1
|
Zhang X, Li Y, Pei Y, Yu C, Zhang X, Cao F. Association between maternal stress patterns and neonatal meconium microbiota: A prospective cohort study. J Affect Disord 2025; 383:S0165-0327(25)00695-0. [PMID: 40286937 DOI: 10.1016/j.jad.2025.04.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 02/01/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND This study aimed to identify maternal stress patterns and investigate their associations with neonatal meconium microbiota. METHODS A total of 465 pregnant women reported their stress conditions, including depression, anxiety, pregnancy-related anxiety, perceived stress, sleep, fear of birth, life events, and adverse childhood experiences. Meconium samples were collected from 348 newborns. Latent class analysis was used to identify the patterns of maternal stress. RESULTS Three group profiles were identified: "high negative emotion," "high ACEs-low negative emotion," and "low stress." the high ACEs-low negative emotion group and low stress group had higher levels of Chao1 diversity than the high negative emotion group (B = 0.25, P < 0.001; B = 0.18, P < 0.001, respectively). The high ACEs-low negative emotion group had higher levels of Chao1 diversity than the low stress group (B = 0.08, P = 0.001). The variations were observed in the abundance of Bacteroidetes, unidentified_Muribaculaceae, unclassified_Lachnospiraceae, unclassified_Clostridiales, unidentified_Bacteroidales, Oscillospira, and Ruminococcus among different maternal stress patterns. LIMITATIONS We did not analyze maternal microbiome samples and assessed the gut microbiota at only one time point. CONCLUSIONS These findings emphasized the need for a comprehensive approach to prenatal care that extends beyond traditional medical interventions. Addressing maternal stress through targeted support and interventions may help newborns benefit from a more favorable gut microbiota landscape.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong Province, China
| | - Yang Li
- School of Nursing, The University of Texas at Austin, Austin, USA
| | - Yifei Pei
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong Province, China
| | - Cheng Yu
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong Province, China
| | - Xiao Zhang
- School of Computer Science and Technology, Shandong University, Qingdao, Shandong Province, China
| | - Fenglin Cao
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
2
|
Varghese S, Rao S, Khattak A, Zamir F, Chaari A. Physical Exercise and the Gut Microbiome: A Bidirectional Relationship Influencing Health and Performance. Nutrients 2024; 16:3663. [PMID: 39519496 PMCID: PMC11547208 DOI: 10.3390/nu16213663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: The human gut microbiome is a complex ecosystem of microorganisms that can influence our health and exercise habits. On the other hand, physical exercise can also impact our microbiome, affecting our health. Our narrative review examines the bidirectional relationship between physical activity and the gut microbiome, as well as the potential for targeted probiotic regimens to enhance sports performance. Methods: We conducted a comprehensive literature review to select articles published up till January 2024 on the topics of physical exercise, sports, probiotics, and gut microbiota from major scientific databases, incorporating over 100 studies. Results: We found that the impact of physical activity on the gut microbiome varies with the type and intensity of exercise. Moderate exercise promotes a healthy immune system, while high-intensity exercise for a long duration can cause a leaky gut and consequent systemic inflammation, which may disrupt the microbial balance. Combining aerobic and resistance training significantly affects bacterial diversity, linked to a lower prevalence of chronic metabolic disorders. Furthermore, exercise enhances gut microbiome diversity, increases SCFA production, improves nutrient utilization, and modulates neural and hormonal pathways, improving gut barrier integrity. Our findings also showed probiotic supplementation is associated with decreased inflammation, enhanced sports performance, and fewer gastrointestinal disturbances, suggesting that the relationship between the gut microbiome and physical activity is mutually influential. Conclusions: The bidirectional relationship between physical activity and the gut microbiome is exemplified by how exercise can promote beneficial bacteria while a healthy gut microbiome can potentially enhance exercise ability through various mechanisms. These findings underscore the importance of adding potential tailored exercise regimens and probiotic supplementation that consider individual microbiome profiles into exercise programs.
Collapse
Affiliation(s)
| | | | | | | | - Ali Chaari
- Department of Biochemistry, Premedical Division, Weill Cornell Medicine–Qatar, Qatar Foundation, Education City, Doha P.O. Box 24144, Qatar; (S.V.); (S.R.); (A.K.); (F.Z.)
| |
Collapse
|
3
|
Huang Y, Jing H, Wang Z, Li Z, Chacha S, Teng Y, Mi B, Zhang B, Liu Y, Li Q, Shen Y, Yang J, Qu Y, Wang D, Yan H, Dang S. Does Serum Uric Acid Mediate Relation between Healthy Lifestyle and Components of Metabolic Syndrome? Nutrients 2024; 16:2137. [PMID: 38999885 PMCID: PMC11243389 DOI: 10.3390/nu16132137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
A healthy lifestyle is related to metabolic syndrome (MetS), but the mechanism is not fully understood. This study aimed to examine the association of components of MetS with lifestyle in a Chinese population and potential mediation role of serum uric acid (SUA) in the association between lifestyle behaviors and risk of components of MetS. Data were derived from a baseline survey of the Shaanxi urban cohort in the Regional Ethnic Cohort Study in northwest China. The relationship between components of MetS, healthy lifestyle score (HLS), and SUA was investigated by logistic or linear regression. A counterfactual-based mediation analysis was performed to ascertain whether and to what extent SUA mediated the total effect of HLS on components of MetS. Compared to those with 1 or less low-risk lifestyle factors, participants with 4-5 factors had 43.6% lower risk of impaired glucose tolerance (OR = 0.564; 95%CI: 0.408~0.778), 60.8% reduction in risk of high blood pressure (OR = 0.392; 95%CI: 0.321~0.478), 69.4% reduction in risk of hypertriglyceridemia (OR = 0.306; 95%CI: 0.252~0.372), and 47.3% lower risk of low levels of HDL cholesterol (OR = 0.527; 95%CI: 0.434~0.641). SUA mediated 2.95% (95%CI: 1.81~6.16%) of the total effect of HLS on impaired glucose tolerance, 14.68% (95%CI: 12.04~18.85%) on high blood pressure, 17.29% (95%CI: 15.01~20.5%) on hypertriglyceridemia, and 12.83% (95%CI: 10.22~17.48%) on low levels of HDL cholesterol. Increased HLS tends to reduce risk of components of MetS partly by decreasing the SUA level, which could be an important mechanism by which lifestyle influences MetS.
Collapse
Affiliation(s)
- Yan Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Hui Jing
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Ziping Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Zongkai Li
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Samuel Chacha
- Department of Molecular Diagnostics, Sumbwanga Regional Referral Hospital, Rukwa 413, Tanzania;
| | - Yuxin Teng
- Department of Human Resources, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
| | - Baibing Mi
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Binyan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Yezhou Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Qiang Li
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Yuan Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Jiaomei Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Yang Qu
- HKU Business School, 3/F K.K. Leung Building, The University of Hong Kong, Pokfulam Road, Hong Kong;
| | - Duolao Wang
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L7 8XZ, UK;
| | - Hong Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Shaonong Dang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| |
Collapse
|
4
|
Lavilla-Lerma ML, Aibar-Almazán A, Martínez-Amat A, Jiménez-García JD, Hita-Contreras F. Moderate-intensity continuous training and high-intensity interval training modulate the composition of the oral microbiota of elderly adults: Randomized controlled trial. Maturitas 2024; 185:107973. [PMID: 38579579 DOI: 10.1016/j.maturitas.2024.107973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/12/2024] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE We investigates the effects of 16-week high-intensity interval training and moderate-intensity continuous training on the composition of the oral microbiota. To the best of our knowledge, at the time of writing this paper no other scholars had described the oral metagenomic changes associated with prescribed exercise in older adults. METHODS Forty-three participants aged 60-74 years were randomized 1:1:1 to a control group, high-intensity interval training or moderate-intensity continuous training twice weekly for 16 weeks. Saliva samples were sequenced at baseline, week 8 and week 16 of intervention. RESULTS High-intensity interval training produced significant differences over time in Richness and a clear trend to decreased Simpson and Shannon diversity indices. In contrast, Simpson and Shannon indices showed an upward trend over time with moderate-intensity continuous training, which also decreased Firmicutes and increased Bacteroidetes levels. Significant differences in the abundance of pathogenic species were also observed after the participants completed the exercise interventions of either type. CONCLUSIONS Both types of exercise promoted subtle changes in the oral microbiota, confirming the modulatory effect of high-intensity interval training and moderate-intensity continuous training on the oral microbiome. Clinical trial registration NCT05220670.
Collapse
Affiliation(s)
| | - Agustín Aibar-Almazán
- Department of Health Sciences, Faculty of Heath Sciences, University of Jaén, 23071 Jaén, Spain.
| | - Antonio Martínez-Amat
- Department of Health Sciences, Faculty of Heath Sciences, University of Jaén, 23071 Jaén, Spain.
| | | | - Fidel Hita-Contreras
- Department of Health Sciences, Faculty of Heath Sciences, University of Jaén, 23071 Jaén, Spain.
| |
Collapse
|
5
|
Li J, Yang S, Liu D, Yan Q, Guo H, Jiang Z. Neoagarotetraose Alleviates Atherosclerosis via Modulating Cholesterol and Bile Acid Metabolism in ApoE -/- Mice. Nutrients 2024; 16:1502. [PMID: 38794740 PMCID: PMC11124046 DOI: 10.3390/nu16101502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Atherosclerosis is closely associated with metabolic disorders such as cholesterol accumulation, bile acid metabolism, and gut dysbiosis. Neoagarotetraose supplementation has been shown to inhibit obesity and alleviate type 2 diabetes, but its effects on modulating the development of atherosclerosis remain unexplored. Therefore, the present study was conducted to investigate the protective effects and potential mechanisms of neoagarotetraose on high-fat, high-cholesterol diet (HFHCD)-induced atherosclerosis in ApoE-/- mice. The results showed that neoagarotetraose supplementation decreased the atherosclerotic lesion area by 50.1% and the aortic arch lesion size by 80.4% compared to the HFHCD group. Furthermore, neoagarotetraose supplementation led to a significant reduction in hepatic lipid content, particularly non-high-density lipoprotein cholesterol. It also resulted in a substantial increase in total bile acid content in both urine and fecal samples by 3.0-fold and 38.7%, respectively. Moreover, neoagarotetraose supplementation effectively downregulated the intestinal farnesoid X receptor by 35.8% and modulated the expressions of its associated genes in both the liver and intestine. In addition, correlation analysis revealed strong associations between gut microbiota composition and fecal bile acid levels. These findings highlight the role of gut microbiota in neoagarotetraose-mitigating atherosclerosis in HFHCD-fed ApoE-/- mice. This study indicates the potential of neoagarotetraose as a functional dietary supplement for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Junyi Li
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (S.Y.); (D.L.)
| | - Shaoqing Yang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (S.Y.); (D.L.)
| | - Dan Liu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (S.Y.); (D.L.)
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China;
| | - Huiyuan Guo
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China;
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (S.Y.); (D.L.)
- Food Laboratory of Zhongyuan, Luohe 462000, China
| |
Collapse
|
6
|
Min L, Ablitip A, Wang R, Luciana T, Wei M, Ma X. Effects of Exercise on Gut Microbiota of Adults: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:1070. [PMID: 38613103 PMCID: PMC11013040 DOI: 10.3390/nu16071070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The equilibrium between gut microbiota (GM) and the host plays a pivotal role in maintaining overall health, influencing various physiological and metabolic functions. Emerging research suggests that exercise modulates the abundance and functionality of gut bacteria, yet the comprehensive effects on GM diversity remain to be synthesized. OBJECTIVES AND DESIGN The study aims to quantitatively examine the effect of exercise on the diversity of gut microbiota of adults using a systemic review and meta-analysis approach. METHODS PubMed, Ebsco, Embase, Web of Science, Cochrane Central Register of Controlled Trials, the China National Knowledge Infrastructure, and Wanfang Data were searched from their inception to September 2023. Exercise intervention studies with a control group that describe and compare the composition of GM in adults, using 16S rRNA gene sequencing, were included in this meta-analysis. RESULTS A total of 25 studies were included in this meta-analysis with a total of 1044 participants. Based on a fixed-effects model [Chi2 = 29.40, df = 20 (p = 0.08); I2 = 32%], the pooled analysis showed that compared with the control group, exercise intervention can significantly increase the alpha diversity of adult GM, using the Shannon index as an example [WMD = 0.05, 95% CI (0.00, 0.09); Z = 1.99 (p = 0.05)]. In addition, exercise interventions were found to significantly alter GM, notably decreasing Bacteroidetes and increasing Firmicutes, indicating a shift in the Firmicutes/Bacteroidetes ratio. The subgroup analysis indicates that females and older adults appear to exhibit more significant changes in the Shannon Index and observed OTUs. CONCLUSIONS Exercise may be a promising way to improve GM in adults. In particular, the Shannon index was significantly increased after exercise. Distinct responses in GM diversity to exercise interventions based on gender and age implicated that more research was needed.
Collapse
Affiliation(s)
- Leizi Min
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China; (L.M.); (A.A.)
| | - Alimjan Ablitip
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China; (L.M.); (A.A.)
| | - Rui Wang
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China; (L.M.); (A.A.)
| | - Torquati Luciana
- Department of Public Health and Sport Sciences, Medical School, University of Exeter, Exeter EX1 2HZ, UK;
| | - Mengxian Wei
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China; (L.M.); (A.A.)
| | - Xindong Ma
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China; (L.M.); (A.A.)
| |
Collapse
|
7
|
Yang Y, Yan J, Li S, Liu M, Han R, Wang Y, Wang Z, Wang D. Efficacy of fecal microbiota transplantation in type 2 diabetes mellitus: a systematic review and meta-analysis. Endocrine 2024; 84:48-62. [PMID: 38001323 DOI: 10.1007/s12020-023-03606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023]
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases worldwide, and studies have found significant differences in the composition and ratio of intestinal flora between patients with T2DM and normal glucose tolerance, and fecal microbiota transplantation (FMT) may modulate the composition of the intestinal microbiota thereby alleviating the hyperglycemic state. We conducted a meta-analysis and systematic review of existing randomized controlled trials (RCTs) to assess the efficacy of FMT in T2DM. METHODS We conducted a computer search of PubMed, Embase, The Cochrane Library, and Web of Science to screen randomized controlled trials studies on FMT treatment for T2DM and extracted data from studies that met inclusion criteria. RevMan 5.4 software and Stata 11 software was used for meta-analysis. The indexes of Hemoglobin A1c (HbA1c), fasting plasma glucose (FPG), postprandial blood glucose (PBG), homeostasis model assessment of insulin resistance (HOMA-IR), triglycerides (TG), cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), body mass index (BMI), Aspartate Aminotransferase (AST), Alanine Transaminase (ALT), Systolic blood pressure (SBP) and Diastolic blood pressure (DBP) were mainly evaluated after FMT treatment of T2DM patients, and the changes of intestinal flora were evaluated. RESULTS Four RCTs met the inclusion criteria and were included in the meta-analysis. Results of the meta-analysis showed that compared with the non-FMT group, FMT combined treatment could significantly reduce the PBG level in patients with type 2 diabetes (MD = -0.51, 95% CI: -1.42-0.40, P = 0.27). Compared with single FMT treatment, FMT combined treatment could reduce TG levels in patients with type 2 diabetes (MD = -0.60, 95% CI: -1.12~-0.07, P = 0.03). The levels of TG (MD = -0.26, 95% CI: -0.51~-0.02, P = 0.03), HOMA-IR (MD = -2.73, 95% CI: -4.71~0.75, P = 0.007) and HDL (MD = -0.06,95% CI: -0.10~-0.02, P = 0.003) were significantly decreased after treatment in the single FMT group. The level of TC (MD = -0.65, 95% CI: -1.00~-0.31, P = 0.0002) was significantly decreased after FMT combined treatment. Compared with before treatment, ALT (MD = -2.52, 95% CI: -3.86~-1.17, P = 0.0002) and DBP (MD = -2, 95% CI: -3.32~0.68, P = 0.003) levels decreased after treatment in the single FMT group and the FMT combined group. FPG (MD = -0.94, 95% CI: -1.86~-0.02, P = 0.04), TG (MD = -0.73, 95% CI: -1.42~-0.04, P = 0.04) and TC (MD = -0.94, 95% CI: -1.45~-0.43, P = 0.0003) were significantly decreased after combined drug and diet therapy. Secondly, FMT can promote the colonization and growth of donor-related flora in patients with type 2 diabetes. CONCLUSION In patients with type 2 diabetes mellitus, FMT treatment can reduce the levels of PBG, TG, HOMA-IR, TC, ALT, and DBP, especially in the combined treatment regimen. In addition, FMT can reshape the intestinal flora and establish the balance of dominant flora.
Collapse
Affiliation(s)
- Yan Yang
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China
| | - Jingjing Yan
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China
| | - Shuo Li
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China
| | - Mengru Liu
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China
| | - Ruimin Han
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China
| | - Yinping Wang
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China
| | - Zhen Wang
- Clinical Medical College of Hebei University of Engineering, Handan, Hebei, 056000, China.
| | - Defeng Wang
- Endocrinology Department of Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, 056000, China.
| |
Collapse
|
8
|
Farahbod K, Slouha E, Gerts A, Rezazadah A, Clunes LA, Kollias TF. The Effects of Diet Intervention on the Gut Microbiota in Type 2 Diabetes Mellitus: A Systematic Review. Cureus 2024; 16:e56737. [PMID: 38646363 PMCID: PMC11033091 DOI: 10.7759/cureus.56737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
The GI tract hosts a dynamic community known as the gut microbiota, which encompasses thriving bacteria that actively contribute to the physiological functions of the human body. The intricacies of its composition are profoundly influenced by dietary preferences, where the quality, quantity, and frequency of food consumption play a pivotal role in either fostering or impeding specific bacterial strains. Type 2 diabetes mellitus (T2DM) is a prevalent and deleterious condition that originates from excessive hyperglycemia. Do lifestyle interventions targeting dietary adjustments, nutritional supplements, physical activity, and weight management programs exhibit a significant relationship in altering the composition of the gut microbiome and managing T2DM? This paper aims to evaluate the effects of lifestyle interventions on patients with T2DM and the implications of these changes on disease outcomes and progression. Lifestyle interventions can significantly impact the management of T2DM, especially those targeting dietary adjustments, nutritional supplements, physical activity, and weight management programs. The adoption of a high-fiber diet and increased fruit consumption have shown positive impacts on both insulin sensitivity and the composition of the gut microbiota. Additionally, promising outcomes emerge from supplementing with Omega-3 fatty acids, Vitamin K2 (MK-7), and transglucosidase, which influence insulin levels, glycemic control, and gut microbiota composition. Personalized diet interventions and the transformative effects of the Mediterranean diet present positive outcomes in metabolic control. The intensity of exercise plays a pivotal role in shaping the composition of the gut microbiota, with moderate-intensity continuous exercise displaying positive effects on anti-inflammatory microbes. Chronic exercise showcases favorable impacts on glycemic control and systemic inflammation. Emphasizing the intricate relationship between dietary habits, gut microbiota, and the risk of T2DM underscores the potential of the gut microbiota as a universal biomarker for assessing diabetes risk. Nutritional supplements and exercise interventions provide potential avenues for the management of T2DM, emphasizing the necessity for tailored strategies. Further research is encouraged to delve into the long-term effects and intricate interplay between lifestyle factors and the gut microbiome, enhancing our understanding of T2DM pathophysiology for targeted therapeutic approaches.
Collapse
Affiliation(s)
- Kiana Farahbod
- Department of Pharmacology, St. George's University School of Medicine, St. George's, GRD
| | - Ethan Slouha
- Department of Pharmacology, St. George's University School of Medicine, St. George's, GRD
| | - Andrew Gerts
- Department of Pharmacology, St. George's University School of Medicine, St. George's, GRD
| | - Atbeen Rezazadah
- Department of Pharmacology, St. George's University School of Medicine, St. George's, GRD
| | - Lucy A Clunes
- Department of Pharmacology, St. George's University School of Medicine, St. George's, GRD
| | - Theofanis F Kollias
- Department Microbiology, Immunology, and Pharmacology, St. George's University School of Medicine, St. George's, GRD
| |
Collapse
|
9
|
Cullen JMA, Shahzad S, Kanaley JA, Ericsson AC, Dhillon J. The effects of 6 wk of resistance training on the gut microbiome and cardiometabolic health in young adults with overweight and obesity. J Appl Physiol (1985) 2024; 136:349-361. [PMID: 38059291 DOI: 10.1152/japplphysiol.00350.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
Obesity is a known risk factor for the development of insulin resistance and other cardiometabolic disorders. Recently, the gut microbiome has been associated with obesity and subsequent health complications. Exercise has been regularly utilized as a therapeutic intervention to treat obesity and its associated comorbidities. This study examined the effects of a 6-wk resistance training exercise program (RT) on the diversity, composition, and metabolic pathways of the gut microbiome. Sedentary young adults (age 18-35 yr) with overweight and obesity (BMI 25-45 kg/m2) were recruited to participate in this randomized controlled trial. Participants were randomized to RT (n = 16), a 6-wk resistance training program (3 days/wk), or control (CT) (n = 16), a nonexercising control. Main outcomes of the study included gut microbiome measures (taxa abundances, diversity, and predicted function) and cardiometabolic outcomes [blood pressure (BP) and glucoregulation]. Increased abundances of Roseburia, a short-chain fatty acid (SCFA) producer were observed over 6 wk (W6) with RT compared with CT (group × week, P < 0.05, q < 0.25). RT also induced marginal alterations in predicted microbial metabolic and cell motility pathways compared with CT (group × week, P < 0.05, q < 0.25). However, RT did not significantly impact overall microbial diversity. Furthermore, RT resulted in higher quantitative insulin-sensitivity check index (QUICKI) and lower diastolic BP at W6 compared with CT [baseline (BL)-adjusted P < 0.05]. RT had mixed effects on the gut microbiome. Although RT increased abundances of Roseburia and induced minor changes in microbial pathways, it is important to consider these changes in the context of the overall stability observed in the microbiome composition.NEW & NOTEWORTHY Resistance training induces mixed changes in the gut microbiome, including an increase in the abundances of the Roseburia genus and minor alterations in microbial pathways. However, it is vital to interpret these changes in light of the broader context, where we observe stability in the overall microbiome composition. This stability may be attributed to the microbiome's resilience, demonstrating its capacity to withstand short-term physiological stressors.
Collapse
Affiliation(s)
- John M A Cullen
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Shahim Shahzad
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Jill A Kanaley
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States
| | - Jaapna Dhillon
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
10
|
Qian H, Zuo Y, Wen S, Wang X, Liu Y, Li T. Impact of exercise training on gut microbiome imbalance in obese individuals: a study based on Mendelian randomization analysis. Front Physiol 2024; 14:1264931. [PMID: 38235382 PMCID: PMC10792044 DOI: 10.3389/fphys.2023.1264931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024] Open
Abstract
Objective: The aim of this study was to investigate the relationship between exercise and gut Microbiome and to assess its possible causality. Methods: Using Mendelian randomization (MR) research methods, we collected genetic data from different populations, including genetic variants associated with relative abundance or presence of microbial taxa as instrumental variables. At the same time, we extracted results related to obesity and gut Microbiome from existing relevant studies and used inverse variance weighting (IVW), weighted median, and MR-Egger regression to assess the causal relationship between obesity and gut Microbiome. We plotted forest plots and scatter plots of the association between obesity and gut Microbiome. Results: Gut Microbiome was positively associated with obesity, and four bacterial genera (Akkermansia, RuminococcaceaeUCG011, Holdemania, and Intestinimonas) were associated with obesity according to inverse variance-weighted estimation in at least one MR method. Inverse variance weighted estimation showed that obesity was associated with obesity in Akkermansia (OR = 0.810, 95% CI 0.608-1.079, p = 0.04), RuminococcaceaeUCG011 (OR = 1.238, 95% CI 0. 511-2.999, p = 0.04), Holdemania Intestinimonas (OR = 1.214, 95% CI 1.002-1.470, p = 0.03), and Intestinimonas (OR = 0.747, 95% CI 0.514-1.086, p = 0.01) had a relevant effect. Obesity decreased the abundance of Akkermansia, Intestinimonas microbiome and increased the abundance of RuminococcaceaeUCG011, Holdemania microbiome. Conclusion: The results of this study, conducted using a two-sample Mendelian randomization method, suggest a causal relationship between obesity and intestinal microbiome. Obesity decreased the abundance of Akkermansia, Intestinimonas microbiome and increased the abundance of RuminococcaceaeUCG011, Holdemania microbiome. More randomized controlled trials are necessary to elucidate the protective effects of exercise on gut Microbiome and its unique protective mechanisms.
Collapse
Affiliation(s)
- Haonan Qian
- Department of Physical Education, Hanyang University, Seoul, Republic of Korea
| | - Yuxin Zuo
- Department of Health and Physical Education, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| | - Shixiong Wen
- Department of Physical Education, Hanyang University, Seoul, Republic of Korea
| | - Xilong Wang
- Department of Physical Education, Hanyang University, Seoul, Republic of Korea
| | - Yaowen Liu
- Department of Physical Education, Hanyang University, Seoul, Republic of Korea
| | - Tianwei Li
- The University of Edinburgh, Physical Activity for Health Research Center, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Han B, Tang D, Lv X, Fan J, Li S, Zhu H, Zhang J, Xu S, Xu X, Huang Z, Huang Z, Lin G, Zhan L, Lv X. Integrated multi-omics reveal gut microbiota-mediated bile acid metabolism alteration regulating immunotherapy responses to anti-α4β7-integrin in Crohn's disease. Gut Microbes 2024; 16:2310894. [PMID: 38312103 PMCID: PMC10854365 DOI: 10.1080/19490976.2024.2310894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/23/2024] [Indexed: 02/06/2024] Open
Abstract
Gut microbiota and related metabolites are both crucial factors that significantly influence how individuals with Crohn's disease respond to immunotherapy. However, little is known about the interplay among gut microbiota, metabolites, Crohn's disease, and the response to anti-α4β7-integrin in current studies. Our research utilized 2,4,6-trinitrobenzene sulfonic acid to induce colitis based on the humanized immune system mouse model and employed a combination of whole-genome shotgun metagenomics and non-targeted metabolomics to investigate immunotherapy responses. Additionally, clinical cases with Crohn's disease initiating anti-α4β7-integrin therapy were evaluated comprehensively. Particularly, 16S-rDNA gene high-throughput sequencing and targeted bile acid metabolomics were conducted at weeks 0, 14, and 54. We found that anti-α4β7-integrin therapy has shown significant potential for mitigating disease phenotypes in remission-achieving colitis mice. Microbial profiles demonstrated that not only microbial composition but also microbially encoded metabolic pathways could predict immunotherapy responses. Metabonomic signatures revealed that bile acid metabolism alteration, especially elevated secondary bile acids, was a determinant of immunotherapy responses. Especially, the remission mice significantly enriched the proportion of the beneficial Lactobacillus and Clostridium genera, which were correlated with increased gastrointestinal levels of BAs involving lithocholic acid and deoxycholic acid. Moreover, most of the omics features observed in colitis mice were replicated in clinical cases. Notably, anti-α4β7 integrin provided sustained therapeutic benefits in clinical remitters during follow-up, and long-lasting remission was linked to persistent changes in the microbial-related bile acids. In conclusion, gut microbiota-mediated bile acid metabolism alteration could play a crucial role in regulating immunotherapy responses to anti-α4β7-integrin in Crohn's disease. Therefore, the identification of prognostic microbial signals facilitates the advancement of targeted probiotics that activate anti-inflammatory bile acid metabolic pathways, thereby improving immunotherapy responses. The integrated multi-omics established in our research provide valuable insights into potential mechanisms that impact treatment responses in complex diseases.
Collapse
Affiliation(s)
- Bing Han
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Daiyuan Tang
- Postgraduate College, Kunming Medical University, Kunming, China
| | - Xiaodan Lv
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junhua Fan
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiquan Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui Zhu
- Department of Microbiology, Guangxi Medical University, Nanning, China
| | - Jiatong Zhang
- Postgraduate College, Guangxi Medical University, Nanning, China
| | - Shang Xu
- Postgraduate College, Guangxi Medical University, Nanning, China
| | - Xiaofang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ziqian Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhixi Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangfu Lin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lingling Zhan
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Gao C, Wei J, Lu C, Wang L, Dong D, Sun M. A new perspective in intestinal microecology: lifting the veil of exercise regulation of cardiometabolic diseases. Gut Microbes 2024; 16:2404141. [PMID: 39305272 PMCID: PMC11418258 DOI: 10.1080/19490976.2024.2404141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Cardiometabolic diseases (CMDs), encompassing cardiovascular and metabolic dysfunctions, characterized by insulin resistance, dyslipidemia, hepatic steatosis, and inflammation, have been identified with boosting morbidity and mortality due to the dearth of efficacious therapeutic interventions. In recent years, studies have shown that variations in gut microbiota and its own metabolites can influence the occurrence of CMDs. Intriguingly, the composition and function of the gut microbiota are susceptible to exercise patterns, thus affecting inflammatory, immune, and metabolic responses within the host. In this review, we introduce the key mechanisms of intestinal microecology involved in the onset and development of CMDs, discuss the relationship between exercise and intestinal microecology, and then analyze the role of intestinal microecology in the beneficial effects of exercise on CMDs, aiming at elucidating the gut-heart axis mechanisms of exercise mediated protective effect on CMDs, building avenues for the application of exercise in the management of CMDs.
Collapse
Affiliation(s)
- Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, P. R. China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, P. R. China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| |
Collapse
|
13
|
Cullen JMA, Shahzad S, Dhillon J. A systematic review on the effects of exercise on gut microbial diversity, taxonomic composition, and microbial metabolites: identifying research gaps and future directions. Front Physiol 2023; 14:1292673. [PMID: 38187136 PMCID: PMC10770260 DOI: 10.3389/fphys.2023.1292673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/07/2023] [Indexed: 01/09/2024] Open
Abstract
The gut microbiome, hosting a diverse microbial community, plays a pivotal role in metabolism, immunity, and digestion. While the potential of exercise to influence this microbiome has been increasingly recognized, findings remain incongruous. This systematic review examined the effects of exercise on the gut microbiome of human and animal models. Databases (i.e., PubMed, Cochrane Library, Scopus, and Web of Science) were searched up to June 2022. Thirty-two exercise studies, i.e., 19 human studies, and 13 animal studies with a minimum of two groups that discussed microbiome outcomes, such as diversity, taxonomic composition, or microbial metabolites, over the intervention period, were included in the systematic review (PROSPERO registration numbers for human review: CRD42023394223). Results indicated that over 50% of studies found no significant exercise effect on human microbial diversity. When evident, exercise often augmented the Shannon index, reflecting enhanced microbial richness and evenness, irrespective of disease status. Changes in beta-diversity metrics were also documented with exercise but without clear directionality. A larger percentage of animal studies demonstrated shifts in diversity compared to human studies, but without any distinct patterns, mainly due to the varied effects of predominantly aerobic exercise on diversity metrics. In terms of taxonomic composition, in humans, exercise usually led to a decrease in the Firmicutes/Bacteroidetes ratio, and consistent increases with Bacteroides and Roseburia genera. In animal models, Coprococcus, another short chain fatty acid (SCFA) producer, consistently rose with exercise. Generally, SCFA producers were found to increase with exercise in animal models. With regard to metabolites, SCFAs emerged as the most frequently measured metabolite. However, due to limited human and animal studies examining exercise effects on microbial-produced metabolites, including SCFAs, clear patterns did not emerge. The overall risk of bias was deemed neutral. In conclusion, this comprehensive systematic review underscores that exercise can potentially impact the gut microbiome with indications of changes in taxonomic composition. The significant variability in study designs and intervention protocols demands more standardized methodologies and robust statistical models. A nuanced understanding of the exercise-microbiome relationship could guide individualized exercise programs to optimize health. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=394223, identifier CRD42023394223.
Collapse
Affiliation(s)
- John M A Cullen
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Shahim Shahzad
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Jaapna Dhillon
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
14
|
He X, Shao W, Yu S, Yu J, Huang C, Ren H, Liu C, Xu Y, Zhu Y. Healthy lifestyle scores associate with incidence of type 2 diabetes mediated by uric acid. Nutr Metab (Lond) 2023; 20:47. [PMID: 37915083 PMCID: PMC10619235 DOI: 10.1186/s12986-023-00763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Whether and to what extent serum uric acid (SUA) mediates the association between combined lifestyle behaviors and type 2 diabetes mellitus (T2DM) remain unclear. This study aimed to investigate the role of SUA in the relationship between healthy lifestyle scores (HLS) and the incidence of T2DM. METHODS This prospective study used data from Zhejiang Metabolic Syndrome cohort. A HLS (5-point scale including healthy waist circumference (WC), never smoking, high physical activity, healthy diet and moderate alcohol intake) was estimated in 13,919 participants, who had SUA at baseline examination in 2009-2014, and were followed-up to 2021-2022 to ascertain incident of T2DM. Cox proportional hazards models and mediation analysis were used to examine the associations between HLS, SUA and T2DM. RESULTS We included 13,919 participants aged 18 years or older without diabetes at baseline (mean age 54.6 [SD 13.9] years, 58.7% female). During a median follow-up of 9.94 years, 645 cases of T2DM occurred. Compared with participants with a poor HLS, those with 4-5 low-risk lifestyle factors showed a 60% reduction in the risk of developing T2DM (adjusted HR, 0.40; 95% CI: 0.28-0.57). Further, the population-attributable risk percent (95% CI) of T2DM for poor adherence to the overall healthy lifestyle (< 4 low-risk factors) was 43.24% (30.02%, 56.46%). The HLS was inversely associated with SUA level. With per score increased in HLS, the beta (95% CI) of SUA (log transformed) was - 0.03 (- 0.03, - 0.02), and the odds ratio (95% CI) of hyperuricemia was 0.82 (0.77, 0.86). The relationship between the HLS and risk of T2DM was mediated by SUA with a 13.06% mediation effect. There was no significant combined effect of HLS and SUA on risk of T2DM (P = 0.097). CONCLUSIONS The relationship between overall healthy lifestyle behaviors and T2DM was reconfirmed and the association appeared to be mediated by SUA. The mediation effect of baseline SUA was more pronounced among women who were below 60 years old.
Collapse
Affiliation(s)
- Xinyue He
- Department of Epidemiology and Biostatistics and Department of Respiratory Diseases of Sir Run Run Show Hospital, Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Wei Shao
- Zhejiang Putuo Hospital, Zhoushan, Zhejiang, People's Republic of China
| | - Senhai Yu
- Xiaoshan District Yiqiao Community Health Service Center, Hangzhou, Zhejiang, People's Republic of China
| | - Jiazhou Yu
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Changzhen Huang
- Dongyang Traditional Chinese Medicine Hospital, Dongyang, Zhejiang, People's Republic of China
| | - Haiqing Ren
- Dongyang Traditional Chinese Medicine Hospital, Dongyang, Zhejiang, People's Republic of China
| | - Chengguo Liu
- Zhejiang Putuo Hospital, Zhoushan, Zhejiang, People's Republic of China.
| | - Yuying Xu
- Department of Epidemiology and Biostatistics and Teaching Experiment Center for Public Health, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Yimin Zhu
- Department of Epidemiology and Biostatistics and Department of Respiratory Diseases of Sir Run Run Show Hospital, Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
15
|
Ping L, Zhuoya L, Pei J, Jingchao C, Yi L, Guosheng L, Hailei W. Editing of a Specific Strain of Escherichia coli in the Mouse Gut Using Native Phages. Microbiol Spectr 2022; 10:e0180422. [PMID: 36301104 PMCID: PMC9770003 DOI: 10.1128/spectrum.01804-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2023] Open
Abstract
There is a lack of methodological investigation of the in situ functions of bacterial species in microecosystems. Here, we used native phages as a microbial editing tool for eliminating Escherichia coli strain MG1655 labeled with green fluorescent protein (GFP) in the mouse gut. The virulent phages (W1 and W3) possessed host specificity at both the genus and species levels, resulting in an 8.8-log10 difference in the titer of viable bacteria after 12 h of phage treatment compared with that in the phage-free control in an in vitro test. In vivo, they reduced strain MG1655 colonizing the mouse gut at concentrations of 106 to 108 CFU g-1 to a 102 CFU g-1 level, which is almost undetectable by the plate colony-counting method. Moreover, the impact of phage treatment on the microbial community structure of the mouse gut was not significant (P > 0.05), indicating that native phages can effectively edit a target bacterium, with limited perturbation of microbial diversity and relative abundance. Therefore, we developed an engineering technique for investigation of the functions of a specific bacterium by depleting its abundance in microecosystems. IMPORTANCE This report describes a gut engineering technique for investigation of the functions of a specific bacterium. Native phages with host specificity can knock down the corresponding E. coli strain in the mouse gut with limited perturbation of microbial diversity and relative abundance, indicating that they, as a microbial editing tool, can effectively edit the abundance of a target bacterium. Such an approach is undoubtedly of interest in the context of lack of knowledge of how to methodologically study the in situ function of a specific species in a complex microecosystem.
Collapse
Affiliation(s)
- Li Ping
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Li Zhuoya
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Jia Pei
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Chen Jingchao
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Li Yi
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Liu Guosheng
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wang Hailei
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Advanced Environmental Biotechnology Center, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
16
|
Legaard GE, Feineis CS, Johansen MY, Hansen KB, Vaag AA, Larsen EL, Poulsen HE, Almdal TP, Karstoft K, Pedersen BK, Ried-Larsen M. Effects of an exercise-based lifestyle intervention on systemic markers of oxidative stress and advanced glycation endproducts in persons with type 2 diabetes: Secondary analysis of a randomised clinical trial. Free Radic Biol Med 2022; 188:328-336. [PMID: 35764194 DOI: 10.1016/j.freeradbiomed.2022.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS This secondary analysis aimed to investigate the effects of a 12 months intensive exercise-based lifestyle intervention on systemic markers of oxidative stress in persons with type 2 diabetes. We hypothesized lifestyle intervention to be superior to standard care in decreasing levels of oxidative stress. METHODS The study was based on the single-centre, assessor-blinded, randomised, controlled U-turn trial (ClinicalTrial.gov NCT02417012). Persons with type 2 diabetes ˂ 10 years, ˂ 3 glucose lowering medications, no use of insulin, BMI 25-40 kg/m2 and no severe diabetic complications were included. Participants were randomised (2:1) to either intensive exercise-based lifestyle intervention and standard (n = 64) or standard care alone (n = 34). Standard care included individual education in diabetes management, advice on a healthy lifestyle and regulation of medication by a blinded endocrinologist. The lifestyle intervention included five to six aerobic exercise sessions per week, combined with resistance training two to three times per week and an adjunct dietary intervention aiming at reduction of ∼500 kcal/day (month 0-4). The diet was isocaloric from months 5-12. The primary outcome of this secondary analysis was change in oxidative stress measured by 8-oxo-7,8-dihydroguanosine (8-oxoGuo) and secondarily in 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), as markers of RNA and DNA oxidation, respectively, from baseline to 12-months follow-up. RESULTS A total of 77 participants, 21 participants receiving standard care and 56 participants receiving the lifestyle intervention, were included in the analysis. Mean age at baseline was 54.1 years (SD 9.1), 41% were women and mean duration of type 2 diabetes was 5.0 years (SD 2.8). From baseline to follow-up the lifestyle group experienced a 7% decrease in 8-oxoGuo (-0.15 nmol/mmol creatinine [95% CI -0.27, -0.03]), whereas standard care conversely was associated with a 8.5% increase in 8-oxoGuo (0.19 nmol/mmol creatinine [95% CI 0.00, 0.40]). The between group difference in 8-oxoGuo was -0.35 nmol/mmol creatinine [95% CI -0.58, -0.12,], p = 0.003. No between group difference was observed in 8-oxodG. CONCLUSION/INTERPRETATION A 12 months intensive exercise-based lifestyle intervention was associated with a decrease in RNA, but not DNA, oxidation in persons with type 2 diabetes.
Collapse
Affiliation(s)
- Grit E Legaard
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| | - Camilla S Feineis
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mette Y Johansen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Allan A Vaag
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Emil L Larsen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark
| | - Henrik E Poulsen
- Department of Cardiology, Copenhagen University Hospital - North Zealand, Hillerød, Denmark; Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Thomas P Almdal
- Department of Endocrinology PE, Rigshospitalet, University of Copenhagen, Denmark; Department of Immunology & Microbiology, University of Copenhagen, Denmark
| | - Kristian Karstoft
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Bente K Pedersen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mathias Ried-Larsen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|