1
|
Norambuena-Subiabre L, Carbonell P, Salgado P, Zamora C, Espinoza-González O. Sources and profiles of toxins in shellfish from the south-central coast of Chile (36°‒ 43° S). HARMFUL ALGAE 2024; 133:102608. [PMID: 38485442 DOI: 10.1016/j.hal.2024.102608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
The study of marine toxins in shellfish is of the utmost importance to ensure people's food safety. Marine toxins in shellfish and microalgae in the water column off the south-central coast of Chile (36°‒43° S) were studied in a network of 64 stations over a 14-month period. The relative abundance of harmful species Alexandrium catenella, Alexandrium ostenfeldii, Protoceratium reticulatum, Dinophysis acuminata, Dinophysis acuta, Pseudo-nitzschia seriata group and P. delicatissima group was analyzed. The detection and quantification of lipophilic toxins and domoic acid (DA) in shellfish was determined by UHPLC-MS/MS, and for Paralytic Shellfish Toxins (PSTs) by HPLC-FD with post-column oxidation, while for a culture of A. ostenfeldii a Hylic-UHPLC-MS/MS was used. Results showed that DA, gonyautoxin (GTX)-2, GTX-3 and pectenotoxin (PTX)-2 were detected below the permitted limits, while Gymnodimine (GYM)-A and 13-desmethylespirolide C (SPX-1) were below the limit of quantitation. According to the distribution and abundance record of microalgae, DA would be associated to P. seriata and P. delicatissima-groups, PTX-2 to D. acuminata, and GTX-2, GTX-3, GYM-A, and SPX-1 to A. ostenfeldii. However, the toxin analysis of an A. ostenfeldii culture from the Biobío region only showed the presence of the paralytic toxins C2, GTX-2, GTX-3, GTX-5 and saxitoxin, therefore, the source of production of GYM and SPX is still undetermined.
Collapse
Affiliation(s)
- Luis Norambuena-Subiabre
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Padre Harter 574, Puerto Montt, Chile.
| | - Pamela Carbonell
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Padre Harter 574, Puerto Montt, Chile
| | - Pablo Salgado
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Enrique Abello 0552, Punta Arenas, Chile
| | - Claudia Zamora
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Enrique Abello 0552, Punta Arenas, Chile
| | - Oscar Espinoza-González
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Padre Harter 574, Puerto Montt, Chile
| |
Collapse
|
2
|
Liu Y, Yuan TQ, Zheng JW, Li DW, Jiao YH, Li HY, Li RM, Yang WD. Exposure to okadaic acid could disrupt the colonic microenvironment in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115376. [PMID: 37597294 DOI: 10.1016/j.ecoenv.2023.115376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/28/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Okadaic acid (OA) is one of the most prevalent marine phycotoxin with complex toxicity, which can lead to toxic symptoms such as diarrhea, vomiting, nausea, abdominal pain, and gastrointestinal discomfort. Studies have shown that the main affected tissue of OA is digestive tract. However, its toxic mechanism is not yet fully understood. In this study, we investigated the changes that occurred in the epithelial microenvironment following OA exposure, including the epithelial barrier and gut bacteria. We found that impaired epithelial cell junctions, mucus layer destruction, cytoskeletal remodeling, and increased bacterial invasion occurred in colon of rats after OA exposure. At the same time, the gut bacteria decreased in the abundance of beneficial bacteria and increased in the abundance of pathogenic bacteria, and there was a significant negative correlation between the abundance of pathogenic bacteria represented by Escherichia/Shigella and animal body weight. Metagenomic analysis inferred that Escherichia coli and Shigella spp. in Escherichia/Shigella may be involved in the process of cytoskeletal remodeling and mucosal layer damage caused by OA. Although more evidence is needed, our results suggest that opportunistic pathogens may be involved in the complex toxicity of OA during OA-induced epithelial barrier damage.
Collapse
Affiliation(s)
- Yang Liu
- Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China; Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tian-Qing Yuan
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jian-Wei Zheng
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hu Jiao
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Rui-Man Li
- Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Díaz PA, Álvarez G, Figueroa RI, Garreaud R, Pérez-Santos I, Schwerter C, Díaz M, López L, Pinto-Torres M, Krock B. From lipophilic to hydrophilic toxin producers: Phytoplankton succession driven by an atmospheric river in western Patagonia. MARINE POLLUTION BULLETIN 2023; 193:115214. [PMID: 37385183 DOI: 10.1016/j.marpolbul.2023.115214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Phytoplankton succession is related to hydroclimatic conditions. In this study we provide the first description of a toxic phytoplankton succession in the Patagonian Fjord System. The shift was modulated by atmospheric-oceanographic forcing and consisted of the replacement of the marine dinoflagellate Dinophysis acuta in a highly stratified water column during austral summer by the diatom Pseudo-nitzschia calliantha in a mixed water column during late summer and early autumn. This transition, accompanied by a change in the biotoxin profiles (from lipophilic dinophysis toxins to hydrophilic domoic acid), was induced by the arrival of an intense atmospheric river. The winds in Magdalena Sound may have been further amplified, due to its west-east orientation and its location within a tall, narrow mountain canyon. This work also documents the first known appearance of toxic P. calliantha in Northern Patagonian. The potential impacts of the biotoxins of this species on higher trophic levels are discussed.
Collapse
Affiliation(s)
- Patricio A Díaz
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile.
| | - Gonzalo Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1281, Chile; Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile; Center for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Rosa I Figueroa
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Vigo, Spain
| | - René Garreaud
- Centro de Ciencia del Clima y la Resiliencia (CR2), Universidad de Chile, Chile; Departamento de Geofísica, Universidad de Chile, Santiago 8370449, Región Metropolitana, Chile
| | - Iván Pérez-Santos
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción, Chile; Centro de Investigaciones en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
| | - Camila Schwerter
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile
| | - Manuel Díaz
- Instituto de Acuicultura, Programa de Investigación Pesquera, Universidad Austral de Chile, Los Pinos S/N, Puerto Montt, Chile
| | - Loreto López
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Padre Harter 574, Puerto Montt, Chile
| | - Marco Pinto-Torres
- Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Los Pinos S/N, Puerto Montt, Chile; Centro FONDAP de Investigación de Ecosistemas de Altas Latitudes (IDEAL), Universidad Austral de Chile, Av. El Bosque 01789, Punta Arenas, Chile
| | - Bernd Krock
- Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción, Chile; Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
| |
Collapse
|
4
|
Oxidative Stress Parameters and Morphological Changes in Japanese Medaka ( Oryzias latipes) after Acute Exposure to OA-Group Toxins. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010015. [PMID: 36675964 PMCID: PMC9867479 DOI: 10.3390/life13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Toxins of the OA-group (okadaic acid, OA; dinophysistoxin-1, DTX-1) are the most prevalent in the fjords of southern Chile, and are characterized by their potential harmful effects on aquatic organisms. The present study was carried out to determine the acute toxicity of OA/DTX-1 on oxidative stress parameters in medaka (Oryzias latipes) larvae. Medaka larvae were exposed to different concentrations (1.0-30 μg/mL) of OA/DTX-1 for 96 h to determine the median lethal concentration. The LC50 value after 96 h was 23.5 μg/mL for OA and 16.3 μg/mL for DTX-1 (95% confidence interval, CI was 22.56, 24.43 for OA and 15.42, 17.17 for DTX-1). Subsequently, larvae at 121 hpf were exposed to acute doses (10, 15 and 20 μg/mL OA and 5.0, 7.5 and 11.0 μg/mL DTX-1) for 96 h and every 6 h the corresponding group of larvae was euthanized in order to measure the activity levels of biochemical biomarkers (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPx; and glutathione reductase, GR) as well as the levels of oxidative damage (malondialdehyde, MDA; and carbonyl content). Our results showed that acute doses caused a decrease in SOD (≈25%), CAT (≈55%), and GPx and GR (≈35%) activities, while MDA levels and carbonyl content increased significantly at the same OA/DTX-1 concentrations. This study shows that acute exposure to OA-group toxins tends to simultaneously alter the oxidative parameters that induce sustained morphological damage in medaka larvae. DTX-1 stands out as producing greater inhibition of the antioxidant system, leading to increased oxidative damage in medaka larvae. Considering that DTX-1 is the most prevalent HAB toxin in southern Chile, these findings raise the possibility of an important environmental impact on the larval stages of different fish species present in the southern fjords of the South Pacific.
Collapse
|
5
|
Costas C, Louzao MC, Raposo-García S, Vale C, Vieytes MR, Botana LM. Intestinal secretory mechanisms in Okadaic acid induced diarrhoea. Food Chem Toxicol 2022; 169:113449. [DOI: 10.1016/j.fct.2022.113449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 10/31/2022]
|
6
|
Andrade-Villagrán PV, Agüero MJ, Navarro JM, Urzúa Á. The paralytic shellfish toxin effect on bioenergetic constituents of the fishery resource Chorus giganteus (Gastropoda: Muricidae). MARINE ENVIRONMENTAL RESEARCH 2022; 180:105735. [PMID: 36058088 DOI: 10.1016/j.marenvres.2022.105735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Alexandrium catenella, one of the most common harmful microalgae observed in southern Chile, produces paralytic shellfish toxins, which can affect many organisms throughout the trophic chain. This research evaluated how paralytic shellfish toxins affected the principal bioenergetic constituents and fatty acids composition of the carnivorous snail Chorus giganteus. Snails were separated into a "toxic" group that was fed the toxic clam Mulinia edulis (which was previously fed A. catenella), and a "non-toxic" group, fed non-toxic clams. Both groups were kept under these conditions for 63 days. Our results indicated no difference in the ingestion rate of toxic versus non-toxic snails; however, a higher protein level was identified in toxic snails. The total lipid content proved to be no different in toxic versus non-toxic snails; although, an effect of the toxic diet on the fatty acid profile of C. giganteus was observed. High levels of essential polyunsaturated fatty acids, especially docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in toxic snails, were identified. Our results suggest that exposure to paralytic shellfish toxins, through diet, may cause changes in the biochemical composition of C. giganteus, which may have a subsequent impact on its energetic physiology.
Collapse
Affiliation(s)
- P V Andrade-Villagrán
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, 4090541, Concepción, Chile.
| | - M J Agüero
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, 5090000, Valdivia, Chile
| | - J M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, 5090000, Valdivia, Chile; Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, 5090000, Valdivia, Chile
| | - Á Urzúa
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, 4090541, Concepción, Chile; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, 4090541, Concepción, Chile
| |
Collapse
|
7
|
Oyaneder-Terrazas J, Figueroa D, Araneda OF, García C. Saxitoxin Group Toxins Accumulation Induces Antioxidant Responses in Tissues of Mytilus chilensis, Ameghinomya antiqua, and Concholepas concholepas during a Bloom of Alexandrium pacificum. Antioxidants (Basel) 2022; 11:392. [PMID: 35204273 PMCID: PMC8869173 DOI: 10.3390/antiox11020392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Saxitoxin (STX) group toxins consist of a set of analogues which are produced by harmful algal blooms (HABs). During a HAB, filter-feeding marine organisms accumulate the dinoflagellates and concentrate the toxins in the tissues. In this study, we analyze the changes in antioxidant enzymes and oxidative damage in the bivalves Mytilus chilensis and Ameghinomya antiqua, and the gastropod Concholepas concholepas during a bloom of Alexandrium pacificum. The results show that during the exponential phase of the bloom bivalves show an increase in toxicity and activity of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathinoe reductase, p < 0.05), while in the gastropods, increased activity of antioxidant enzymes was associated with the bioaccumulation of toxins through the diet. At the end of the bloom, decreased activity of antioxidant enzymes in the visceral and non-visceral tissues was detected in the bivalves, with an increase in oxidative damage (p < 0.05), in which the latter is correlated with the detection of the most toxic analogues of the STX-group (r = 0.988). In conclusion, in areas with high incidence of blooms, shellfish show a high activity of antioxidants, however, during the stages involving the distribution and bioconversion of toxins, there is decreased activity of antioxidant enzymes resulting in oxidative damage.
Collapse
Affiliation(s)
- Javiera Oyaneder-Terrazas
- Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (J.O.-T.); (D.F.)
| | - Diego Figueroa
- Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (J.O.-T.); (D.F.)
| | - Oscar F. Araneda
- Integrative Laboratory of Biomechanics and Physiology of Effort, Kinesiology School, Faculty of Medicine, Universidad de Los Andes, Santiago 8320000, Chile;
| | - Carlos García
- Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (J.O.-T.); (D.F.)
| |
Collapse
|
8
|
Sandoval-Sanhueza A, Aguilera-Belmonte A, Basti L, Figueroa RI, Molinet C, Álvarez G, Oyanedel S, Riobó P, Mancilla-Gutiérrez G, Díaz PA. Interactive effects of temperature and salinity on the growth and cytotoxicity of the fish-killing microalgal species Heterosigma akashiwo and Pseudochattonella verruculosa. MARINE POLLUTION BULLETIN 2022; 174:113234. [PMID: 34922228 DOI: 10.1016/j.marpolbul.2021.113234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Fish-killing blooms of Heterosigma akashiwo and Pseudochattonella verruculosa have been devastating for the farmed salmon industry, but in Southern Chile the conditions that promote the growth and toxicity of these microalgae are poorly understood. This study examined the effects of different combinations of temperature (12, 15, 18 °C) and salinity (10, 20, 30 psu) on the growth of Chilean strains of these two species. The results showed that the optimal growth conditions for H. akashiwo and P. verruculosa differed, with a maximum rate of 0.99 day-1 obtained at 15 °C and a salinity of 20 psu for H. akashiwo, and a maximum rate of 1.06 day-1 obtained at 18 °C and a salinity of 30 psu for P. verruculosa. Cytotoxic assays (2 × 101 - 2 × 105 cell mL-1; cells, filtrates, and cell lysates) performed at salinities of 20 and 30 psu showed a 100% reduction in the viability of embryonic fish cells exposed to intact cells of H. akashiwo and a 39% reduction following exposure to culture filtrates of P. verruculosa. Differences in the fish-killing mechanisms (direct cell contact vs. extracellular substances) and physiological traits of H. akashiwo and P. verruculosa explain the recent occurrence of very large blooms under contrasting (cold-brackish vs. hot-salty) extreme climate conditions in Chile.
Collapse
Affiliation(s)
| | - Alejandra Aguilera-Belmonte
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lago Panguipulli 1390, Puerto Montt 5501842, Chile
| | - Leila Basti
- Faculty of Marine Environment and Resources, Tokyo University of Marine Science and Technology, 108-8477 Tokyo, Japan
| | - Rosa I Figueroa
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Carlos Molinet
- Programa de Investigación Pesquera, Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Programa Integrativo, Centro Interdisciplinario para la Investigación Acuícola (INCAR), Universidad de Concepción, Chile
| | - Gonzalo Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile; Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Larrondo 1281, Universidad Católica del Norte, Coquimbo, Chile
| | - Sandra Oyanedel
- Fraunhofer Chile Research - Fundación Chile, Quillaipe Aquaculture Center, Km 23.8 Quillaipe, Puerto Montt, Chile
| | - Pilar Riobó
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), 36208 Vigo, Spain
| | | | - Patricio A Díaz
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile.
| |
Collapse
|
9
|
Effects of the Marine Biotoxins Okadaic Acid and Dinophysistoxins on Fish. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9030293] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Natural high proliferations of toxin-producing microorganisms in marine and freshwater environments result in dreadful consequences at the socioeconomically and environmental level due to water and seafood contamination. Monitoring programs and scientific evidence point to harmful algal blooms (HABs) increasing in frequency and intensity as a result of global climate alterations. Among marine toxins, the okadaic acid (OA) and the related dinophysistoxins (DTX) are the most frequently reported in EU waters, mainly in shellfish species. These toxins are responsible for human syndrome diarrhetic shellfish poisoning (DSP). Fish, like other marine species, are also exposed to HABs and their toxins. However, reduced attention has been given to exposure, accumulation, and effects on fish of DSP toxins, such as OA. The present review intends to summarize the current knowledge of the impact of DSP toxins and to identify the main issues needing further research. From data reviewed in this work, it is clear that exposure of fish to DSP toxins causes a range of negative effects, from behavioral and morphological alterations to death. However, there is still much to be investigated about the ecological and food safety risks related to contamination of fish with DSP toxins.
Collapse
|
10
|
Díaz PA, Álvarez G, Seguel M, Marín A, Krock B. First detection of pectenotoxin-2 in shellfish associated with an intense spring bloom of Dinophysis acuminata on the central Chilean coast. MARINE POLLUTION BULLETIN 2020; 158:111414. [PMID: 32753198 DOI: 10.1016/j.marpolbul.2020.111414] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Diarrhetic shellfish poisoning (DSP) toxins and pectenotoxins (PTX) produced by endemic species of the genus Dinophysis, mainly D. acuta and D. acuminata, pose a big threat to public health, artisanal fisheries and the aquaculture industry in Southern Chile. This work reports the first detection of lipophilic toxins, including pectenotoxin-2 (PTX-2) and gymnodimine-A (GYM-A), in hard razor clam (Tagelus dombeii) associated with an unprecedented spring bloom -38.4 × 103 cells L-1 in integrated hose sampler (0-10 m) - of Dinophysis acuminata in coastal waters of central Chile. The socio-economic challenges to small-scale fisheries are discussed. The study points to the pressing need for sound policies to face unexpected HAB event, probably due to biogeographical expansions, with a focus on fisheries management, participation of stakeholders, and development of adaptive capacities.
Collapse
Affiliation(s)
- Patricio A Díaz
- Centro i~mar & CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile.
| | - Gonzalo Álvarez
- Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile; Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Larrondo 1281, Universidad Católica del Norte, Coquimbo, Chile
| | - Miriam Seguel
- Centro Regional de Análisis de Recursos y Medio Ambiente (CERAM), Universidad Austral de Chile, Los Pinos s/n, Balneario Pelluco, Puerto Montt, Chile
| | - Andrés Marín
- Centro de Estudios del Desarrollo Regional y Políticas Públicas (CEDER), Universidad de Los Lagos, Osorno, Chile
| | - Bernd Krock
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
| |
Collapse
|
11
|
Figueroa D, Signore A, Araneda O, Contreras HR, Concha M, García C. Toxicity and differential oxidative stress effects on zebrafish larvae following exposure to toxins from the okadaic acid group. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:573-588. [PMID: 32686606 DOI: 10.1080/15287394.2020.1793046] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Okadaic acid-group (OA-group) is a set of lipophilic toxins produced only in seawater by species of the Dinophysis and Prorocentrum genera, and characterized globally by being associated with harmful algal blooms (HABs). The diarrhetic shellfish poisoning toxins okadaic acid (OA) and dinophysistoxin-1 (DTX-1) are the most prevalent toxic analogues making up the OA-group, which jeopardize environmental safety and human health through consumption of hydrobiological organisms contaminated with these toxins that produce diarrhetic shellfish poisoning (DSP) syndrome in humans. Consequently, a regulatory limit of 160 μg of OA-group/kg was established for marine resources (bivalves). The aim of this study was to investigate effects varying concentrations of 1-15 μg/ml OA or DTX-1 on toxicity, development, and oxidative damage in zebrafish larvae (Danio rerio). After determining the lethal concentration 50 (LC50) in zebrafish larvae of 10 and 7 μg/ml (24 h) and effective concentration 50 (EC50) of 8 and 6 μg/ml (24 h), different concentrations (5, 6.5, or 8 μg/ml of OA and 4, 4.5, or 6 μg/ml of DTX-1) were used to examine the effects of these toxins on oxidative damage to larvae at different time points between 24 and 120 hpf. Macroscopic evaluation during the exposure period showed alterations in zebrafish including pericardial edema, cyclopia, shortening in the anteroposterior axis, and developmental delay. The activity levels of biochemical biomarkers superoxide dismutase (SOD) and catalase (CAT) demonstrated a concentration-dependent decrease while glutathione peroxidase (GPx) and glutathione reductase (GR) were markedly elevated. In addition, increased levels of oxidative damage (malondialdehyde and carbonyl content) were detected following toxin exposure. Data demonstrate that high concentrations of OA and DTX-1produced pathological damage in the early stages of development <48 h post-fertilization (hpf) associated with oxidative damage.
Collapse
Affiliation(s)
- Diego Figueroa
- Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad De Chile , Santiago, Chile
| | - Ailen Signore
- Anatomy and Developmental Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad De Chile , Santiago, Chile
| | - Oscar Araneda
- Integrative Laboratory of Biomechanics and Physiology of Effort, Kinesiology School, Faculty of Medicine, Universidad De Los Andes , Santiago, Chile
| | - Héctor R Contreras
- Department of Basic and Clinical Oncology, Faculty of Medicine, Universidad De Chile , Santiago, Chile
| | - Miguel Concha
- Anatomy and Developmental Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad De Chile , Santiago, Chile
| | - Carlos García
- Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad De Chile , Santiago, Chile
| |
Collapse
|
12
|
Campos A, Freitas M, de Almeida AM, Martins JC, Domínguez-Pérez D, Osório H, Vasconcelos V, Reis Costa P. OMICs Approaches in Diarrhetic Shellfish Toxins Research. Toxins (Basel) 2020; 12:E493. [PMID: 32752012 PMCID: PMC7472309 DOI: 10.3390/toxins12080493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Diarrhetic shellfish toxins (DSTs) are among the most prevalent marine toxins in Europe's and in other temperate coastal regions. These toxins are produced by several dinoflagellate species; however, the contamination of the marine trophic chain is often attributed to species of the genus Dinophysis. This group of toxins, constituted by okadaic acid (OA) and analogous molecules (dinophysistoxins, DTXs), are highly harmful to humans, causing severe poisoning symptoms caused by the ingestion of contaminated seafood. Knowledge on the mode of action and toxicology of OA and the chemical characterization and accumulation of DSTs in seafood species (bivalves, gastropods and crustaceans) has significantly contributed to understand the impacts of these toxins in humans. Considerable information is however missing, particularly at the molecular and metabolic levels involving toxin uptake, distribution, compartmentalization and biotransformation and the interaction of DSTs with aquatic organisms. Recent contributions to the knowledge of DSTs arise from transcriptomics and proteomics research. Indeed, OMICs constitute a research field dedicated to the systematic analysis on the organisms' metabolisms. The methodologies used in OMICs are also highly effective to identify critical metabolic pathways affecting the physiology of the organisms. In this review, we analyze the main contributions provided so far by OMICs to DSTs research and discuss the prospects of OMICs with regard to the DSTs toxicology and the significance of these toxins to public health, food safety and aquaculture.
Collapse
Affiliation(s)
- Alexandre Campos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (M.F.); (J.C.M.); (D.D.-P.); (V.V.)
| | - Marisa Freitas
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (M.F.); (J.C.M.); (D.D.-P.); (V.V.)
- ESS-P.Porto, School of Health, Polytechnic Institute of Porto. Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - André M. de Almeida
- LEAF-Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal;
| | - José Carlos Martins
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (M.F.); (J.C.M.); (D.D.-P.); (V.V.)
| | - Dany Domínguez-Pérez
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (M.F.); (J.C.M.); (D.D.-P.); (V.V.)
| | - Hugo Osório
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (M.F.); (J.C.M.); (D.D.-P.); (V.V.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro Reis Costa
- IPMA—Instituto Português do Mar da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal;
| |
Collapse
|
13
|
Oyaneder-Terrazas J, Polanco C, Figueroa D, Barriga A, García C. In vitro biotransformation of OA-group and PTX-group toxins in visceral and non-visceral tissues of Mytilus chilensis and Ameghinomya antiqua. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1216-1228. [PMID: 32515303 DOI: 10.1080/19440049.2020.1750710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lipophilic marine toxins (LMTs) are made up of multiple groups of toxic analogues, which are characterised by different levels of cellular and toxic action. The most prevalent groups in the southern Pacific zone are: a) okadaic acid group (OA-group) which consists of okadaic acid (OA) and dinophysistoxin-1 (DTX-1); and, b) pectenotoxin-2 (PTX2) group which consists of pectenotoxin-2 (PTX-2). The main objective of our study was to examine in vitro biotransformation of OA-group and PTX-group in the tissues of two endemic species of bivalves from southern Chile; blue mussels (Mytilus chilensis) and clams (Ameghinomya antiqua). The biotransformation processes of both groups were only detected in the digestive glands of both species using LC-MS/MS. The most frequently detected analogues were acyl derivatives (≈2.0 ± 0.1 μg ml-1) for OA-group and PTX-2SA (≈1.4 ± 0.1 μg ml-1) for PTX-group, with a higher percentage of biotransformation for OA-group (p < .001). In addition, simultaneous incubations of the different analogues (OA/PTX-2; DTX-1/PTX-2 and OA/DTX-1/PTX-2) did not show any interaction between the biotransformation processes. These results show that the toxicological variability of endemic species leads to biotransformation of the profile of toxins, so that these new analogues may affect people's health.
Collapse
Affiliation(s)
- Javiera Oyaneder-Terrazas
- Laboratory of Marine Toxins, Physiology and Biophysics Programme, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago, Chile.,Faculty of Technology, Universidad de Santiago , Santiago, Chile
| | - Cassandra Polanco
- Laboratory of Marine Toxins, Physiology and Biophysics Programme, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago, Chile.,Faculty of Technology, Universidad de Santiago , Santiago, Chile
| | - Diego Figueroa
- Laboratory of Marine Toxins, Physiology and Biophysics Programme, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago, Chile
| | - Andres Barriga
- CEPEDEQ, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile , Santiago, Chile
| | - Carlos García
- Laboratory of Marine Toxins, Physiology and Biophysics Programme, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago, Chile
| |
Collapse
|
14
|
Toxins of Okadaic Acid-Group Increase Malignant Properties in Cells of Colon Cancer. Toxins (Basel) 2020; 12:toxins12030179. [PMID: 32183214 PMCID: PMC7150798 DOI: 10.3390/toxins12030179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
Diarrhetic shellfish poisoning (DSP) is a syndrome caused by the intake of shellfish contaminated with a group of lipophilic and thermostable toxins, which consists of okadaic acid (OA), dinophysistoxin-1 (DTX-1) and dinophysistoxin-2 (DTX-2). These toxins are potent protein Ser/Thr phosphatase inhibitors, mainly type 1 protein phosphatase (PP1) and type 2A protein phosphatase (PP2A). Different effects have been reported at the cellular, molecular and genetic levels. In this study, changes in cell survival and cell mobility induced by OA, DTX-1 and DTX-2 were determined in epithelial cell lines of the colon and colon cancer. The cell viability results showed that tumoral cell lines were more resistant to toxins than the nontumoral cell line. The results of the functional assays for testing cell migration, evaluation of cell death and the expression of proteins associated with cell adhesion showed a dual effect of toxins since in the nontumoral cell line, a greater induction of cell death, presumably by anoikis, was detected. In the tumoral cell lines, there was an induction of a more aggressive phenotype characterized by increased resistance to toxins, increased migration and increased FAK activation. In tumoral cell lines of colon cancer, OA, DTX-1/DTX-2 induce a more aggressive phenotype.
Collapse
|
15
|
Jiao YH, Liu M, Wang G, Li HY, Liu JS, Yang X, Yang WD. EMT is the major target for okadaic acid-suppressed the development of neural crest cells in chick embryo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:192-201. [PMID: 31085430 DOI: 10.1016/j.ecoenv.2019.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
As a main marine phycotoxin, okadaic acid (OA) is mainly responsible for diarrheic shellfish poisoning (DSP), through specifically inhibiting phosphatase (PP1 and PP2A). It has been shown that isotope labelled-OA could cross the placental barrier in mice. However, it remains obscure how OA exposure could affect the formation of neural crest cells (NCCs), especially cranial NCCs in early embryo development. Here, we explored the effects of OA exposure on the generation of neural crest cells during embryonic development using the classic chick embryo model. We found that OA exposure at 100 nM (80.5 μg/L) could cause craniofacial bone defects in the developing chick embryo and delay the development of early chick embryos. Immunofluorescent staining of HNK-1, Pax7, and Ap-2α demonstrated that cranial NCC generation was inhibited by OA exposure. Double immunofluorescent staining with Ap-2α/PHIS3 or Pax7/c-Caspase3 manifested that both NCC proliferation and apoptosis were restrained by OA exposure. Furthermore, the expression of Msx1 and BMP4 were down-regulated in the developing chick embryonic neural tubes, which could contribute the inhibitive production of NCCs. We also discovered that expression of EMT-related adhesion molecules, such as Cadherin 6B (Cad6B) and E-cadherin, was altered following OA exposure. In sum, OA exposure negatively affected the development of embryonic neural crest cells, which in turn might result in cranial bone malformation.
Collapse
Affiliation(s)
- Yu-Hu Jiao
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Meng Liu
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Guang Wang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xuesong Yang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China.
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|