1
|
Sutcliffe EI, Irvine A, Rooney J, Smith D, Northcote HM, McKenzie D, Bakshi S, Nisbet AJ, Price D, Graham R, Morphew R, Atkinson L, Mousley A, Cantacessi C. Antimicrobial peptides in nematode secretions - Unveiling biotechnological opportunities for therapeutics and beyond. Biotechnol Adv 2025; 81:108572. [PMID: 40154760 DOI: 10.1016/j.biotechadv.2025.108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/02/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Gastrointestinal (GI) parasitic nematodes threaten food security and affect human health and animal welfare globally. Current anthelmintics for use in humans and livestock are challenged by continuous re-infections and the emergence and spread of multidrug resistance, underscoring an urgent need to identify novel control targets for therapeutic exploitation. Recent evidence has highlighted the occurrence of complex interplay between GI parasitic nematodes of humans and livestock and the resident host gut microbiota. Antimicrobial peptides (AMPs) found within nematode biofluids have emerged as potential effectors of these interactions. This review delves into the occurrence, structure, and function of nematode AMPs, highlighting their potential as targets for drug discovery and development. We argue that an integrated approach combining advanced analytical techniques, scalable production methods, and innovative experimental models is needed to unlock the full potential of nematode AMPs and pave the way for the discovery and development of sustainable parasite control strategies.
Collapse
Affiliation(s)
- E I Sutcliffe
- Department of Veterinary Medicine, University of Cambridge, United Kingdom
| | - A Irvine
- School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - J Rooney
- Department of Veterinary Medicine, University of Cambridge, United Kingdom
| | - D Smith
- Moredun Research Institute, United Kingdom
| | - H M Northcote
- Department of Life Sciences, Aberystwyth University, United Kingdom
| | - D McKenzie
- School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - S Bakshi
- Department of Engineering, University of Cambridge, United Kingdom
| | - A J Nisbet
- Moredun Research Institute, United Kingdom
| | - D Price
- Moredun Research Institute, United Kingdom
| | - R Graham
- School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - R Morphew
- Department of Life Sciences, Aberystwyth University, United Kingdom
| | - L Atkinson
- School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - A Mousley
- School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - C Cantacessi
- Department of Veterinary Medicine, University of Cambridge, United Kingdom.
| |
Collapse
|
2
|
Vacca F, Mules TC, Camberis M, Lavender B, Noble SL, Cait A, Maclean K, Mamum J, Yumnam B, Te Kawa T, Ferrer-Font L, Tang JS, Gasser O, Le Gros G, Inns S. Controlled infection with cryopreserved human hookworm induces CTLA-4 expression on Tregs and upregulates tryptophan metabolism. Gut Microbes 2024; 16:2416517. [PMID: 39411786 PMCID: PMC11485773 DOI: 10.1080/19490976.2024.2416517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Infecting humans with controlled doses of helminths, such as human hookworm (termed hookworm therapy), is proposed to prevent or treat various intestinal and extraintestinal diseases. However, full-scale clinical trials examining hookworm therapy are limited by the inability to scale-up the production of hookworm larvae to infect sufficient numbers of patients. With the aim of overcoming this challenge, this study infected four healthy individuals with hookworm larvae that had been reanimated from cryopreserved eggs to examine their viability and immunogenicity. We demonstrate that reanimated cryopreserved hookworm larvae establish a viable hookworm infection and elicit a similar immune response to larvae cultured from fresh stool. Furthermore, a refined understanding of the therapeutic mechanisms of hookworm is imperative to determine which diseases to target with hookworm therapy. To investigate potential therapeutic mechanisms, this study assessed changes in the immune cells, microbiome, and plasma metabolome in the four healthy individuals infected with cryopreserved hookworm larvae and another nine individuals infected with larvae cultured from freshly obtained stool. We identified potential immunoregulatory mechanisms by which hookworm may provide a beneficial effect on its host, including increased expression of CTLA-4 on regulatory T cells (Tregs) and upregulation of tryptophan metabolism. Furthermore, we found that a participant's baseline microbiome predicted the severity of symptoms and intestinal inflammation experienced during a controlled hookworm infection. In summary, our findings demonstrate the feasibility of full-scale clinical trials examining hookworm therapy by minimizing the reliance on human donors and optimizing the culturing process, thereby enabling viable hookworm larvae to be mass-produced and enabling on-demand inoculation of patients. Furthermore, this study provides insights into the complex interactions between helminths and their host, which could inform the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Francesco Vacca
- Le Gros Laboratory, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Thomas C. Mules
- Le Gros Laboratory, Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Medicine, University of Otago, Wellington, New Zealand
- Gastroenterology, Te Whatu Ora, Capital Coast and Hutt Valley, Wellington, New Zealand
| | - Mali Camberis
- Le Gros Laboratory, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Brittany Lavender
- Le Gros Laboratory, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Sophia-Louise Noble
- Le Gros Laboratory, Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Medicine, University of Otago, Wellington, New Zealand
| | - Alissa Cait
- Le Gros Laboratory, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Kate Maclean
- Le Gros Laboratory, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - John Mamum
- Le Gros Laboratory, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Bibek Yumnam
- Le Gros Laboratory, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Tama Te Kawa
- Le Gros Laboratory, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Laura Ferrer-Font
- Hugh Green Technology Centre, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Jeffry S. Tang
- Le Gros Laboratory, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Olivier Gasser
- Le Gros Laboratory, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Graham Le Gros
- Le Gros Laboratory, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Stephen Inns
- Department of Medicine, University of Otago, Wellington, New Zealand
- Gastroenterology, Te Whatu Ora, Capital Coast and Hutt Valley, Wellington, New Zealand
| |
Collapse
|
3
|
Mules TC, Inns S, Le Gros G. Helminths' therapeutic potential to treat intestinal barrier dysfunction. Allergy 2023; 78:2892-2905. [PMID: 37449458 DOI: 10.1111/all.15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
The intestinal barrier is a dynamic multi-layered structure which can adapt to environmental changes within the intestinal lumen. It has the complex task of allowing nutrient absorption while limiting entry of harmful microbes and microbial antigens present in the intestinal lumen. Excessive entry of microbial antigens via microbial translocation due to 'intestinal barrier dysfunction' is hypothesised to contribute to the increasing incidence of allergic, autoimmune and metabolic diseases, a concept referred to as the 'epithelial barrier theory'. Helminths reside in the intestinal tract are in intimate contact with the mucosal surfaces and induce a range of local immunological changes which affect the layers of the intestinal barrier. Helminths are proposed to prevent, or even treat, many of the diseases implicated in the epithelial barrier theory. This review will focus on the effect of helminths on intestinal barrier function and explore whether this could explain the proposed health benefits delivered by helminths.
Collapse
Affiliation(s)
- Thomas C Mules
- Malaghan Institute of Medical Research, Wellington, New Zealand
- University of Otago, Wellington, New Zealand
| | | | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
4
|
Maruszewska-Cheruiyot M, Szewczak L, Krawczak-Wójcik K, Kierasińska M, Stear M, Donskow-Łysoniewska K. The Impact of Intestinal Inflammation on Nematode's Excretory-Secretory Proteome. Int J Mol Sci 2023; 24:14127. [PMID: 37762428 PMCID: PMC10531923 DOI: 10.3390/ijms241814127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Parasitic nematodes and their products are promising candidates for therapeutics against inflammatory bowel diseases (IBD). Two species of nematodes, the hookworm Necator americanus and the whipworm Trichuis suis, are being used in clinical treatment trials of IBD referred to as "helminth therapy". Heligmosomoides polygyrus is a well-known model for human hookworm infections. Excretory-secretory (ES) products of H. polygyrus L4 stage that developed during colitis show a different immunomodulatory effect compared to the ES of H. polgyrus from healthy mice. The aim of the study was to evaluate excretory-secretory proteins produced by H. polygyrus L4 stage males and females that developed in the colitic milieu. Mass spectrometry was used to identify proteins. Blast2GO was used to investigate the functions of the discovered proteins. A total of 387 proteins were identified in the ES of H. polygyrus L4 males (HpC males), and 330 proteins were identified in the ES of L4 females that developed in the colitic milieu (HpC females). In contrast, only 200 proteins were identified in the ES of L4 males (Hp males) and 218 in the ES of L4 females (Hp females) that developed in control conditions. Most of the proteins (123) were detected in all groups. Unique proteins identified in the ES of HpC females included annexin, lysozyme-2, apyrase, and galectin. Venom allergen/Ancylostoma-secreted protein-like, transthyretin-like family proteins, and galectins were found in the secretome of HpC males but not in the secretome of control males. These molecules may be responsible for the therapeutic effects of nematodes in DSS-induced colitis.
Collapse
Affiliation(s)
- Marta Maruszewska-Cheruiyot
- Department of Experimental Immunotherapy, Faculty of Medicine, Lazarski University, Świeradowska 43, 02-662 Warsaw, Poland;
| | - Ludmiła Szewczak
- Department of Parasitology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 00-096 Warsaw, Poland;
| | - Katarzyna Krawczak-Wójcik
- Department of Biomedical Sciences, Faculty of Physical Education, Józef Piłsudski University of Physical Education in Warsaw, Marymoncka 34, 00-968 Warsaw, Poland;
| | - Magdalena Kierasińska
- Department of Histology and Embryology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland;
| | - Michael Stear
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Katarzyna Donskow-Łysoniewska
- Department of Experimental Immunotherapy, Faculty of Medicine, Lazarski University, Świeradowska 43, 02-662 Warsaw, Poland;
| |
Collapse
|
5
|
Loke P, Lee SC, Oyesola OO. Effects of helminths on the human immune response and the microbiome. Mucosal Immunol 2022; 15:1224-1233. [PMID: 35732819 DOI: 10.1038/s41385-022-00532-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 02/04/2023]
Abstract
Helminths have evolved sophisticated immune regulating mechanisms to prevent rejection by their mammalian host. Our understanding of how the human immune system responds to these parasites remains poor compared to mouse models of infection and this limits our ability to develop vaccines as well as harness their unique properties as therapeutic strategies against inflammatory disorders. Here, we review how recent studies on human challenge infections, self-infected individuals, travelers, and endemic populations have improved our understanding of human type 2 immunity and its effects on the microbiome. The heterogeneity of responses between individuals and the limited access to tissue samples beyond the peripheral blood are challenges that limit human studies on helminths, but also provide opportunities to transform our understanding of human immunology. Organoids and single-cell sequencing are exciting new tools for immunological analysis that may aid this pursuit. Learning about the genetic and immunological basis of resistance, tolerance, and pathogenesis to helminth infections may thus uncover mechanisms that can be utilized for therapeutic purposes.
Collapse
Affiliation(s)
- P'ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Soo Ching Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Oyebola O Oyesola
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
6
|
Pereira de Araújo M, Sato MO, Sato M, Bandara WM KM, Coelho LFL, Souza RLM, Kawai S, Marques MJ. Unbalanced relationships: insights into the interaction between gut microbiota, geohelminths, and schistosomiasis. PeerJ 2022; 10:e13401. [PMID: 35539016 PMCID: PMC9080432 DOI: 10.7717/peerj.13401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/17/2022] [Indexed: 01/14/2023] Open
Abstract
Hosts and their microbiota and parasites have co-evolved in an adaptative relationship since ancient times. The interaction between parasites and intestinal bacteria in terms of the hosts' health is currently a subject of great research interest. Therapeutic interventions can include manipulations of the structure of the intestinal microbiota, which have immunological interactions important for modulating the host's immune system and for reducing inflammation. Most helminths are intestinal parasites; the intestinal environment provides complex interactions with other microorganisms in which internal and external factors can influence the composition of the intestinal microbiota. Moreover, helminths and intestinal microorganisms can modulate the host's immune system either beneficially or harmfully. The immune response can be reduced due to co-infection, and bacteria from the intestinal microbiota can translocate to other organs. In this way, the treatment can be compromised, which, together with drug resistance by the parasites makes healing even more difficult. Thus, this work aimed to understand interactions between the microbiota and parasitic diseases caused by the most important geohelminths and schistosomiasis and the consequences of these associations.
Collapse
Affiliation(s)
- Matheus Pereira de Araújo
- Institute of Biomedical Sciences, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil,Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Marcello Otake Sato
- Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Megumi Sato
- Graduate School of Health Sciences, Niigata University, Niigata, Niigata, Japan
| | | | | | | | - Satoru Kawai
- Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Marcos José Marques
- Institute of Biomedical Sciences, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
7
|
Barelli C, Donati C, Albanese D, Pafčo B, Modrý D, Rovero F, Hauffe HC. Interactions between parasitic helminths and gut microbiota in wild tropical primates from intact and fragmented habitats. Sci Rep 2021; 11:21569. [PMID: 34732823 PMCID: PMC8566450 DOI: 10.1038/s41598-021-01145-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023] Open
Abstract
The mammalian gastrointestinal tract harbours a highly complex ecosystem composed of a variety of micro- (bacteria, fungi, viruses, protozoans) and macro-organisms (helminths). Although most microbiota research focuses on the variation of single gut components, the crosstalk between components is still poorly characterized, especially in hosts living under natural conditions. We investigated the gut micro-biodiversity (bacteria, fungi and helminths) of 158 individuals of two wild non-human primates, the Udzungwa red colobus (Procolobus gordonorum) and the yellow baboon (Papio cynocephalus). These species have contrasting diets and lifestyles, but live sympatrically in both human-impacted and pristine forests in the Udzungwa Mountains of Tanzania. Using non-invasive faecal pellets, helminths were identified using standard microscopy while bacteria and fungi were characterized by sequencing the V1–V3 variable region of the 16S rRNA gene for bacteria and the ITS1–ITS2 fragment for fungi. Our results show that both diversity and composition of bacteria and fungi are associated with variation in helminth presence. Although interactions differed by habitat type, in both primates we found that Strongyloides was negatively associated and Trichuris was positively associated with bacterial and fungal richness. To our knowledge, this is one of the few studies demonstrating an interaction between helminth and gut microbiota communities in wild non-human primates.
Collapse
Affiliation(s)
- Claudia Barelli
- Conservation Genetic Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele All'Adige, Italy. .,Department of Biology, University of Florence, Sesto Fiorentino, Italy.
| | - Claudio Donati
- Computational Biology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele All'Adige, Italy
| | - Davide Albanese
- Computational Biology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele All'Adige, Italy
| | - Barbora Pafčo
- Department of Pathology and Parasitology, University of Veterinary Sciences, Brno, Czech Republic.,Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - David Modrý
- Department of Pathology and Parasitology, University of Veterinary Sciences, Brno, Czech Republic.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Francesco Rovero
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Heidi C Hauffe
- Conservation Genetic Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele All'Adige, Italy
| |
Collapse
|
8
|
Shute A, Callejas BE, Li S, Wang A, Jayme TS, Ohland C, Lewis IA, Layden BT, Buret AG, McKay DM. Cooperation between host immunity and the gut bacteria is essential for helminth-evoked suppression of colitis. MICROBIOME 2021; 9:186. [PMID: 34517928 PMCID: PMC8438845 DOI: 10.1186/s40168-021-01146-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/30/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Studies on the inhibition of inflammation by infection with helminth parasites have, until recently, overlooked a key determinant of health: the gut microbiota. Infection with helminths evokes changes in the composition of their host's microbiota: one outcome of which is an altered metabolome (e.g., levels of short-chain fatty acids (SCFAs)) in the gut lumen. The functional implications of helminth-evoked changes in the enteric microbiome (composition and metabolites) are poorly understood and are explored with respect to controlling enteric inflammation. METHODS Antibiotic-treated wild-type, germ-free (GF) and free fatty-acid receptor-2 (ffar2) deficient mice were infected with the tapeworm Hymenolepis diminuta, then challenged with DNBS-colitis and disease severity and gut expression of the il-10 receptor-α and SCFA receptors/transporters assessed 3 days later. Gut bacteria composition was assessed by 16 s rRNA sequencing and SCFAs were measured. Other studies assessed the ability of feces or a bacteria-free fecal filtrate from H. diminuta-infected mice to inhibit colitis. RESULTS Protection against disease by infection with H. diminuta was abrogated by antibiotic treatment and was not observed in GF-mice. Bacterial community profiling revealed an increase in variants belonging to the families Lachnospiraceae and Clostridium cluster XIVa in mice 8 days post-infection with H. diminuta, and the transfer of feces from these mice suppressed DNBS-colitis in GF-mice. Mice treated with a bacteria-free filtrate of feces from H. diminuta-infected mice were protected from DNBS-colitis. Metabolomic analysis revealed increased acetate and butyrate (both or which can reduce colitis) in feces from H. diminuta-infected mice, but not from antibiotic-treated H. diminuta-infected mice. H. diminuta-induced protection against DNBS-colitis was not observed in ffar2-/- mice. Immunologically, anti-il-10 antibodies inhibited the anti-colitic effect of H. diminuta-infection. Analyses of epithelial cell lines, colonoids, and colon segments uncovered reciprocity between butyrate and il-10 in the induction of the il-10-receptor and butyrate transporters. CONCLUSION Having defined a feed-forward signaling loop between il-10 and butyrate following infection with H. diminuta, this study identifies the gut microbiome as a critical component of the anti-colitic effect of this helminth therapy. We suggest that any intention-to-treat with helminth therapy should be based on the characterization of the patient's immunological and microbiological response to the helminth.
Collapse
Affiliation(s)
- Adam Shute
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interaction Group, Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Blanca E Callejas
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interaction Group, Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - ShuHua Li
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interaction Group, Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interaction Group, Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Timothy S Jayme
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interaction Group, Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christina Ohland
- International Microbiome Center, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Ian A Lewis
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Canada
| | - Brian T Layden
- Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - André G Buret
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interaction Group, Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Canada
| | - Derek M McKay
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interaction Group, Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|