacenza, Italy;
| | - Antonio F. Logrieco
- Institute of the Science of Food Production, National Research Council (CNR-ISPA), Via Amendola 122/O, 70126 Bari, Italy;
| |
Collapse
|
6
|
van der Fels-Klerx H, Liu C, Focker M, Montero-Castro I, Rossi V, Manstretta V, Magan N, Krska R. Decision support system for integrated management of mycotoxins in feed and food supply chains. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycotoxins present a global food safety threat of our feed and food. Mycotoxins are toxic metabolites of certain fungi in agricultural products that are harmful to animal and human health. The presence of mycotoxins in these products depends on a variety of management and environmental factors in the field, during storage and/or processing of feed and food commodities. To date, information on mycotoxin management is available, but is not easy to access by supply chain actors. This study aimed to design, build and test a Decision Support System (DSS) that can help decision making on mycotoxin management by various actors along the feed and food supply chains. As part of this, available knowledge and data on mycotoxin prevention and control were collected and synthesised into easy to understand guidelines and tools for various groups of end-users. The DSS consists of four different modules: (a) static information module and (b) scenario analysis module, (c) dynamic module for forecasting mycotoxins, and (d) dynamic module for real-time monitoring of moulds/mycotoxins in grain silos. Intended end-users are all end-user groups for modules (a) and (b); growers and collectors for module (c) and; post-harvest storage managers for module (d). The DSS is user-friendly and accessible through PCs, tablets and smartphones (see https://mytoolbox-platform.com/ ). In various phases of the DSS development, the tool has been demonstrated to groups of end-users, and their suggestions have been taken into account, whenever possible. Also, a near final version has been tested with individual farmers on the easiness to use the system. In this way we aimed to maximise the DSS uptake by actors along the chain. Ultimately, this DSS will improve decision making on mycotoxin management; it will assist in reducing mycotoxin contamination in the key crops of Europe, thereby reducing economic losses and improving animal and human health.
Collapse
Affiliation(s)
- H.J. van der Fels-Klerx
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
- Wageningen University, Business Economics Group, Hollandseweg 1, 6706 KN, Wageningen, the Netherlands
| | - C. Liu
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - M. Focker
- Wageningen University, Business Economics Group, Hollandseweg 1, 6706 KN, Wageningen, the Netherlands
| | - I. Montero-Castro
- IRIS Technology Solutions S.L., Avda. Carl Friedrich Gauss 11, 08860 Castelldefels, Barcelona, Spain
| | - V. Rossi
- Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - V. Manstretta
- Horta s.r.l., via Egidio Gorra 55, 29122 Piacenza, Italy
| | - N. Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds. MK43 0AL, United Kingdom
| | - R. Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, United Kingdom
| |
Collapse
|
7
|
Thapa A, Horgan KA, White B, Walls D. Deoxynivalenol and Zearalenone-Synergistic or Antagonistic Agri-Food Chain Co-Contaminants? Toxins (Basel) 2021; 13:toxins13080561. [PMID: 34437432 PMCID: PMC8402399 DOI: 10.3390/toxins13080561] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023] Open
Abstract
Deoxynivalenol (DON) and Zearalenone (ZEN) are two commonly co-occurring mycotoxins produced by members of the genus Fusarium. As important food chain contaminants, these can adversely affect both human and animal health. Critically, as they are formed prior to harvesting, their occurrence cannot be eliminated during food production, leading to ongoing contamination challenges. DON is one of the most commonly occurring mycotoxins and is found as a contaminant of cereal grains that are consumed by humans and animals. Consumption of DON-contaminated feed can result in vomiting, diarrhoea, refusal of feed, and reduced weight gain in animals. ZEN is an oestrogenic mycotoxin that has been shown to have a negative effect on the reproductive function of animals. Individually, their mode of action and impacts have been well-studied; however, their co-occurrence is less well understood. This common co-occurrence of DON and ZEN makes it a critical issue for the Agri-Food industry, with a fundamental understanding required to develop mitigation strategies. To address this issue, in this targeted review, we appraise what is known of the mechanisms of action of DON and ZEN with particular attention to studies that have assessed their toxic effects when present together. We demonstrate that parameters that impact toxicity include species and cell type, relative concentration, exposure time and administration methods, and we highlight additional research required to further elucidate mechanisms of action and mitigation strategies.
Collapse
Affiliation(s)
- Asmita Thapa
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland;
| | | | - Blánaid White
- School of Chemical Sciences, National Centre for Sensor Research, DCU Water Institute, Dublin City University, Dublin 9, Ireland
- Correspondence: (B.W.); (D.W.); Tel.: +353-01-7006731 (B.W.); +353-01-7005600 (D.W.)
| | - Dermot Walls
- School of Biotechnology, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
- Correspondence: (B.W.); (D.W.); Tel.: +353-01-7006731 (B.W.); +353-01-7005600 (D.W.)
| |
Collapse
|
8
|
Gémes B, Takács E, Gádoros P, Barócsi A, Kocsányi L, Lenk S, Csákányi A, Kautny S, Domján L, Szarvas G, Adányi N, Nabok A, Mörtl M, Székács A. Development of an Immunofluorescence Assay Module for Determination of the Mycotoxin Zearalenone in Water. Toxins (Basel) 2021; 13:182. [PMID: 33801263 PMCID: PMC8000975 DOI: 10.3390/toxins13030182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/12/2023] Open
Abstract
Project Aquafluosense is designed to develop prototypes for a fluorescence-based instrumentation setup for in situ measurements of several characteristic parameters of water quality. In the scope of the project an enzyme-linked fluorescent immunoassay (ELFIA) method has been developed for the detection of several environmental xenobiotics, including mycotoxin zearalenone (ZON). ZON, produced by several plant pathogenic Fusarium species, has recently been identified as an emerging pollutant in surface water, presenting a hazard to aquatic ecosystems. Due to its physico-chemical properties, detection of ZON at low concentrations in surface water is a challenging task. The 96-well microplate-based fluorescence instrument is capable of detecting ZON in the concentration range of 0.09-400 ng/mL. The sensitivity and accuracy of the analytical method has been demonstrated by a comparative assessment with detection by high-performance liquid chromatography and by total internal reflection ellipsometry. The limit of detection of the method, 0.09 ng/mL, falls in the low range compared to the other reported immunoassays, but the main advantage of this ELFIA method is its efficacy in combined in situ applications for determination of various important water quality parameters detectable by induced fluorimerty-e.g., total organic carbon content, algal density or the level of other organic micropollutants detectable by immunofluorimetry. In addition, the immunofluorescence module can readily be expanded to other target analytes if proper antibodies are available for detection.
Collapse
Affiliation(s)
- Borbála Gémes
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman O. út 15, H-1022 Budapest, Hungary; (B.G.); (E.T.); (M.M.)
| | - Eszter Takács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman O. út 15, H-1022 Budapest, Hungary; (B.G.); (E.T.); (M.M.)
| | - Patrik Gádoros
- Department of Atomic Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (P.G.); (A.B.); (L.K.); (S.L.)
| | - Attila Barócsi
- Department of Atomic Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (P.G.); (A.B.); (L.K.); (S.L.)
| | - László Kocsányi
- Department of Atomic Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (P.G.); (A.B.); (L.K.); (S.L.)
| | - Sándor Lenk
- Department of Atomic Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (P.G.); (A.B.); (L.K.); (S.L.)
| | - Attila Csákányi
- Optimal Optik Ltd., Dayka Gábor u. 6/B, H-1118 Budapest, Hungary; (A.C.); (S.K.); (L.D.); (G.S.)
| | - Szabolcs Kautny
- Optimal Optik Ltd., Dayka Gábor u. 6/B, H-1118 Budapest, Hungary; (A.C.); (S.K.); (L.D.); (G.S.)
| | - László Domján
- Optimal Optik Ltd., Dayka Gábor u. 6/B, H-1118 Budapest, Hungary; (A.C.); (S.K.); (L.D.); (G.S.)
| | - Gábor Szarvas
- Optimal Optik Ltd., Dayka Gábor u. 6/B, H-1118 Budapest, Hungary; (A.C.); (S.K.); (L.D.); (G.S.)
| | - Nóra Adányi
- Food Science Research Centre, Institute of Food Sciences, Hungarian University of Agriculture and Life Sciences, Herman O. út 15, H-1022 Budapest, Hungary;
| | - Alexei Nabok
- Materials and Engineering Research Institute, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK;
| | - Mária Mörtl
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman O. út 15, H-1022 Budapest, Hungary; (B.G.); (E.T.); (M.M.)
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman O. út 15, H-1022 Budapest, Hungary; (B.G.); (E.T.); (M.M.)
| |
Collapse
|
9
|
Janssen EM, Mourits MCM, van der Fels-Klerx HJ, Lansink AGJMO. Factors underlying Dutch farmers' intentions to adapt their agronomic management to reduce Fusarium species infection in wheat. PLoS One 2020; 15:e0237460. [PMID: 32911506 PMCID: PMC7482836 DOI: 10.1371/journal.pone.0237460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
Infection of wheat by Fusarium species can lead to Fusarium Head Blight (FHB) and mycotoxin contamination, thereby reducing food quality and food safety, and leading to economic losses. Agronomic management through the implementation of various pre-harvest measures can reduce the probability of Fusarium spp. infection in the wheat field. To design interventions that could stimulate wheat farmers to (further) improve their agronomic management to reduce FHB, it is key to understand farmers’ behaviour towards adapting their management. The aim of this paper was to understand the intention, underlying behavioural constructs, and beliefs of Dutch wheat farmers to adapt their agronomic management to reduce FHB and mycotoxin contamination in wheat, applying the Theory of Planned Behaviour (TPB). Data were collected from 100 Dutch wheat farmers via a questionnaire. The standard TPB analysis was extended with an assessment of the robustness of the belief results to account for the statistical validity of the analysis on TPB beliefs (i.e. to address the so-called expectancy-value muddle). Forty-six percent of the farmers had a positive intention to change their management in the next 5 years. The two behavioural constructs significantly related to this intention were attitude and social norm, whereas association with the perceived behavioural control construct was insignificant indicating that farmers did not perceive any barriers to change their behaviour. Relevant attitudinal beliefs indicated specific attributes of wheat, namely yield, quality and safety (lower mycotoxin contamination). This indicates that strengthening these beliefs—by demonstrating that a change in management will result in a higher yield and quality and lower mycotoxin levels—will result in a stronger attitude and, subsequently, a higher intention to change management. Interventions to strengthen these beliefs should preferably go by the most important referents for social norms, which were the buyers and the farmer cooperatives in this study.
Collapse
Affiliation(s)
- E. M. Janssen
- Business Economics Group, Wageningen University & Research, Wageningen, the Netherlands
- * E-mail: (EMJ); (MCMM)
| | - M. C. M. Mourits
- Business Economics Group, Wageningen University & Research, Wageningen, the Netherlands
- * E-mail: (EMJ); (MCMM)
| | - H. J. van der Fels-Klerx
- Business Economics Group, Wageningen University & Research, Wageningen, the Netherlands
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen, the Netherlands
| | | |
Collapse
|
10
|
Mishra S, Srivastava S, Dewangan J, Divakar A, Kumar Rath S. Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: a survey. Crit Rev Food Sci Nutr 2019; 60:1346-1374. [DOI: 10.1080/10408398.2019.1571479] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sakshi Mishra
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Sonal Srivastava
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Jayant Dewangan
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Aman Divakar
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Srikanta Kumar Rath
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| |
Collapse
|
11
|
Moretti A, Pascale M, Logrieco AF. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.03.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Radić B, Kos J, Kocić-Tanackov S, Janić-Hajnal E, Mandić A. Occurrence of moniliformin in cereals. FOOD AND FEED RESEARCH 2019. [DOI: 10.5937/ffr1902149r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
13
|
Comparison of Three Modelling Approaches for Predicting Deoxynivalenol Contamination in Winter Wheat. Toxins (Basel) 2018; 10:toxins10070267. [PMID: 30004414 PMCID: PMC6071054 DOI: 10.3390/toxins10070267] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 11/28/2022] Open
Abstract
Forecasting models for mycotoxins in cereal grains during cultivation are useful for pre-harvest and post-harvest mycotoxin management. Some of such models for deoxynivalenol (DON) in wheat, using two different modelling techniques, have been published. This study aimed to compare and cross-validate three different modelling approaches for predicting DON in winter wheat using data from the Netherlands as a case study. To this end, a published empirical model was updated with a new mixed effect logistic regression method. A mechanistic model for wheat in Italy was adapted to the Dutch situation. A new Bayesian network model was developed to predict DON in wheat. In developing the three models, the same dataset was used, including agronomic and weather data, as well as DON concentrations of individual samples in the Netherlands over the years 2001–2013 (625 records). Similar data from 2015 and 2016 (86 records) were used for external independent validation. The results showed that all three modelling approaches provided good accuracy in predicting DON in wheat in the Netherlands. The empirical model showed the highest accuracy (88%). However, this model is highly location and data-dependent, and can only be run if all of the input data are available. The mechanistic model provided 80% accuracy. This model is easier to implement in new areas given similar mycotoxin-producing fungal populations. The Bayesian network model provided 86% accuracy. Compared with the other two models, this model is easier to implement when input data are incomplete. In future research, the three modelling approaches could be integrated to even better support decision-making in mycotoxin management.
Collapse
|
14
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy JM, Gong YY, Meyer K, Naegeli H, Parent-Massin D, van Egmond H, Altieri A, Colombo P, Eskola M, van Manen M, Edler L. Risks to human and animal health related to the presence of moniliformin in food and feed. EFSA J 2018; 16:e05082. [PMID: 32625822 PMCID: PMC7009678 DOI: 10.2903/j.efsa.2018.5082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Moniliformin (MON) is a mycotoxin with low molecular weight primarily produced by Fusarium fungi and occurring predominantly in cereal grains. Following a request of the European Commission, the CONTAM Panel assessed the risk of MON to human and animal health related to its presence in food and feed. The limited information available on toxicity and on toxicokinetics in experimental and farm animals indicated haematotoxicity and cardiotoxicity as major adverse health effects of MON. MON causes chromosome aberrations in vitro but no in vivo genotoxicity data and no carcinogenicity data were identified. Due to the limitations in the available toxicity data, human acute or chronic health‐based guidance values (HBGV) could not be established. The margin of exposure (MOE) between the no‐observed‐adverse‐effect level (NOAEL) of 6.0 mg/kg body weight (bw) for cardiotoxicity from a subacute study in rats and the acute upper bound (UB) dietary exposure estimates ranged between 4,000 and 73,000. The MOE between the lowest benchmark dose lower confidence limit (for a 5% response ‐ BMDL05) of 0.20 mg MON/kg bw per day for haematological hazards from a 28‐day study in pigs and the chronic dietary human exposure estimates ranged between 370 and 5,000,000 for chronic dietary exposures. These MOEs indicate a low risk for human health but were associated with high uncertainty. The toxicity data available for poultry, pigs, and mink indicated a low or even negligible risk for these animals from exposure to MON in feed at the estimated exposure levels under current feeding practices. Assuming similar or lower sensitivity as for pigs, the CONTAM Panel considered a low or even negligible risk for the other animal species for which no toxicity data suitable for hazard characterisation were identified. Additional toxicity studies are needed and depending on their outcome, the collection of more occurrence data on MON in food and feed is recommended to enable a comprehensive human risk assessment.
Collapse
|
15
|
Kniel KE, Spanninger P. Preharvest Food Safety Under the Influence of a Changing Climate. Microbiol Spectr 2017; 5:10.1128/microbiolspec.pfs-0015-2016. [PMID: 28387181 PMCID: PMC11687470 DOI: 10.1128/microbiolspec.pfs-0015-2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Indexed: 11/20/2022] Open
Abstract
Ensuring food safety and addressing the impact of climate change are both immense concepts. Food production systems must continue to evolve in order to develop food safety management programs and identify emerging risks linked to climate change. There are an infinite number of crosscutting issues regarding climate change and health. The changing climate of the globe manifests itself in fluctuating temperatures, intense storms, droughts, and fluctuating sea levels. These environmental variables in turn may increase the risk of foodborne disease transmission through our foods and increase the need for vigilance and risk mitigation at the preharvest level. While the influence of climate change is untold, four cases are discussed here, including waterborne disease, seafood, production of fruits and vegetables, and mycotoxins. Changes relative to climate have been documented at the preharvest level for these issues. Change must be addressed alongside education and research to safeguard the human health effects of climate change.
Collapse
Affiliation(s)
- Kalmia E Kniel
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE 19716
| | - Patrick Spanninger
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE 19716
| |
Collapse
|
16
|
Mycotoxins in Food and Feed: A Challenge for the Twenty-First Century. BIOLOGY OF MICROFUNGI 2016. [DOI: 10.1007/978-3-319-29137-6_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Bianchini A, Horsley R, Jack MM, Kobielush B, Ryu D, Tittlemier S, Wilson WW, Abbas HK, Abel S, Harrison G, Miller JD, Shier WT, Weaver G. DON Occurrence in Grains: A North American Perspective. CEREAL FOOD WORLD 2015. [DOI: 10.1094/cfw-60-1-0032] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Andreia Bianchini
- The Food Processing Center, Food Science and Technology Department, University of Nebraska – Lincoln, NE, U.S.A
| | - Richard Horsley
- Department of Plant Sciences, North Dakota State University, ND, U.S.A
| | | | | | - Dojin Ryu
- Bi-State School of Food Science, University of Idaho/Washington State University, ID, U.S.A
| | - Sheryl Tittlemier
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, MB, Canada
| | - William W. Wilson
- Department of Agribusiness and Applied Economics, North Dakota State University, ND, U.S.A
| | | | - Susan Abel
- Food & Consumer Products of Canada, Toronto, ON, Canada
| | | | - J. David Miller
- Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - W. Thomas Shier
- Department of Medicinal Chemistry, University of Minnesota, MN, U.S.A
| | | |
Collapse
|
18
|
van der Fels-Klerx H, de Rijk T. Performance evaluation of lateral flow immuno assay test kits for quantification of deoxynivalenol in wheat. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Yoshinari T, Takeuchi H, Aoyama K, Taniguchi M, Hashiguchi S, Kai S, Ogiso M, Sato T, Akiyama Y, Nakajima M, Tabata S, Tanaka T, Ishikuro E, Sugita-Konishi Y. Occurrence of four Fusarium mycotoxins, deoxynivalenol, zearalenone, T-2 toxin, and HT-2 toxin, in wheat, barley, and Japanese retail food. J Food Prot 2014; 77:1940-6. [PMID: 25364928 DOI: 10.4315/0362-028x.jfp-14-185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A survey of the contamination of wheat, barley, and Japanese retail food by four Fusarium mycotoxins, deoxynivalenol (DON), zearalenone (ZEN), T-2 toxin (T-2), and HT-2 toxin (HT-2), was performed between 2010 and 2012. A method for the simultaneous determination of the four mycotoxins by liquid chromatography-tandem mass spectrometry was validated by a small-scale interlaboratory study using two spiked wheat samples (DON was spiked at 20 and 100 μg/kg and ZEN, T-2, and HT-2 at 6 and 20 μg/kg in the respective samples). The recovery of the four mycotoxins ranged from 77.3 to 107.2%. A total of 557 samples of 10 different commodities were analyzed over 3 years by this validated method. Both T-2 and HT-2 were detected in wheat, wheat flour, barley, Job's tears products, beer, corn grits, azuki beans, soybeans, and rice with mixed grains. Only T-2 toxin was detected in sesame seeds. The highest concentrations of T-2 toxin (48.4 μg/kg) and HT-2 toxin (85.0 μg/kg) were present in azuki beans and wheat, respectively. DON was frequently detected in wheat, wheat flour, beer, and corn grits. The contamination level of wheat was below the provisional standard in Japan (1,100 μg/kg). The maximum contamination level of DON was present in a sample of a Job's tears product (1,093 μg/kg). ZEN was frequently detected in Job's tears products, corn grits, azuki beans, rice with mixed grains, and sesame seeds. A sample of a Job's tears product presented the highest ZEN contamination (153 μg/kg). These results indicate that continuous monitoring by multiple laboratories is effective and necessary due to the percentage of positive samples detected.
Collapse
Affiliation(s)
- Tomoya Yoshinari
- National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Hiroshi Takeuchi
- Mie Prefecture Health and Environment Research Institute, 3684-11 Sakuramachi, Yokkaichi-shi, Mie 512-1211, Japan
| | - Koji Aoyama
- Food and Agricultural Materials Inspection Center, Sendai Regional Center, 1-3-15, Gorin, Miyagino-ku, Sendai 983-0842, Japan
| | - Masaru Taniguchi
- Nagoya City Public Health Research Institute, 1-11, Hagiyama-cho, Mizuho-ku, Nagoya 467-8615, Japan
| | - Shigeki Hashiguchi
- Kawasaki City Institute for Public Health, 3-25-13, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Shigemi Kai
- Kanagawa Prefectural Institute of Public Health, 1-3-1, Shimomachiya, Chigasaki-shi, Kanagawa 253-0087, Japan
| | - Motoki Ogiso
- Japan Food Research Laboratories, 52-1, Motoyoyogi-cho, Shibuya-ku, Tokyo 151-0062, Japan
| | - Takashi Sato
- Food Analysis Technology Center SUNATEC, 2-3-29, Akahori, Yokkaichi-shi, Mie 510-0826, Japan
| | - Yu Akiyama
- Japan Frozen Foods Inspection Corporation, 2-4-6, Shibadaimon, Minato-ku, Tokyo 105-0012, Japan
| | - Masahiro Nakajima
- Nagoya City Public Health Research Institute, 1-11, Hagiyama-cho, Mizuho-ku, Nagoya 467-8615, Japan
| | - Setsuko Tabata
- Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Toshitsugu Tanaka
- Kobe Institute of Health, 4-6, Minatojima-nakamachi, Chuo-ku, Kobe 650-0046, Japan
| | - Eiichi Ishikuro
- Japan Food Research Laboratories, 52-1, Motoyoyogi-cho, Shibuya-ku, Tokyo 151-0062, Japan
| | | |
Collapse
|
20
|
Vanheule A, Audenaert K, De Boevre M, Landschoot S, Bekaert B, Munaut F, Eeckhout M, Höfte M, De Saeger S, Haesaert G. The compositional mosaic of Fusarium species and their mycotoxins in unprocessed cereals, food and feed products in Belgium. Int J Food Microbiol 2014; 181:28-36. [DOI: 10.1016/j.ijfoodmicro.2014.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/31/2014] [Accepted: 04/10/2014] [Indexed: 01/11/2023]
|
21
|
van der Fels-Klerx HJ. Evaluation of performance of predictive models for deoxynivalenol in wheat. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2014; 34:380-390. [PMID: 23901939 DOI: 10.1111/risa.12103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The aim of this study was to evaluate the performance of two predictive models for deoxynivalenol contamination of wheat at harvest in the Netherlands, including the use of weather forecast data and external model validation. Data were collected in a different year and from different wheat fields than data used for model development. The two models were run for six preset scenarios, varying in the period for which weather forecast data were used, from zero-day (historical data only) to a 13-day period around wheat flowering. Model predictions using forecast weather data were compared to those using historical data. Furthermore, model predictions using historical weather data were evaluated against observed deoxynivalenol contamination of the wheat fields. Results showed that the use of weather forecast data rather than observed data only slightly influenced model predictions. The percent of correct model predictions, given a threshold of 1,250 μg/kg (legal limit in European Union), was about 95% for the two models. However, only three samples had a deoxynivalenol concentration above this threshold, and the models were not able to predict these samples correctly. It was concluded that two- week weather forecast data can reliable be used in descriptive models for deoxynivalenol contamination of wheat, resulting in more timely model predictions. The two models are able to predict lower deoxynivalenol contamination correctly, but model performance in situations with high deoxynivalenol contamination needs to be further validated. This will need years with conducive environmental conditions for deoxynivalenol contamination of wheat.
Collapse
|
22
|
Estimation of cost-effective methods for detection of deoxynivalenol in wheat at collector intake. Food Res Int 2014. [DOI: 10.1016/j.foodres.2013.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Foroud NA, Chatterton S, Reid LM, Turkington TK, Tittlemier SA, Gräfenhan T. Fusarium Diseases of Canadian Grain Crops: Impact and Disease Management Strategies. Fungal Biol 2014. [DOI: 10.1007/978-1-4939-1188-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Paciolla C, Florio A, Mulè G, Logrieco A. Combined effect of beauvericin and T-2 toxin on antioxidant defence systems in cherry tomato shoots. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2012.1506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During their life cycle, plants can undergo simultaneous attack by different pathogens that produce various toxins. It is well known that in some plant-fungal interactions, mycotoxins play an important role in pathogenesis and induce a reactive oxygen species increase. Plants counteract the overaccumulation of reactive oxygen species by reinforcing their defence systems. The mycotoxins T-2 toxin (T-2) and beauvericin (BEA) are produced by some Fusarium species and have different chemical structures, mechanisms of action and biological activities. In this study, the individual and combined effects of these two toxins on defence systems, such as the ascorbate-glutathione cycle and peroxidases, were evaluated in cherry tomato shoots. Hydrogen peroxide content as an index of oxidative stress was also measured. Inhibitory effects on ascorbate peroxidase, dehydroascorbate reductase and ascorbate, and stimulatory effects on glutathione reductase, monodehydroascorbate reductase and reduced glutathione were observed when tomato plants were simultaneously treated with BEA and T-2. The trend of these biochemical parameters highlight the presence of a range of defence mechanisms activated by plants in response to mycotoxins. The interaction between BEA and T-2 resulting in synergistic and/or antagonistic effects on the studied defence systems is also discussed. It is concluded that the effects of these mycotoxins alone are not predictive of their combined effects.
Collapse
Affiliation(s)
- C. Paciolla
- Department of Biology, Università di Bari ‘Aldo Moro’, via E. Orabona 4, 70126 Bari, Italy
| | - A. Florio
- Department of Biology, Università di Bari ‘Aldo Moro’, via E. Orabona 4, 70126 Bari, Italy
| | - G. Mulè
- National Research Council, Institute of Sciences of Food Production, via Amendola 122/0, 70126 Bari, Italy
| | - A.F. Logrieco
- National Research Council, Institute of Sciences of Food Production, via Amendola 122/0, 70126 Bari, Italy
| |
Collapse
|
25
|
Statement on the risks for public health related to a possible increase of the maximum level of deoxynivalenol for certain semi‐processed cereal products. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
26
|
de Nijs M, Pereboom-de Fauw DPKH, van Dam RCJ, de Rijk TC, van Egmond HP, Mol HJGJ. Development and validation of an LC-MS/MS method for the detection of phomopsin A in lupin and lupin-containing retail food samples from the Netherlands. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30:1819-26. [PMID: 23895245 DOI: 10.1080/19440049.2013.820846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Phomopsins (PHO) are mycotoxins produced by the fungus Diaporthe toxica (also referred to as Phomopsis leptostromiformis). Lupin is the most important host crop for this fungus and PHO are suspected as cause of lupinosis, a deadly liver disease, in sheep. Lupin is currently in use to replace genetically modified soy in many food products available on the European market. However, a validated method for analysis of PHO is not available until now. In this work, a dilute-and-shoot LC-MS/MS-based method was developed for the quantitative determination and identification of phomopsin A (PHO-A) in lupin and lupin-containing food. The method involved extraction by a mixture of acetonitrile/water/acetic acid (80/20/1 v/v), dilution of the sample in water, and direct injection of the crude extract after centrifugation. The method was validated at 5 and 25 µg PHO-A kg(-1) product. The average recovery and RSD obtained were 79% and 9%, respectively. The LOQ (the lowest level for which adequate recovery and RSD were demonstrated) was 5 µg PHO-A kg(-1). Identification of PHO-A was based on retention time and two transitions (789 > 226 and 789 > 323). Using the average of solvent standards from the sequence as a reference, retention times were all within ± 0.03 min and ion ratios were within ± 12%, which is compliant with European Union requirements. The LOD (S/N = 3 for the least sensitive transition) was 1 µg PHO-A kg(-1) product. Forty-two samples of lupin and lupin-containing food products were collected in 2011-2012 from grocery stores and internet shops in the Netherlands and analysed. In none of the samples was PHO-A detected.
Collapse
|
27
|
Tian SZ, Pu X, Luo G, Zhao LX, Xu LH, Li WJ, Luo Y. Isolation and characterization of new p-Terphenyls with antifungal, antibacterial, and antioxidant activities from halophilic actinomycete Nocardiopsis gilva YIM 90087. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3006-3012. [PMID: 23441911 DOI: 10.1021/jf400718w] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A new p-terphenyl 1 and a novel p-terphenyl derivative 3 bearing a benzothiazole moiety were isolated from halophilic actinomycete Nocardiopsis gilva YIM 90087, along with known p-terphenyl 2, antibiotic novobiocin 4, cyclodipeptides 5-13, and aromatic acids 14 and 15. Their structures were elucidated on the basis of the interpretation of spectral data and by comparison of the corresponding data with those reported previously. The p-terphenyl 1 showed antifungal activity against the three pathogenic fungi, including Fusarium avenaceum, Fusarium graminearum, and Fusarium culmorum, that caused Fusarium head blight with minimal inhibitory concentrations (MICs) of 8, 16, and 128 μg/mL, respectively. Compound 1 showed antifungal activity against Candida albicans with a MIC of 32 μg/mL and antibacterial activity against Bacillus subtilis with a MIC of 64 μg/mL. Novobiocin 4 showed antifungal activity against Pyricularia oryzae with a MIC of 16 μg/mL and antibacterial activity against B. subtilis with a MIC of 16 μg/mL and Staphylococcus aureus with a MIC of 64 μg/mL. The 1,1-diphenyl-2-picryl-hydrazyl assay suggested that 1, 3, and 4 exhibited 54.9% (2 mg/mL), 14.3% (4 mg/mL), and 47.7% (2 mg/mL) free radical scavenging activity, respectively. The positively charged 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical (ABTS(+•)) scavenging assay indicated that 1, 3, 4, and 8 exhibited 68.6% (1 mg/mL), 28.4% (2 mg/mL), 78.2% (0.5 mg/mL), and 54.6% (2 mg/mL) ABTS(+•) scavenging capacity, respectively. The superoxide anion radical scavenging assay suggested that 4 exhibited 77.9% superoxide anion radical scavenging capacity at 2 mg/mL. N. gilva YIM 90087 is a new resource for novobiocin 4.
Collapse
Affiliation(s)
- Shou-Zheng Tian
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|