1
|
Gao F, Cheng C, Li R, Chen Z, Tang K, Du G. The role of Akkermansia muciniphila in maintaining health: a bibliometric study. Front Med (Lausanne) 2025; 12:1484656. [PMID: 39967592 PMCID: PMC11833336 DOI: 10.3389/fmed.2025.1484656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Background Akkermansia muciniphila, as a probiotic, is negatively linked to IBD, obesity, and T2DM. The aim of this study was to comprehensively assess the research status of Akkermansia muciniphila over the past decade and explore the relationships between this bacterium and various health-related aspects. Methods Tools VOSviewer, Bibliometrix, and CiteSpace were used to analyze various aspects including publication metrics, contributors, institutions, geography, journals, funding, and keywords. Results Over the past decade, research on Akkermansia muciniphila has demonstrated a consistent annual growth in the number of publications, with a notable peak in 2021. China led in the number of publications, totaling 151, whereas the United States exhibited a higher centrality value. Among the 820 institutions involved in the research, the University of California (from the United States) and the Chinese Academy of Sciences (from China) occupied central positions. Willem M. De Vos ranked at the top, with 12 publications and 1,108 citations. The journal GUT, which had 5,125 citations and an Impact Factor of 23.0 in 2024, was the most highly cited. The most cited articles deepened the understanding of the bacterium's impact on human health, spanning from basic research to translational medicine. Thirty-nine high-frequency keywords were grouped into five clusters, illustrating Akkermansia muciniphila's associations with metabolic diseases, chronic kidney disease, the gut-brain axis, intestinal inflammation, and Bacteroidetes-Firmicutes shifts. Conclusion Given Akkermansia muciniphila's anti-inflammatory and gut-barrier-strengthening properties, it holds promise as a therapeutic for obesity, metabolic disorders, and inflammatory conditions. Therefore, future research should explore its potential further by conducting clinical trials, elucidating its mechanisms of action, and investigating its efficacy and safety in diverse patient populations.
Collapse
Affiliation(s)
- Fangfang Gao
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Canyu Cheng
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Runwei Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Zongcun Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
- Department of Endocrinology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ke Tang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Guankui Du
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| |
Collapse
|
2
|
Rao L, Dong B, Chen Y, Liao J, Wang C, Fu G, Wan Y. Study on the mechanism of lactic acid bacteria and their fermentation broth in alleviating hyperuricemia based on metabolomics and gut microbiota. Front Nutr 2024; 11:1495346. [PMID: 39698246 PMCID: PMC11652139 DOI: 10.3389/fnut.2024.1495346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Hyperuricemia (HUA) is a metabolic disease caused by purine metabolism disorders in the body. Lactic acid bacteria (LAB) and their fermentation broth have the potential to alleviate hyperuricemia, but the potential mechanism of action is still unclear. Methods The LAB with high inhibitory activity against xanthine oxidase (XOD) were screened out. Then the fermentation broth, fermentation supernatant and fermentation bacteria after fermentation of these LAB were administered into HUA mice, respectively. Results Lactobacillus reuteri NCUF203.1 and Lactobacillus brevis NCUF207.7, of which fermentation supernatant had high inhibitory activity against XOD, were screened out and administered into HUA mice. Among them, L. reuteri strain, L. reuteri fermentation broth, L. brevis fermentation broth and L. brevis fermentation supernatant could significantly reduce serum uric acid levels and inhibited the liver XOD activity in HUA mice. The GC-MS metabolomics analysis of colon contents showed that supplementation of these four substances could partially reverse the down-regulation of energy metabolism pathways such as ketone body metabolism, pyruvate metabolism and citric acid cycle in HUA mice. It could also regulate amino acid metabolism pathways such as alanine metabolism, arginine and proline metabolism, glycine and serine metabolism, and repair the disorders of amino acid metabolism caused by HUA. In addition, the intervention of L. brevis fermentation broth and L. brevis fermentation supernatant may also accelerate the catabolism of uric acid in the intestine by up-regulating the urea cycle pathway. Fecal 16S rRNA sequencing analysis showed that their intervention increased the diversity of gut microbiota in HUA mice and alleviated the gut microbiota dysregulation caused by HUA. Discussion These results indicated that the LAB and their fermentation broth may play a role in alleviating HUA by regulating intestinal metabolism and gut microbiota.
Collapse
Affiliation(s)
- Lijuan Rao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Biao Dong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Yanru Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Jiajing Liao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Chen Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi, China
| | - Yin Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Zhao Y, Yang H, Wu P, Yang S, Xue W, Xu B, Zhang S, Tang B, Xu D. Akkermansia muciniphila: A promising probiotic against inflammation and metabolic disorders. Virulence 2024; 15:2375555. [PMID: 39192579 PMCID: PMC11364076 DOI: 10.1080/21505594.2024.2375555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic disease is a worldwide epidemic that has become a public health problem. Gut microbiota is considered to be one of the important factors that maintain human health by regulating host metabolism. As an abundant bacterium in the host gut, A. muciniphila regulates metabolic and immune functions, and protects gut health. Multiple studies have indicated that alterations in the abundance of A. muciniphila are associated with various diseases, including intestinal inflammatory diseases, obesity, type 2 diabetes mellitus, and even parasitic diseases. Beneficial effects were observed not only in live A. muciniphila, but also in pasteurized A. muciniphila, A. muciniphila-derived extracellular vesicles, outer membrane, and secreted proteins. Although numerous studies have only proven the simple correlation between multiple diseases and A. muciniphila, an increasing number of studies in animal models and preclinical models have demonstrated that the beneficial impacts shifted from correlations to in-depth mechanisms. In this review, we provide a comprehensive view of the beneficial effects of A. muciniphila on different diseases and summarize the potential mechanisms of action of A. muciniphila in the treatment of diseases. We provide a comprehensive understanding of A. muciniphila for improving host health and discuss the perspectives of A. muciniphila in the future studies.
Collapse
Affiliation(s)
- Yanqing Zhao
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Huijun Yang
- The First School of Clinical Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Peng Wu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shuguo Yang
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wenkun Xue
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Biao Xu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Sirui Zhang
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Bin Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Daoxiu Xu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
4
|
Khalili L, Park G, Nagpal R, Salazar G. The Role of Akkermansia muciniphila on Improving Gut and Metabolic Health Modulation: A Meta-Analysis of Preclinical Mouse Model Studies. Microorganisms 2024; 12:1627. [PMID: 39203469 PMCID: PMC11356609 DOI: 10.3390/microorganisms12081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Akkermansia muciniphila (A. muciniphila) and its derivatives, including extracellular vesicles (EVs) and outer membrane proteins, are recognized for enhancing intestinal balance and metabolic health. However, the mechanisms of Akkermansia muciniphila's action and its effects on the microbiome are not well understood. In this study, we examined the influence of A. muciniphila and its derivatives on gastrointestinal (GI) and metabolic disorders through a meta-analysis of studies conducted on mouse models. A total of 39 eligible studies were identified through targeted searches on PubMed, Web of Science, Science Direct, and Embase until May 2024. A. muciniphila (alive or heat-killed) and its derivatives positively affected systemic and gut inflammation, liver enzyme level, glycemic response, and lipid profiles. The intervention increased the expression of tight-junction proteins in the gut, improving gut permeability in mouse models of GI and metabolic disorders. Regarding body weight, A. muciniphila and its derivatives prevented weight loss in animals with GI disorders while reducing body weight in mice with metabolic disorders. Sub-group analysis indicated that live bacteria had a more substantial effect on most analyzed biomarkers. Gut microbiome analysis using live A. muciniphila identified a co-occurrence cluster, including Desulfovibrio, Family XIII AD3011 group, and Candidatus Saccharimonas. Thus, enhancing the intestinal abundance of A. muciniphila and its gut microbial clusters may provide more robust health benefits for cardiometabolic, and age-related diseases compared with A. muciniphila alone. The mechanistic insight elucidated here will pave the way for further exploration and potential translational applications in human health.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
| | - Gwoncheol Park
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
| | - Ravinder Nagpal
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
| | - Gloria Salazar
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
- Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
5
|
Galeeva JS, Fedorov DE, Starikova EV, Manolov AI, Pavlenko AV, Selezneva OV, Klimina KM, Veselovsky VA, Morozov MD, Yanushevich OO, Krikheli NI, Levchenko OV, Andreev DN, Sokolov FS, Fomenko AK, Devkota MK, Andreev NG, Zaborovskiy AV, Bely PA, Tsaregorodtsev SV, Evdokimov VV, Maev IV, Govorun VM, Ilina EN. Microbial Signatures in COVID-19: Distinguishing Mild and Severe Disease via Gut Microbiota. Biomedicines 2024; 12:996. [PMID: 38790958 PMCID: PMC11118803 DOI: 10.3390/biomedicines12050996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has significantly impacted global healthcare, underscoring the importance of exploring the virus's effects on infected individuals beyond treatments and vaccines. Notably, recent findings suggest that SARS-CoV-2 can infect the gut, thereby altering the gut microbiota. This study aimed to analyze the gut microbiota composition differences between COVID-19 patients experiencing mild and severe symptoms. We conducted 16S rRNA metagenomic sequencing on fecal samples from 49 mild and 43 severe COVID-19 cases upon hospital admission. Our analysis identified a differential abundance of specific bacterial species associated with the severity of the disease. Severely affected patients showed an association with Enterococcus faecium, Akkermansia muciniphila, and others, while milder cases were linked to Faecalibacterium prausnitzii, Alistipes putredinis, Blautia faecis, and additional species. Furthermore, a network analysis using SPIEC-EASI indicated keystone taxa and highlighted structural differences in bacterial connectivity, with a notable disruption in the severe group. Our study highlights the diverse impacts of SARS-CoV-2 on the gut microbiome among both mild and severe COVID-19 patients, showcasing a spectrum of microbial responses to the virus. Importantly, these findings align, to some extent, with observations from other studies on COVID-19 gut microbiomes, despite variations in methodologies. The findings from this study, based on retrospective data, establish a foundation for future prospective research to confirm the role of the gut microbiome as a predictive biomarker for the severity of COVID-19.
Collapse
Affiliation(s)
- Julia S. Galeeva
- Research Institute for Systems Biology and Medicine, Department of Mathematical Biology and Bioinformatics, Moscow 117246, Russia; (D.E.F.); (E.V.S.); (A.I.M.); (A.V.P.)
| | - Dmitry E. Fedorov
- Research Institute for Systems Biology and Medicine, Department of Mathematical Biology and Bioinformatics, Moscow 117246, Russia; (D.E.F.); (E.V.S.); (A.I.M.); (A.V.P.)
| | - Elizaveta V. Starikova
- Research Institute for Systems Biology and Medicine, Department of Mathematical Biology and Bioinformatics, Moscow 117246, Russia; (D.E.F.); (E.V.S.); (A.I.M.); (A.V.P.)
| | - Alexander I. Manolov
- Research Institute for Systems Biology and Medicine, Department of Mathematical Biology and Bioinformatics, Moscow 117246, Russia; (D.E.F.); (E.V.S.); (A.I.M.); (A.V.P.)
| | - Alexander V. Pavlenko
- Research Institute for Systems Biology and Medicine, Department of Mathematical Biology and Bioinformatics, Moscow 117246, Russia; (D.E.F.); (E.V.S.); (A.I.M.); (A.V.P.)
| | - Oksana V. Selezneva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (O.V.S.); (K.M.K.); (V.A.V.); (M.D.M.)
| | - Ksenia M. Klimina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (O.V.S.); (K.M.K.); (V.A.V.); (M.D.M.)
| | - Vladimir A. Veselovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (O.V.S.); (K.M.K.); (V.A.V.); (M.D.M.)
| | - Maxim D. Morozov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (O.V.S.); (K.M.K.); (V.A.V.); (M.D.M.)
| | - Oleg O. Yanushevich
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Natella I. Krikheli
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Oleg V. Levchenko
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Dmitry N. Andreev
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Filipp S. Sokolov
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Aleksey K. Fomenko
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Mikhail K. Devkota
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Nikolai G. Andreev
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Andrey V. Zaborovskiy
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Petr A. Bely
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Sergei V. Tsaregorodtsev
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Vladimir V. Evdokimov
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Igor V. Maev
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Vadim M. Govorun
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| | - Elena N. Ilina
- Department of Clinical Dentistry, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (O.O.Y.); (N.I.K.); (O.V.L.); (D.N.A.); (F.S.S.); (A.K.F.); (M.K.D.); (N.G.A.); (A.V.Z.); (P.A.B.); (S.V.T.); (V.V.E.); (I.V.M.); (V.M.G.)
| |
Collapse
|
6
|
Wu R, Xiong R, Li Y, Chen J, Yan R. Gut microbiome, metabolome, host immunity associated with inflammatory bowel disease and intervention of fecal microbiota transplantation. J Autoimmun 2023; 141:103062. [PMID: 37246133 DOI: 10.1016/j.jaut.2023.103062] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Gut dysbiosis has been associated with inflammatory bowel disease (IBD), one of the most common gastrointestinal diseases. The microbial communities play essential roles in host physiology, with profound effects on immune homeostasis, directly or via their metabolites and/or components. There are increasing clinical trials applying fecal microbiota transplantation (FMT) with Crohn's disease (CD) and ulcerative colitis (UC). The restoration of dysbiotic gut microbiome is considered as one of the mechanisms of FMT therapy. In this work, latest advances in the alterations in gut microbiome and metabolome features in IBD patients and experimental mechanistic understanding on their contribution to the immune dysfunction were reviewed. Then, the therapeutic outcomes of FMT on IBD were summarized based on clinical remission, endoscopic remission and histological remission of 27 clinical trials retrieved from PubMed which have been registered on ClinicalTrials.gov with the results been published in the past 10 years. Although FMT is established as an effective therapy for both subtypes of IBD, the promising outcomes are not always achieved. Among the 27 studies, only 11 studies performed gut microbiome profiling, 5 reported immune response alterations and 3 carried out metabolome analysis. Generally, FMT partially restored typical changes in IBD, resulted in increased α-diversity and species richness in responders and similar but less pronounced shifts of patient microbial and metabolomics profiles toward donor profiles. Measurements of immune responses to FMT mainly focused on T cells and revealed divergent effects on pro-/anti-inflammatory functions. The very limited information and the extremely confounding factors in the designs of the FMT trials significantly hindered a reasonable conclusion on the mechanistic involvement of gut microbiota and metabolites in clinical outcomes and an analysis of the inconsistencies.
Collapse
Affiliation(s)
- Rongrong Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Rui Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Yan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Junru Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
7
|
Li J, Yang G, Zhang Q, Liu Z, Jiang X, Xin Y. Function of Akkermansia muciniphila in type 2 diabetes and related diseases. Front Microbiol 2023; 14:1172400. [PMID: 37396381 PMCID: PMC10310354 DOI: 10.3389/fmicb.2023.1172400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
The prevalence of type 2 diabetes (T2D) is increasing worldwide, with many patients developing long-term complications that affect their cardiovascular, urinary, alimentary, and other systems. A growing body of literature has reported the crucial role of gut microbiota in metabolic diseases, one of which, Akkermansia muciniphila, is considered the "next-generation probiotic" for alleviating metabolic disorders and the inflammatory response. Although extensive research has been conducted on A. muciniphila, none has summarized its regulation in T2D. Hence, this review provides an overview of the effects and multifaceted mechanisms of A. muciniphila on T2D and related diseases, including improving metabolism, alleviating inflammation, enhancing intestinal barrier function, and maintaining microbiota homeostasis. Furthermore, this review summarizes dietary strategies for increasing intestinal A. muciniphila abundance and effective gastrointestinal delivery.
Collapse
Affiliation(s)
- Jinjie Li
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Qihe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| |
Collapse
|
8
|
Cui C, Hong H, Shi Y, Zhou Y, Qiao CM, Zhao WJ, Zhao LP, Wu J, Quan W, Niu GY, Wu YB, Li CS, Cheng L, Hong Y, Shen YQ. Vancomycin Pretreatment on MPTP-Induced Parkinson's Disease Mice Exerts Neuroprotection by Suppressing Inflammation Both in Brain and Gut. J Neuroimmune Pharmacol 2023; 18:72-89. [PMID: 35091889 DOI: 10.1007/s11481-021-10047-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/21/2021] [Indexed: 01/02/2023]
Abstract
A growing body of evidence implies that gut microbiota was involved in pathogenesis of Parkinson's disease (PD), but the mechanism is still unclear. The aim of this study is to investigate the effects of antibiotics pretreatment on the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mice. In this study, vancomycin pretreatment was given by gavage once daily with either vancomycin or distilled water for 14 days to mice, then mice were administered with MPTP (20 mg/kg, i.p) for four times in one day to establish an acute PD model. Results show that vancomycin pretreatment significantly improved motor dysfunction of mice in pole and traction tests. Although vancomycin pretreatment had no effect on dopamine (DA) or the process of DA synthesis, it inhibited the metabolism of DA by suppressing the expression of striatal monoamine oxidase B (MAO-B). Furthermore, vancomycin pretreatment reduced the number of astrocytes and microglial cells in the substantia nigra pars compacta (SNpc) to alleviate neuroinflammation, decreased the expression of TLR4/MyD88/NF-κB/TNF-α signaling pathway in both brain and gut. Meanwhile, vancomycin pretreatment changed gut microbiome composition and the levels of fecal short chain fatty acids (SCFAs). The abundance of Akkermansia and Blautia increased significantly after vancomycin pretreatment, which might be related to inflammation and inhibition of TLR4 signaling pathway. In summary, these results demonstrate that the variation of gut microbiota and its metabolites induced by vancomycin pretreatment might decrease dopamine metabolic rate and relieve inflammation in both gut and brain via the microbiota-gut-brain axis in MPTP-induced PD mice. The neuroprotection of vancomycin pretreatment on MPTP-induced Parkinson's disease mice The alterations of gut microbiota and SCFAs induced by vancomycin pretreatment might not only improve motor dysfunction, but also decrease dopamine metabolism and relieve inflammation in both brain and gut via TLR4/MyD88/NF-κB/TNF-α pathway in MPTP-induced PD mice.
Collapse
Affiliation(s)
- Chun Cui
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hui Hong
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yun Shi
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yu Zhou
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Chen-Meng Qiao
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wei-Jiang Zhao
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Li-Ping Zhao
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jian Wu
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wei Quan
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Gu-Yu Niu
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yi-Bo Wu
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Chao-Sheng Li
- Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yan-Qin Shen
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
9
|
Pellegrino A, Coppola G, Santopaolo F, Gasbarrini A, Ponziani FR. Role of Akkermansia in Human Diseases: From Causation to Therapeutic Properties. Nutrients 2023; 15:nu15081815. [PMID: 37111034 PMCID: PMC10142179 DOI: 10.3390/nu15081815] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The gut microbiota plays a critical role in the modulation of host metabolism and immune response, and its impairment has been implicated in many gastrointestinal and extraintestinal diseases. Current evidence shows the well-documented role of A. muciniphila in maintaining the integrity of the intestinal barrier, modulating the host immune response, and improving several metabolic pathways, making it a key element in the pathogenesis of several human diseases. In this scenario, A. muciniphila is the most promising next-generation probiotic and one of the first microbial species suitable for specific clinical use when compared with traditional probiotics. Further studies are needed to provide more accurate insight into its mechanisms of action and to better elucidate its properties in several major areas, paving the way for a more integrated and personalized therapeutic approach that finally makes the most of our knowledge of the gut microbiota.
Collapse
Affiliation(s)
- Antonio Pellegrino
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
| | - Gaetano Coppola
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
10
|
van Leeuwen PT, Brul S, Zhang J, Wortel MT. Synthetic microbial communities (SynComs) of the human gut: design, assembly, and applications. FEMS Microbiol Rev 2023; 47:fuad012. [PMID: 36931888 PMCID: PMC10062696 DOI: 10.1093/femsre/fuad012] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
The human gut harbors native microbial communities, forming a highly complex ecosystem. Synthetic microbial communities (SynComs) of the human gut are an assembly of microorganisms isolated from human mucosa or fecal samples. In recent decades, the ever-expanding culturing capacity and affordable sequencing, together with advanced computational modeling, started a ''golden age'' for harnessing the beneficial potential of SynComs to fight gastrointestinal disorders, such as infections and chronic inflammatory bowel diseases. As simplified and completely defined microbiota, SynComs offer a promising reductionist approach to understanding the multispecies and multikingdom interactions in the microbe-host-immune axis. However, there are still many challenges to overcome before we can precisely construct SynComs of designed function and efficacy that allow the translation of scientific findings to patients' treatments. Here, we discussed the strategies used to design, assemble, and test a SynCom, and address the significant challenges, which are of microbiological, engineering, and translational nature, that stand in the way of using SynComs as live bacterial therapeutics.
Collapse
Affiliation(s)
- Pim T van Leeuwen
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jianbo Zhang
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Meike T Wortel
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
11
|
Jian H, Liu Y, Wang X, Dong X, Zou X. Akkermansia muciniphila as a Next-Generation Probiotic in Modulating Human Metabolic Homeostasis and Disease Progression: A Role Mediated by Gut-Liver-Brain Axes? Int J Mol Sci 2023; 24:ijms24043900. [PMID: 36835309 PMCID: PMC9959343 DOI: 10.3390/ijms24043900] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Appreciation of the importance of Akkermansia muciniphila is growing, and it is becoming increasingly relevant to identify preventive and/or therapeutic solutions targeting gut-liver-brain axes for multiple diseases via Akkermansia muciniphila. In recent years, Akkermansia muciniphila and its components such as outer membrane proteins and extracellular vesicles have been known to ameliorate host metabolic health and intestinal homeostasis. However, the impacts of Akkermansia muciniphila on host health and disease are complex, as both potentially beneficial and adverse effects are mediated by Akkermansia muciniphila and its derivatives, and in some cases, these effects are dependent upon the host physiology microenvironment and the forms, genotypes, and strain sources of Akkermansia muciniphila. Therefore, this review aims to summarize the current knowledge of how Akkermansia muciniphila interacts with the host and influences host metabolic homeostasis and disease progression. Details of Akkermansia muciniphila will be discussed including its biological and genetic characteristics; biological functions including anti-obesity, anti-diabetes, anti-metabolic-syndrome, anti-inflammation, anti-aging, anti-neurodegenerative disease, and anti-cancer therapy functions; and strategies to elevate its abundance. Key events will be referred to in some specific disease states, and this knowledge should facilitate the identification of Akkermansia muciniphila-based probiotic therapy targeting multiple diseases via gut-liver-brain axes.
Collapse
|
12
|
Zhao Q, Yu J, Hao Y, Zhou H, Hu Y, Zhang C, Zheng H, Wang X, Zeng F, Hu J, Gu L, Wang Z, Zhao F, Yue C, Zhou P, Zhang H, Huang N, Wu W, Zhou Y, Li J. Akkermansia muciniphila plays critical roles in host health. Crit Rev Microbiol 2023; 49:82-100. [PMID: 35603929 DOI: 10.1080/1040841x.2022.2037506] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Akkermansia muciniphila, an intestinal microorganism, belongs to Verrucomicrobia, one of the most abundant microorganisms in the mammalian gut. It is a mucin-degrading bacterium that can colonise intestines of mammals such as humans and mice by utilising mucin as the only nitrogen and carbon source. When A. muciniphila colonises the intestine, its metabolites interact with the intestinal barrier, affecting host health by consolidating the intestinal barrier, regulating metabolic functions of the intestinal and circulatory systems, and regulating immune functions. This review summarised the mechanisms of A. muciniphila-host interactions that are relevant to host health. We focussed on characteristics of A. muciniphila in relation to its metabolites to provide a comprehensive understanding of A. muciniphila and its effects on host health and disease processes.
Collapse
Affiliation(s)
- Qixiang Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yan Hao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Chen Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huaping Zheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jing Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Linna Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhen Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Haozhou Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Nongyu Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yifan Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
13
|
Jiang L, Yuan C, Ye W, Huang Q, Chen Z, Wu W, Qian L. Akkermansia and its metabolites play key roles in the treatment of campylobacteriosis in mice. Front Immunol 2023; 13:1061627. [PMID: 36713373 PMCID: PMC9877526 DOI: 10.3389/fimmu.2022.1061627] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Campylobacter jejuni (C. jejuni) is a common food-borne bacterial pathogen that can use the host's innate immune response to induce the development of colitis. There has been some research on the role of normal intestinal flora in C. jejuni-induced colitis, but the mechanisms that play a central role in resistance to C. jejuni infection have not been explored. Methods We treated Campylobacter jejuni-infected mice with fecal microbiota transplantation (FMT), oral butyric acid and deoxycholic acid in a controlled trial and analyzed the possible mechanisms of treatment by a combination of chromatography, immunohistochemistry, fluorescence in situ hybridization, 16s rRNA gene, proteomics and western blot techniques. Results We first investigated the therapeutic effect of FMT on C. jejuni infection. The results showed that FMT significantly reduced the inflammatory response and blocked the invasion of C.jejuni into the colonic tissue. We observed a significant increase in the abundance of Akkermansia in the colon of mice after FMT, as well as a significant increase in the levels of butyric acid and deoxycholic acid. We next demonstrated that oral administration of sodium butyrate or deoxycholic acid had a similar therapeutic effect. Further proteomic analysis showed that C.jejuni induced colitis mainly through activation of the PI3K-AKT signaling pathway and MAPK signaling pathway, whereas Akkermansia, the core flora of FMT, and the gut microbial metabolites butyric acid and deoxycholic acid both inhibited these signaling pathways to counteract the infection of C. jejuni and alleviate colitis. Finally, we verified the above idea by in vitro cellular assays. In conclusion, FMT is highly effective in the treatment of colitis caused by C. jejuni, with which Akkermansia and butyric and deoxycholic acids are closely associated.The present study demonstrates that Akkermansia and butyric and deoxycholic acids are effective in the treatment of colitis caused by C. jejuni. Discussion This is the first time that Akkermansia has been found to be effective in fighting pathogens, which provides new ideas and insights into the use of FMT to alleviate colitis caused by C. jejuni and Akkermansia as a treatment for intestinal sexually transmitted diseases caused by various pathogens.
Collapse
Affiliation(s)
- Lai Jiang
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chunchun Yuan
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wenxin Ye
- Hainan Institute of Zhejiang University, Sanya, China
| | - Qixin Huang
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhuo Chen
- Hainan Institute of Zhejiang University, Sanya, China
| | - Wenzi Wu
- Hainan Institute of Zhejiang University, Sanya, China
| | - Lichun Qian
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
He R, Chen J, Zhao Z, Shi C, Du Y, Yi M, Feng L, Peng Q, Cui Z, Gao R, Wang H, Huang Y, Liu Z, Wang C. T-cell activation Rho GTPase-activating protein maintains intestinal homeostasis by regulating intestinal T helper cells differentiation through the gut microbiota. Front Microbiol 2023; 13:1030947. [PMID: 36704549 PMCID: PMC9873376 DOI: 10.3389/fmicb.2022.1030947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Common variants of the T-cell activation Rho GTPase-activating protein (TAGAP) are associated with the susceptibility to human inflammatory bowel diseases (IBDs); however, the underlying mechanisms are still unknown. Here, we show that TAGAP deficiency or TAGAP expression downregulation caused by TAGAP gene polymorphism leads to decreased production of antimicrobial peptides (AMPs), such as reg3g, which subsequently causes dysregulation of the gut microbiota, which includes Akkermansia muciniphila and Bacteroides acidifaciens strains. These two strains can polarize T helper cell differentiation in the gut, and aggravate systemic disease associated with the dextran sodium sulfate-induced (DSS) disease's phenotype in mice. More importantly, we demonstrated that recombinant reg3g protein or anti-p40 monoclonal antibody exerted therapeutic effects for the treatment of DSS-induced colitis in wild-type and TAGAP-deficient mice, suggesting that they are potential medicines for human IBD treatment, and they may also have a therapeutic effect for the patients who carry the common variant of TAGAP rs212388.
Collapse
Affiliation(s)
- Ruirui He
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Jianwen Chen
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Ziyan Zhao
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Changping Shi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanyun Du
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Ming Yi
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Lingyun Feng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Qianwen Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihui Cui
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ru Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Heping Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Huang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zhi Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Zhi Liu, ✉
| | - Chenhui Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China,Chenhui Wang, ✉
| |
Collapse
|
15
|
Li Z, Ke H, Wang Y, Chen S, Liu X, Lin Q, Wang P, Chen Y. Global trends in Akkermansia muciniphila research: A bibliometric visualization. Front Microbiol 2022; 13:1037708. [PMID: 36439840 PMCID: PMC9685322 DOI: 10.3389/fmicb.2022.1037708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/28/2022] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Akkermansia muciniphila is a member of the gut microbiome, using mucin as sources of carbon, nitrogen, and energy. Since the first discovery of this unique bacterium in 2004, A. muciniphila has been extensively studied. It is considered a promising "next-generation beneficial microbe." The purpose of this paper is to sort out the research status and summarize the hotspots through bibliometric analysis of the publications of A. muciniphila. METHODS The publications about A. muciniphila from January 2004 to February 2022 were obtained from the Web of Science Core Collection. Visualization analyses were performed using three bibliometric tools and GraphPad Prism. RESULTS A total of 1,478 published documents were analyzed. Annual publication number grew from 1 in 2004 to 336 in 2021, with China being the leading producer (33.36%). De Vos, Willem M was the most productive author with the highest H-index (documents = 56, H-index = 37), followed by Cani, Patrice D (documents = 35, H-index = 25). And Scientific Reports published the most papers. PNAS was the keystone taxa in this field, with high betweenness centrality (0.11) and high frequency. The keywords with high frequency in recent years include: oxidative stress, diet, metformin, fecal microbiota transplantation, short-chain fatty acids, polyphenols, microbiota metabolites and so on. The keyword "oxidative stress" was observed to be increasing in frequency recently. CONCLUSION Over time, the scope of the research on the clinical uses of A. muciniphila has gradually increased, and was gradually deepened and developed toward a more precise level. A. muciniphila is likely to remain a research hotspot in the foreseeable future and may contribute to human health.
Collapse
Affiliation(s)
- Zitong Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haoran Ke
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuze Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuying Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qianyun Lin
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pu Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Integrative Microecology Center, Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
16
|
Zhu M, Han H, Hu L, Cao Y, Fan Z. Insulin-binding protein-5 down-regulates the balance of Th17/Treg. Front Immunol 2022; 13:1019248. [PMID: 36389828 PMCID: PMC9664073 DOI: 10.3389/fimmu.2022.1019248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
The inflammatory response plays critical important role in tissue hemostasis. Our previous study showed insulin-binding protein-5 (IGFBP5) could enhance the regeneration of tissue defect under inflammation condition, but the function of IGFBP5 in controlling inflammation and regulating immune responses remains unclear. In present study, we studied the regulatory effect of IGFBP5 on T cell immune response in vitro, and the maintenance of Th17/Treg balance in vivo by using dextran sulfate sodium salt (DSS)-induced colitis in mice. The results showed that IGFBP5 inhibited the differentiation of CD4+ T cells into Th17 subset while promoted its differentiation into Treg subsets. Further results of animal experiments demonstrated that recombinant IGFBP5 reversed the imbalance of Th17/Treg and alleviated the severity of DSS-induced colitis. The percentage of Th17 cells decreased and the percentage of Treg cells increased in the inflamed colon tissue and mesenteric lymph nodes of mice with colitis after IGFBP5 treatment. Besides, pro-inflammatory cytokines such as TNF-α, IL-1β and IFN-γ in serum were suppressed after the treatment of IGFBP5. Moreover, the function of IGFBP5 in regulating Th17/Treg balance could be inhibited by the inhibitors of ERK or JNK pathway. In conclusion, all these data showed that IGFBP5 could regulate Th17/Treg balance via ERK or JNK pathways. The findings of our study provide a theoretical basis for the application of IGFBP5 in inflammatory diseases.
Collapse
Affiliation(s)
- Mengyuan Zhu
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Han Han
- Department of General Dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Lei Hu
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China,*Correspondence: Lei Hu, ; Yu Cao, ; Zhipeng Fan,
| | - Yu Cao
- Department of General Dentistry, Capital Medical University School of Stomatology, Beijing, China,*Correspondence: Lei Hu, ; Yu Cao, ; Zhipeng Fan,
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China,Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Lei Hu, ; Yu Cao, ; Zhipeng Fan,
| |
Collapse
|
17
|
Zhu Y, Wei YL, Karras I, Cai PJ, Xiao YH, Jia CL, Qian XL, Zhu SY, Zheng LJ, Hu X, Sun AD. Modulation of the gut microbiota and lipidomic profiles by black chokeberry ( Aronia melanocarpa L.) polyphenols via the glycerophospholipid metabolism signaling pathway. Front Nutr 2022; 9:913729. [PMID: 35990329 PMCID: PMC9387202 DOI: 10.3389/fnut.2022.913729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Black chokeberry (Aronia melanocarpa L.) is rich in polyphenols with various physiological and pharmacological activities. However, the relationship between the modulation effect of black chokeberry polyphenols on obesity and the alteration of lipid metabolism is not clearly understood. This study aimed to investigate the beneficial effects of the black chokeberry polyphenols (BCPs) treatment on the structure of gut microbiota, lipid metabolism, and associated mechanisms in high-fat diet (HFD)-induced obese rats. Here, we found that a high-fat diet promoted body weight gain and lipid accumulation in rats, while oral BCPs supplementation reduced body weight, liver, and white adipose tissue weight and alleviated dyslipidemia and hepatic steatosis in HFD-induced obese rats. In addition, BCPs supplementation prevented gut microbiota dysbiosis by increasing the relative abundance of Bacteroides, Prevotella, Romboutsia, and Akkermansia and decreasing the relative abundance of Desulfovibrio and Clostridium. Furthermore, 64 lipids were identified as potential lipid biomarkers through lipidomics analysis after BCPs supplementation, especially PE (16:0/22:6), PE (18:0/22:6), PC (20:3/19:0), LysoPE (24:0), LysoPE (24:1), and LysoPC (20:0). Moreover, our studies provided new evidence that composition of gut microbiota was closely related to the alteration of lipid profiles after BCPs supplementation. Additionally, BCPs treatment could ameliorate the disorder of lipid metabolism by regulating the mRNA and protein expression of genes related to the glycerophospholipid metabolism signaling pathway in HFD-induced obese rats. The mRNA and protein expression of PPARα, CPT1α, EPT1, and LCAT were significantly altered after BCPs treatment. In conclusion, the results of this study indicated that BCPs treatment alleviated HFD-induced obesity by modulating the composition and function of gut microbiota and improving the lipid metabolism disorder via the glycerophospholipid metabolism signaling pathway.
Collapse
Affiliation(s)
- Yue Zhu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Yu-Long Wei
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Ioanna Karras
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Peng-Ju Cai
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Yu-Hang Xiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Cheng-Li Jia
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Xiao-Lin Qian
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Shi-Yu Zhu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Lu-Jie Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Xin Hu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Ai-Dong Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| |
Collapse
|
18
|
Rodrigues VF, Elias-Oliveira J, Pereira ÍS, Pereira JA, Barbosa SC, Machado MSG, Carlos D. Akkermansia muciniphila and Gut Immune System: A Good Friendship That Attenuates Inflammatory Bowel Disease, Obesity, and Diabetes. Front Immunol 2022; 13:934695. [PMID: 35874661 PMCID: PMC9300896 DOI: 10.3389/fimmu.2022.934695] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/13/2022] [Indexed: 01/04/2023] Open
Abstract
Akkermansia muciniphila is a Gram-negative anaerobic mucus-layer-degrading bacterium that colonizes the intestinal mucosa of humans and rodents. Metagenomic data have shown an inverse correlation between the abundance of A. muciniphila and diseases such as inflammatory bowel disease (IBD), obesity, and diabetes. Thus, in recent decades, the potential of this bacterium as an immunomodulatory probiotic for autoimmune and chronic inflammatory diseases has been explored in experimental models. Corroborating these human correlation data, it has been reported that A. muciniphila slows down the development and progression of diabetes, obesity, and IBD in mice. Consequently, clinical studies with obese and diabetic patients are being performed, and the preliminary results are very promising. Therefore, this mini review highlights the main findings regarding the beneficial roles of A. muciniphila and its action mechanisms in autoimmune and chronic inflammatory diseases.
Collapse
|
19
|
Little M, Dutta M, Li H, Matson A, Shi X, Mascarinas G, Molla B, Weigel K, Gu H, Mani S, Cui JY. Understanding the physiological functions of the host xenobiotic-sensing nuclear receptors PXR and CAR on the gut microbiome using genetically modified mice. Acta Pharm Sin B 2022; 12:801-820. [PMID: 35256948 PMCID: PMC8897037 DOI: 10.1016/j.apsb.2021.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/29/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Pharmacological activation of the xenobiotic-sensing nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) is well-known to increase drug metabolism and reduce inflammation. Little is known regarding their physiological functions on the gut microbiome. In this study, we discovered bivalent hormetic functions of PXR/CAR modulating the richness of the gut microbiome using genetically engineered mice. The absence of PXR or CAR increased microbial richness, and absence of both receptors synergistically increased microbial richness. PXR and CAR deficiency increased the pro-inflammatory bacteria Helicobacteraceae and Helicobacter. Deficiency in both PXR and CAR increased the relative abundance of Lactobacillus, which has bile salt hydrolase activity, corresponding to decreased primary taurine-conjugated bile acids (BAs) in feces, which may lead to higher internal burden of taurine and unconjugated BAs, both of which are linked to inflammation, oxidative stress, and cytotoxicity. The basal effect of PXR/CAR on the gut microbiome was distinct from pharmacological and toxicological activation of these receptors. Common PXR/CAR-targeted bacteria were identified, the majority of which were suppressed by these receptors. hPXR-TG mice had a distinct microbial profile as compared to wild-type mice. This study is the first to unveil the basal functions of PXR and CAR on the gut microbiome.
Collapse
Key Words
- BA, bile acid
- BSH, bile salt hydrolase
- Bile acids
- CA, cholic acid
- CAR
- CAR, constitutive androstane receptor
- CDCA, chenodeoxycholic acid
- CITCO, 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime
- CV, conventional
- CYP, cytochrome P450
- DCA, deoxycholic acid
- EGF, epidermal growth factor
- Feces
- GF, germ free
- GLP-1, glucagon-like peptide-1
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- Gut microbiome
- HDCA, hyodeoxycholic acid
- IBD, inflammatory bowel disease
- IFNγ, interferon-gamma
- IL, interleukin
- IS, internal standards
- Inflammation
- LCA, lithocholic acid
- LC–MS/MS, liquid chromatography–tandem mass spectrometry
- MCA, muricholic acid
- MCP-1, monocyte chemoattractant protein-1
- Mice
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NSAID, non-steroidal anti-inflammatory drug
- Nuclear receptor
- OH, hydroxylated
- OTUs, operational taxonomy units
- PA, indole-3 propionic acid
- PBDEs, polybrominated diphenyl ethers
- PCBs, polychlorinated biphenyls
- PCoA, Principle Coordinate Analysis
- PXR
- PXR, pregnane X receptor
- PiCRUSt, Phylogenetic Investigation of Communities by Reconstruction of Observed States
- QIIME, Quantitative Insights Into Microbial Ecology
- SCFAs, short-chain fatty acids
- SNP, single-nucleotide polymorphism
- SPF, specific-pathogen-free
- T, wild type
- T-, taurine conjugated
- TCPOBOP, 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene, 3,3′,5,5′-Tetrachloro-1,4-bis(pyridyloxy)benzene
- TGR-5, Takeda G-protein-coupled receptor 5
- TLR4, toll-like receptor 4
- TNF, tumor necrosis factor
- UDCA, ursodeoxycholic acid
- YAP, yes-associated protein
- hPXR-TG, humanized PXR transgenic
Collapse
Affiliation(s)
- Mallory Little
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Hao Li
- Department of Medicine, Molecular Pharmacology and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adam Matson
- University of Connecticut, Hartford, CT 06106, USA
| | - Xiaojian Shi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Gabby Mascarinas
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Bruk Molla
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Kris Weigel
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Sridhar Mani
- Department of Medicine, Molecular Pharmacology and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
20
|
Song JG, Yu MS, Lee B, Lee J, Hwang SH, Na D, Kim HW. Analysis methods for the gut microbiome in neuropsychiatric and neurodegenerative disorders. Comput Struct Biotechnol J 2022; 20:1097-1110. [PMID: 35317228 PMCID: PMC8902474 DOI: 10.1016/j.csbj.2022.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
For a long time, the central nervous system was believed to be the only regulator of cognitive functions. However, accumulating evidence suggests that the composition of the microbiome is strongly associated with brain functions and diseases. Indeed, the gut microbiome is involved in neuropsychiatric diseases (e.g., depression, autism spectrum disorder, and anxiety) and neurodegenerative diseases (e.g., Parkinson’s disease and Alzheimer’s disease). In this review, we provide an overview of the link between the gut microbiome and neuropsychiatric or neurodegenerative disorders. We also introduce analytical methods used to assess the connection between the gut microbiome and the brain. The limitations of the methods used at present are also discussed. The accurate translation of the microbiome information to brain disorder could promote better understanding of neuronal diseases and aid in finding alternative and novel therapies.
Collapse
Affiliation(s)
- Jae Gwang Song
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Myeong-Sang Yu
- Department of Biomedical Engineering, Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Bomi Lee
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Jingyu Lee
- Department of Biomedical Engineering, Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Su-Hee Hwang
- Department of Biomedical Engineering, Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
- Corresponding authors.
| | - Hyung Wook Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
- Corresponding authors.
| |
Collapse
|
21
|
Synthetic Microbiomes on the Rise-Application in Deciphering the Role of Microbes in Host Health and Disease. Nutrients 2021; 13:nu13114173. [PMID: 34836426 PMCID: PMC8621464 DOI: 10.3390/nu13114173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
The intestinal microbiota conveys significant benefits to host physiology. Although multiple chronic disorders have been associated with alterations in the intestinal microbiota composition and function, it is still unclear whether these changes are a cause or a consequence. Hence, to translate microbiome research into clinical application, it is necessary to provide a proof of causality of host–microbiota interactions. This is hampered by the complexity of the gut microbiome and many confounding factors. The application of gnotobiotic animal models associated with synthetic communities allows us to address the cause–effect relationship between the host and intestinal microbiota by reducing the microbiome complexity on a manageable level. In recent years, diverse bacterial communities were assembled to analyze the role of microorganisms in infectious, inflammatory, and metabolic diseases. In this review, we outline their application and features. Furthermore, we discuss the differences between human-derived and model-specific communities. Lastly, we highlight the necessity of generating novel synthetic communities to unravel the microbial role associated with specific health outcomes and disease phenotypes. This understanding is essential for the development of novel non-invasive targeted therapeutic strategies to control and modulate intestinal microbiota in health and disease.
Collapse
|
22
|
Qu S, Fan L, Qi Y, Xu C, Hu Y, Chen S, Liu W, Liu W, Si J. Akkermansia muciniphila Alleviates Dextran Sulfate Sodium (DSS)-Induced Acute Colitis by NLRP3 Activation. Microbiol Spectr 2021; 9:e0073021. [PMID: 34612661 PMCID: PMC8510245 DOI: 10.1128/spectrum.00730-21] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/02/2021] [Indexed: 01/08/2023] Open
Abstract
Akkermansia muciniphila has been proved to play a crucial role in the progression of colitis, but its underlying mechanism remains inconclusive. In this study, we aim to investigate the effect of A. muciniphila on the development of acute colitis and explore the underlying mechanism. We found that the fecal level of A. muciniphila was decreased in ulcerative colitis (UC) patients compared to the healthy people in the GMrepo database. Oral administration of A. muciniphila strain BAA-835 significantly ameliorated the symptoms in dextran sulfate sodium (DSS)-induced acute colitis, evidenced by decreased body weight loss, colon length shortening, and colon histological inflammatory score. In addition, the number of goblet cells and the mucin family were enhanced after A. muciniphila treatment. Furthermore, proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and monocyte chemoattractant protein 1 (MCP-1) had a downward trend. Mechanistically, the expression of NLRP3, caspase-1 p20, and IL-1β p17 were upregulated in A. muciniphila-treated mice. Additionally, the colon tissues from high-A. muciniphila UC patients had a higher NLRP3 expression than that from low-A. muciniphila UC patients. Moreover, the upregulation of NLRP3 was observed in mouse macrophage Raw264.7 cells and bone marrow-derived macrophage (BMDM) cells after incubation with A. muciniphila. To clarify whether the protective effect of A. muciniphila in colitis depends on NLRP3, we performed the NLRP3-deficient assay in NLRP3-/- mice in vivo. The evidence showed that NLRP3 deficiency eliminated the protective effects of A. muciniphila in acute colitis. In conclusion, A. muciniphila alleviates DSS-induced acute colitis by NLRP3 activation, which enriches the mechanism and provides a new prospect for the probiotic-based treatment of colitis. IMPORTANCE The gut microbiota and host immune response interaction influences the progression of intestinal inflammatory disease. As a well-recognized next-generation probiotic, Akkermansia muciniphila has been proved to play a crucial role in the progression of colitis, but its underlying mechanism remains inconclusive. We found that oral administration of A. muciniphila strain BAA-835 significantly ameliorated the symptoms of acute colitis. Mechanistically, the expression of NLRP3 was upregulated in the A. muciniphila group, and the protective effect of A. muciniphila in colitis depends on NLRP3 activation. This enriches the mechanism and provides a new prospect for the probiotic-based treatment of colitis, which would promote a deeper understanding of the complex characteristics of A. muciniphila and provide guidance for the treatment of human colitis in the future.
Collapse
Affiliation(s)
- Siwen Qu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Gastroenterology, The Second Hospital of Jiaxing, Jiaxing, China
| | - Lina Fan
- Department of Gastroenterology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Chaochao Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yingying Hu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weili Liu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Karamzin AM, Ropot AV, Sergeyev OV, Khalturina EO. Akkermansia muciniphila and host interaction within the intestinal tract. Anaerobe 2021; 72:102472. [PMID: 34743983 DOI: 10.1016/j.anaerobe.2021.102472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
In the modern world, metabolic syndrome is one of the major health problems. Heredity, overeating, and a sedentary lifestyle are believed to be the main predisposing factors for its development. However, recent data indicate that gut microbiota plays a significant role in metabolic profile formation. In 2004, Derrien et al. isolated and characterized the bacterium Akkermansia muciniphila, which lives mainly in the human intestine and has the ability to utilize intestinal mucin. It proved to be a good candidate for the role of a new-generation probiotic due to its ability to improve the laboratory and physical indicators associated with metabolic syndrome and type 2 diabetes in mice and humans. In this review, we describe the basic microbiological characteristics of this bacterium, its main habitats, clinical effects after oral administration, and different ways of influencing the digestive tract. All these data allow us to understand the mechanism of its beneficial effects, which is important for its future introduction into the treatment of the metabolic syndrome.
Collapse
Affiliation(s)
- Andrei M Karamzin
- Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Street, 8, Moscow, Russian Federation.
| | - Anastasiia V Ropot
- Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Street, 8, Moscow, Russian Federation.
| | - Oleg V Sergeyev
- Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Street, 8, Moscow, Russian Federation.
| | - Evgenia O Khalturina
- Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Street, 8, Moscow, Russian Federation.
| |
Collapse
|
24
|
Bu F, Ding Y, Chen T, Wang Q, Wang R, Zhou JY, Jiang F, Zhang D, Xu M, Shi G, Chen Y. Total flavone of Abelmoschus Manihot improves colitis by promoting the growth of Akkermansia in mice. Sci Rep 2021; 11:20787. [PMID: 34675239 PMCID: PMC8531128 DOI: 10.1038/s41598-021-00070-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022] Open
Abstract
The total flavone of Abelmoschus manihot (TFA), a compound extracted from the flowers of Abelmoschus manihot (L.) Medic, has been widely used for the treatment of Crohn's disease, chronic glomerulonephritis and other diseases. The aim of this study was to investigate the effect of TFA on the gut microbiota and intestinal barrier in dextran sulfate sodium (DSS)-induced experimental colitis. C57BL/6J mice were treated with 2.5% DSS in drinking water to induce colitis. Mice were orally administered TFA (62.5 mg/kg, 125 mg/kg) or prednisone acetate (PAT, 2.5 mg/kg) once daily for 7 days. Biological samples were collected for analysis of inflammatory cytokines, gut microbiota and intestinal barrier integrity. TFA-H (125 mg/kg) markedly attenuated DSS-induced colon shortening and histological injury in experimental colitis. The therapeutic effect was similar to that of PAT administration. TFA-H notably modulated the dysbiosis of gut microbiota induced by DSS and greatly enriched Akkermansia muciniphila (A. muciniphila). Moreover, TFA-H remarkably ameliorated the colonic inflammatory response and intestinal epithelial barrier dysfunction. Interestingly, TFA directly promotes the growth of A. muciniphila in vitro. Taken together, the results revealed for the first time that TFA, as a prebiotic of A. muciniphila, improved DSS-induced experimental colitis, at least partly by modulating the gut microflora profile to maintain colonic integrity and inhibit the inflammatory response.
Collapse
Affiliation(s)
- Fan Bu
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Ding
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tuo Chen
- General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiong Wang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Rong Wang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Jin-Yong Zhou
- Central Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, NanjingJiangsu, 210029, China
| | - Feng Jiang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Dan Zhang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Minmin Xu
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Guoping Shi
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, Jiangsu, China.
| | - Yugen Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
25
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Ackerl R, Knutsen HK. Safety of pasteurised Akkermansia muciniphila as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2021; 19:e06780. [PMID: 34484452 PMCID: PMC8409316 DOI: 10.2903/j.efsa.2021.6780] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on pasteurised Akkermansia muciniphila as a novel food (NF) pursuant to Regulation (EU) 2015/2283. A. muciniphila is a well-characterised non-toxin producing, avirulent microorganism that has been reported as part of normal gut microbiota. The NF, pasteurised A. muciniphila, is proposed by the applicant to be used as a food supplement at max. 5 × 1010 cells/day by adults excluding pregnant and lactating women, and in foods for special medical purposes. The Panel considers that the production process of the NF is sufficiently described and that the information provided on the composition of the NF is sufficient for its characterisation. Taking into account the composition of the NF and the proposed conditions of use, the consumption of the NF is not nutritionally disadvantageous. Based on literature data, and by applying an uncertainty factor of 200 to the no observed adverse effect level (NOAEL) of a 90-day repeated dose oral toxicity study in rats, the Panel concludes that the consumption of 3.4 × 1010 cells/day is safe for the target population under the provision that the number of viable cells in the NF is < 10 colony forming units (CFU)/g (i.e. limit of detection).
Collapse
|
26
|
The potential of Akkermansia muciniphila in inflammatory bowel disease. Appl Microbiol Biotechnol 2021; 105:5785-5794. [PMID: 34312713 DOI: 10.1007/s00253-021-11453-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
Akkermansia muciniphila is a next-generation probiotic with significant application prospects. The role of A. muciniphila in metabolic diseases and tumor immunotherapy has been widely recognized. Recent clinical trials further confirmed its safety and therapeutic value in human metabolic diseases. A. muciniphila also shows potential in the treatment of intestinal inflammatory diseases, especially for inflammatory bowel disease (IBD). The improvement in the efficacy of washed microbiota transplantation (WMT) in treating IBD is closely related to the increase in the abundance of A. muciniphila in patients' gut. However, there is still controversy regarding the pro-inflammatory or anti-inflammatory effect of A. muciniphila on IBD. Currently, several studies targeting the correlation between A. muciniphila and IBD have demonstrated opposite conclusions. Similarly, the interventional studies exploring causality between them also come to conflicting results. This article therefore aims to review the relationship between A. muciniphila and IBD, the effect of intervention of A. muciniphila on IBD, and the possible reasons for the contradictory role of A. muciniphila in the treatment of IBD. KEY POINTS: The effect of A. muciniphila on inflammatory bowel disease is controversy. A. muciniphila shows anti-inflammatory potential in IBD. The colitogenicity of A. muciniphila is context dependent.
Collapse
|
27
|
Romano S, Savva GM, Bedarf JR, Charles IG, Hildebrand F, Narbad A. Meta-analysis of the Parkinson's disease gut microbiome suggests alterations linked to intestinal inflammation. NPJ Parkinsons Dis 2021. [PMID: 33692356 DOI: 10.1101/2020.08.10.20171397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
The gut microbiota is emerging as an important modulator of neurodegenerative diseases, and accumulating evidence has linked gut microbes to Parkinson's disease (PD) symptomatology and pathophysiology. PD is often preceded by gastrointestinal symptoms and alterations of the enteric nervous system accompany the disease. Several studies have analyzed the gut microbiome in PD, but a consensus on the features of the PD-specific microbiota is missing. Here, we conduct a meta-analysis re-analyzing the ten currently available 16S microbiome datasets to investigate whether common alterations in the gut microbiota of PD patients exist across cohorts. We found significant alterations in the PD-associated microbiome, which are robust to study-specific technical heterogeneities, although differences in microbiome structure between PD and controls are small. Enrichment of the genera Lactobacillus, Akkermansia, and Bifidobacterium and depletion of bacteria belonging to the Lachnospiraceae family and the Faecalibacterium genus, both important short-chain fatty acids producers, emerged as the most consistent PD gut microbiome alterations. This dysbiosis might result in a pro-inflammatory status which could be linked to the recurrent gastrointestinal symptoms affecting PD patients.
Collapse
Affiliation(s)
- Stefano Romano
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| | - George M Savva
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Janis R Bedarf
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Ian G Charles
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | - Falk Hildebrand
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- Earlham Institute, Norwich Research Park, Norwich, UK.
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| |
Collapse
|
28
|
Meta-analysis of the Parkinson's disease gut microbiome suggests alterations linked to intestinal inflammation. NPJ Parkinsons Dis 2021; 7:27. [PMID: 33692356 PMCID: PMC7946946 DOI: 10.1038/s41531-021-00156-z] [Citation(s) in RCA: 372] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is emerging as an important modulator of neurodegenerative diseases, and accumulating evidence has linked gut microbes to Parkinson's disease (PD) symptomatology and pathophysiology. PD is often preceded by gastrointestinal symptoms and alterations of the enteric nervous system accompany the disease. Several studies have analyzed the gut microbiome in PD, but a consensus on the features of the PD-specific microbiota is missing. Here, we conduct a meta-analysis re-analyzing the ten currently available 16S microbiome datasets to investigate whether common alterations in the gut microbiota of PD patients exist across cohorts. We found significant alterations in the PD-associated microbiome, which are robust to study-specific technical heterogeneities, although differences in microbiome structure between PD and controls are small. Enrichment of the genera Lactobacillus, Akkermansia, and Bifidobacterium and depletion of bacteria belonging to the Lachnospiraceae family and the Faecalibacterium genus, both important short-chain fatty acids producers, emerged as the most consistent PD gut microbiome alterations. This dysbiosis might result in a pro-inflammatory status which could be linked to the recurrent gastrointestinal symptoms affecting PD patients.
Collapse
|
29
|
Burkhardt W, Rausch T, Klopfleisch R, Blaut M, Braune A. Impact of dietary sulfolipid-derived sulfoquinovose on gut microbiota composition and inflammatory status of colitis-prone interleukin-10-deficient mice. Int J Med Microbiol 2021; 311:151494. [PMID: 33711649 DOI: 10.1016/j.ijmm.2021.151494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/12/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
The interplay between diet, intestinal microbiota and host is a major factor impacting health. A diet rich in unsaturated fatty acids has been reported to stimulate the growth of Bilophila wadsworthia by increasing the proportion of the sulfonated bile acid taurocholate (TC). The taurine-induced overgrowth of B. wadsworthia promoted the development of colitis in interleukin-10-deficient (IL-10-/-) mice. This study aimed to investigate whether intake of the sulfonates sulfoquinovosyl diacylglycerols (SQDG) with a dietary supplement or their degradation product sulfoquinovose (SQ), stimulate the growth of B. wadsworthia in a similar manner and, thereby, cause intestinal inflammation. Conventional IL-10-/- mice were fed a diet supplemented with the SQDG-rich cyanobacterium Arthrospira platensis (Spirulina). SQ or TC were orally applied to conventional IL-10-/- mice and gnotobiotic IL-10-/- mice harboring a simplified human intestinal microbiota with or without B. wadsworthia. Analyses of inflammatory parameters revealed that none of the sulfonates induced severe colitis, but both, Spirulina and TC, induced expression of pro-inflammatory cytokines in cecal mucosa. Cell numbers of B. wadsworthia decreased almost two orders of magnitude by Spirulina feeding but slightly increased in gnotobiotic SQ and conventional TC mice. Changes in microbiota composition were observed in feces as a result of Spirulina or TC feeding in conventional mice. In conclusion, the dietary sulfonates SQDG and their metabolite SQ did not elicit bacteria-induced intestinal inflammation in IL-10-/- mice and, thus, do not promote colitis.
Collapse
Affiliation(s)
- Wiebke Burkhardt
- Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Theresa Rausch
- Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universitaet Berlin, Berlin, Germany
| | - Michael Blaut
- Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Annett Braune
- Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
| |
Collapse
|
30
|
Zhuang X, Liu C, Zhan S, Tian Z, Li N, Mao R, Zeng Z, Chen M. Gut Microbiota Profile in Pediatric Patients With Inflammatory Bowel Disease: A Systematic Review. Front Pediatr 2021; 9:626232. [PMID: 33604319 PMCID: PMC7884334 DOI: 10.3389/fped.2021.626232] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Aim: Accumulating evidence have implicated gut microbiota alterations in pediatric and adult patients with inflammatory bowel disease (IBD); however, the results of different studies are often inconsistent and even contradictory. It is believed that early changes in new-onset and treatment-naïve pediatric patients are more informative. We performed a systematic review to investigate the gut microbiota profiles in pediatric IBD and identify specific microbiota biomarkers associated with this disorder. Methods: Electronic databases were searched from inception to 31 July 2020 for studies that observed gut microbiota alterations in pediatric patients with IBD. Study quality was assessed using the Newcastle-Ottawa scale. Results: A total of 41 original studies investigating gut microbiota profiles in pediatric patients with IBD were included in this review. Several studies have reported a decrease in α-diversity and an overall difference in β-diversity. Although no specific gut microbiota alterations were consistently reported, a gain in Enterococcus and a significant decrease in Anaerostipes, Blautia, Coprococcus, Faecalibacterium, Roseburia, Ruminococcus, and Lachnospira were found in the majority of the included articles. Moreover, there is insufficient data to show specific microbiota bacteria associated with disease activity, location, and behavior in pediatric IBD. Conclusions: This systematic review identified evidence for differences in the abundance of some bacteria in pediatric patients with IBD when compared to patients without IBD; however, no clear overall conclusion could be drawn from the included studies due to inconsistent results and heterogeneous methodologies. Further studies with large samples that follow more rigorous and standardized methodologies are needed.
Collapse
Affiliation(s)
- Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Caiguang Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shukai Zhan
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhenyi Tian
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Na Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Rodríguez C, Romero E, Garrido-Sanchez L, Alcaín-Martínez G, Andrade RJ, Taminiau B, Daube G, García-Fuentes E. MICROBIOTA INSIGHTS IN CLOSTRIDIUM DIFFICILE INFECTION AND INFLAMMATORY BOWEL DISEASE. Gut Microbes 2020; 12:1725220. [PMID: 32129694 PMCID: PMC7524151 DOI: 10.1080/19490976.2020.1725220] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation that includes Crohn´s disease (CD) and ulcerative colitis (UC). Although the etiology is still unknown, some specific factors have been directly related to IBD, including genetic factors, abnormal intestinal immunity, and/or gut microbiota modifications. Recent findings highlight the primary role of the gut microbiota closely associated with a persistent inappropriate inflammatory response. This gut environment of dysbiosis in a susceptible IBD host can increasingly worsen and lead to colonization and infection with some opportunistic pathogens, especially Clostridium difficile. C. difficile is an intestinal pathogen considered the main cause of antibiotic-associated diarrhea and colitis and an important complication of IBD, which can trigger or worsen an IBD flare. Recent findings have highlighted the loss of bacterial cooperation in the gut ecosystem, as well as the pronounced intestinal dysbiosis, in patients suffering from IBD and concomitant C. difficile infection (CDI). The results of intestinal microbiota studies are still limited and often difficult to compare because of the variety of disease conditions. However, these data provide important clues regarding the main modifications and interrelations in the complicated gut ecosystem to better understand both diseases and to take advantage of the development of new therapeutic strategies. In this review, we analyze in depth the gut microbiota changes associated with both forms of IBD and CDI and their similarity with the dysbiosis that occurs in CDI. We also discuss the metabolic pathways that favor the proliferation or decrease in several important taxa directly related to the disease.
Collapse
Affiliation(s)
- C. Rodríguez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain,Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain,CONTACT C. Rodríguez Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, SpainUnidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Vitoria, Málaga, Spain
| | - E. Romero
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - L. Garrido-Sanchez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain,Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - G. Alcaín-Martínez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain,Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - RJ. Andrade
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain,Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain,Department of Medicine and Dermatology, Universidad de Málaga, Málaga, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Málaga, Spain
| | - B. Taminiau
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - G. Daube
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - E. García-Fuentes
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain,Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| |
Collapse
|
32
|
Wang L, Tang L, Feng Y, Zhao S, Han M, Zhang C, Yuan G, Zhu J, Cao S, Wu Q, Li L, Zhang Z. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8 + T cells in mice. Gut 2020; 69:1988-1997. [PMID: 32169907 PMCID: PMC7569398 DOI: 10.1136/gutjnl-2019-320105] [Citation(s) in RCA: 374] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/20/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Gut microbiota have been linked to inflammatory bowel disease (IBD) and colorectal cancer (CRC). Akkermansia muciniphila (A. muciniphila) is a gram-negative anaerobic bacterium that is selectively decreased in the faecal microbiota of patients with IBD, but its causative role and molecular mechanism in blunting colitis-associated colorectal cancer (CAC) remain inconclusive. This study investigates how A. muciniphila engages the immune response in CAC. DESIGN Mice were given dextran sulfate sodium to induce colitis, followed by azoxymethane to establish CAC with or without pasteurised A. muciniphila or a specific outer membrane protein (Amuc_1100) treatment. Faeces from mice and patients with IBD or CRC were collected for 16S rRNA sequencing. The effects of A. muciniphila or Amuc_1100 on the immune response in acute colitis and CAC were investigated. RESULTS A. muciniphila was significantly reduced in patients with IBD and mice with colitis or CAC. A. muciniphila or Amuc_1100 could improve colitis, with a reduction in infiltrating macrophages and CD8+ cytotoxic T lymphocytes (CTLs) in the colon. Their treatment also decreased CD16/32+ macrophages in the spleen and mesenteric lymph nodes (MLN) of colitis mice. Amuc_1100 elevated PD-1+ CTLs in the spleen. Moreover, A. muciniphila and Amuc_1100 blunted tumourigenesis by expanding CTLs in the colon and MLN. Remarkably, they activated CTLs in the MLN, as indicated by TNF-α induction and PD-1downregulation. Amuc_1100 could stimulate and activate CTLs from splenocytes in CT26 cell conditioned medium. CONCLUSIONS These data indicate that pasteurised A. muciniphila or Amuc_1100 can blunt colitis and CAC through the modulation of CTLs.
Collapse
Affiliation(s)
- Lijuan Wang
- Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Tang
- Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiming Feng
- Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Suying Zhao
- Department of laboratory medicine, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Mei Han
- Department of laboratory medicine, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Chuan Zhang
- Department of General Surgery, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Gehui Yuan
- Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Zhu
- Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuyuan Cao
- Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Wu
- Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Li
- Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhan Zhang
- Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
The microbiome in inflammatory bowel diseases: from pathogenesis to therapy. Protein Cell 2020; 12:331-345. [PMID: 32601832 PMCID: PMC8106558 DOI: 10.1007/s13238-020-00745-3] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/30/2020] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) has become a global disease with accelerating incidence worldwide in the 21st century while its accurate etiology remains unclear. In the past decade, gut microbiota dysbiosis has consistently been associated with IBD. Although many IBD-associated dysbiosis have not been proven to be a cause or an effect of IBD, it is often hypothesized that at least some of alteration in microbiome is protective or causative. In this article, we selectively reviewed the hypothesis supported by both association studies in human and pathogenesis studies in biological models. Specifically, we reviewed the potential protective bacterial pathways and species against IBD, as well as the potential causative bacterial pathways and species of IBD. We also reviewed the potential roles of some members of mycobiome and virome in IBD. Lastly, we covered the current status of therapeutic approaches targeting microbiome, which is a promising strategy to alleviate and cure this inflammatory disease.
Collapse
|
34
|
He C, Hu X, Xiao D, Wu J, Zhou S, Deng J, Xu S, Huang Y, Peng M, Yang X. Vitamin A prevents lipopolysaccharide-induced injury on tight junctions in mice. Food Sci Nutr 2020; 8:1942-1948. [PMID: 32328260 PMCID: PMC7174240 DOI: 10.1002/fsn3.1481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/14/2019] [Accepted: 12/21/2019] [Indexed: 12/14/2022] Open
Abstract
Vitamin A (VA) is one of the most widely used food supplements, but its molecular mechanisms largely remain elusive. Previously, we have demonstrated that VA inhibits the action of lipopolysaccharide (LPS) on intestinal epithelial barrier function and tight junction proteins using IPEC-J2 cells, one of representative intestinal cell lines as a cellular model. These exciting findings stimulated us continue to determine the effects of VA on LPS-induced damage of intestinal integrity in mice. Our results demonstrated that LPS treatment caused reductions of the mRNA levels of tight junction proteins including Zo-1, Occludin, and Claudin-1, well-known biomarkers of intestinal integrity, and these reductions were reversed by VA pretreatment. Intestinal immunofluorescent results of Claudin-1 revealed that LPS disrupted the structure of tight junction and reduced the expression of Claudin-1 at protein level, which was reversed by VA pretreatment. These results suggest that VA may exert a profound role on preventing intestinal inflammation in vivo.
Collapse
Affiliation(s)
- Caimei He
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaChina
| | - Xin Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaChina
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaChina
| | - Jingtao Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaChina
| | - Sichun Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaChina
| | - Jun Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaChina
| | - Simeng Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaChina
| | - Yanjun Huang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaChina
- Department of PharmacyTraditional Chinese Hospital of Yueyang CityYueyangChina
| | - Mei Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaChina
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaChina
| |
Collapse
|
35
|
Analysis of Cdcs1 colitogenic effects in the hematopoietic compartment reveals distinct microbiome interaction and a new subcongenic interval active in T cells. Mucosal Immunol 2019; 12:691-702. [PMID: 30659231 DOI: 10.1038/s41385-019-0133-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 12/14/2018] [Accepted: 12/26/2018] [Indexed: 02/04/2023]
Abstract
Disease activity in Interleukin-10-deficient (Il10-/-) mice, a model for IBD, depends on genetic background and microbiome composition. B6.129P2/JZtm-Il10tm1Cgn (B6-Il10-/-) mice are partially resistant to colitis, whereas mice carrying the Cdcs1C3Bir haplotype on chromosome 3, B6.Cg-Il10tm1CgnMMU3(D3Mit11-D3Mit348)/JZtm (BC-R3-Il10-/-), are susceptible. This study was performed to clarify Cdcs1 and candidate gene effects on the colitogenic potential of hematopoietic cells using bone marrow (BM) and T-cell transfer models. Acute and chronic graft versus host reaction was excluded by high-density genotyping, in vitro and in vivo approaches. BM-chimeras were created with animals housed in two barriers (I and II) with distinct microbiota composition as identified by sequencing. BM-chimeras of all groups developed comparable moderate-to-severe colitis in Barrier I, however, in Barrier II only recipients of BC-R3-Il10-/- BM. Subsequent adoptive T cell transfers pointed to a new subcongenic interval within Cdcs1 affecting their colitogenic potential. Transfers excluded Larp7 and Alpk1 but highlighted Ifi44 as potential candidate genes. In this model-system, colitis development after cell transfer heavily depends on microbiome, though Cdcs1 acts mainly independently in hematopoietic cells. A new subcongenic interval, provisionally named Cdcs1.4, modifies colitogenic T cell function. Within this locus, Ifi44 represents an important candidate gene for colitis expression.
Collapse
|
36
|
The Use of Defined Microbial Communities To Model Host-Microbe Interactions in the Human Gut. Microbiol Mol Biol Rev 2019; 83:83/2/e00054-18. [PMID: 30867232 DOI: 10.1128/mmbr.00054-18] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human intestinal ecosystem is characterized by a complex interplay between different microorganisms and the host. The high variation within the human population further complicates the quest toward an adequate understanding of this complex system that is so relevant to human health and well-being. To study host-microbe interactions, defined synthetic bacterial communities have been introduced in gnotobiotic animals or in sophisticated in vitro cell models. This review reinforces that our limited understanding has often hampered the appropriate design of defined communities that represent the human gut microbiota. On top of this, some communities have been applied to in vivo models that differ appreciably from the human host. In this review, the advantages and disadvantages of using defined microbial communities are outlined, and suggestions for future improvement of host-microbe interaction models are provided. With respect to the host, technological advances, such as the development of a gut-on-a-chip system and intestinal organoids, may contribute to more-accurate in vitro models of the human host. With respect to the microbiota, due to the increasing availability of representative cultured isolates and their genomic sequences, our understanding and controllability of the human gut "core microbiota" are likely to increase. Taken together, these advancements could further unravel the molecular mechanisms underlying the human gut microbiota superorganism. Such a gain of insight would provide a solid basis for the improvement of pre-, pro-, and synbiotics as well as the development of new therapeutic microbes.
Collapse
|