1
|
Flores-Aldaba KA, Vázquez-Marmolejo AV, Vargas-Villarreal J, Ocampo-Candiani J, Cantú-Álvarez MG, Espinoza-Martínez PE, Salinas-Carmona MC, Vera-Cabrera L. Immune response in BALB/c mice to an attenuated strain of Nocardiabrasiliensis. Microb Pathog 2025; 204:107612. [PMID: 40252937 DOI: 10.1016/j.micpath.2025.107612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
INTRODUCTION We recently developed an attenuated strain of Nocardia brasiliensis HUJEG-1, named NBP200, through 200 continuous passaging. When administered to naïve mice, this attenuated strain confers resistance to infection with the wild-type strain. Although the immune response to the parental strain has been previously studied, the analysis of the immune response to the attenuated strain will help to understand the immune mechanisms involved in resistance against this microorganism. METHODS Initially, experimental mice were divided into two groups and infected with either the attenuated or the wild-type strain to compare their responses. After 12 weeks, animals initially inoculated with NBP200 were challenged with the wild-type isolate (NBP0), while a control group of the same age was infected with NBP0. Flow cytometry was employed to analyze surface and intracellular markers, including gamma interferon, IL-4, IL-10, and IL-17, in order to assess Th-cell responses in the spleen and infected footpad. Sera were collected at various time points for ELISAs and Western blot assays in order to characterize the humoral immune response. RESULTS Levels of gamma interferon and IL-4 cells were similar in both groups, whether inoculated with the attenuated or wild-type strain. However, concentrations of IL-17 and IL-10 were notably higher in animals inoculated with the wild-type strain, especially at 90 days post-inoculation. In the mice inoculated with the attenuated strain there were not any observable mycetoma lesions, and the quantity of IL-10+ or IL-17+ cells was minimal. In the re-infected animals, the most significant difference was observed in the Treg response during the late stage, where an immunosuppressive microenvironment was not observed. IgG levels in mice infected with either NBP0 or NBP200 were similar. In contrast, those inoculated with NBP200 and challenged with NBP0 exhibited a robust humoral response characterized by antibodies against P61, as well as to other proteins not previously reported, including those with molecular weights of 13.8-, 15.8-, 66-, and 69-kDa. CONCLUSIONS The attenuated strain and the re-infected group exhibited different modulation of the Th cell response. Immunized animals with NBP200 and challenged with NBP0, showed a rapid and strong IgG antibody response. These changes may be potential factors contributing to the protective immunity against the wild-type strain.
Collapse
Affiliation(s)
- Kevin A Flores-Aldaba
- Laboratorio Interdisciplinario de Investigación Dermatológica, Servicio de Dermatología, Hospital Universitario, U.A.N.L., Monterrey, Mexico; Servicio de Inmunología, Facultad de Medicina, U.A.N.L., Monterrey, Mexico
| | | | | | - Jorge Ocampo-Candiani
- Laboratorio Interdisciplinario de Investigación Dermatológica, Servicio de Dermatología, Hospital Universitario, U.A.N.L., Monterrey, Mexico
| | - Mayra G Cantú-Álvarez
- Laboratorio Interdisciplinario de Investigación Dermatológica, Servicio de Dermatología, Hospital Universitario, U.A.N.L., Monterrey, Mexico
| | | | | | - Lucio Vera-Cabrera
- Laboratorio Interdisciplinario de Investigación Dermatológica, Servicio de Dermatología, Hospital Universitario, U.A.N.L., Monterrey, Mexico.
| |
Collapse
|
2
|
Aganja RP, Bakhsh M, Senevirathne A, Kwon J, Lee JH. Lipopolysaccharide structural modification in Salmonella Gallinarum targeting lipid a deacylation and O-antigen reduces virulence and endotoxicity with competitive protection against a wild-type challenge in chickens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 165:105343. [PMID: 39952572 DOI: 10.1016/j.dci.2025.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Fowl typhoid (FT), caused by Salmonella Gallinarum (SG), inflicts a significant economic burden on the poultry industry. Our study focused on a non-reversible gene deletion to develop a safe and effective SG vaccine strain through lipopolysaccharide (LPS) structural modification. The virulence-attenuated SG JOL914 strain, generated by deleting the global regulator lon gene, was engineered by in-frame deletions targeting the LPS structure. Interruption on LPS deacylation was introduced by pagL deletion, JOL2997, to mitigate endotoxicity induced by the live vaccine. The O-antigen was truncated by rfaL deletion, JOL3004, to compromise virulence and facilitate Differentiating Infected from Vaccinated Animals (DIVA). Both genes were depleted in JOL3016 (ΔlonΔpagLΔrfaL) for their compounding effects. Subcutaneous administration of the engineered strains in chickens showed reduced endotoxicity, particularly demonstrated by JOL3016 with 2.55-fold and 3.79-fold reductions in TNF-α and IL-1β, respectively. Furthermore, discernible effects on body weight gain and the absence of pathological signs demonstrated the safety profiles of the inoculated strains. Administration of mutant strains substantially increased antigen-specific IgY, sIgA, CD4+, and CD8+ T cells, supporting immune response elicitation. The absence of antibodies against O-antigen in birds immunized with JOL3004 and JOL3016 demonstrated their DIVA capability. The result was corroborated by improved protection with a rational body weight gain and minimal tissue distortion following an SG WT challenge. JOL2997-immunized birds showed promising survival, and negligible invasion of the challenge strain in vital organs, highlighting its protective efficacy. This study underscores the potential of bioengineered vaccine strains to improve poultry health and productivity, reinforcing the necessity for ongoing vaccine development research.
Collapse
Affiliation(s)
- Ram Prasad Aganja
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea; College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, 54596, Iksan, Republic of Korea
| | - Muhammad Bakhsh
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Jun Kwon
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea; College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, 54596, Iksan, Republic of Korea.
| |
Collapse
|
3
|
Aganja RP, Kwon J, Senevirathne A, Lee JH. Deletion of pagL and arnT genes involved in LPS structure and charge modulation in the Salmonella genome confer reduced endotoxicity and retained efficient protection against wild-type Salmonella Gallinarum challenge in chicken. Vet Res 2025; 56:2. [PMID: 39755658 DOI: 10.1186/s13567-024-01413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/16/2024] [Indexed: 01/06/2025] Open
Abstract
Fowl typhoid (FT) poses a significant threat to the poultry industry and can cause substantial economic losses, especially in developing regions. Caused by Salmonella Gallinarum (SG), vaccination can prevent FT. However, existing vaccines, like the SG9R strain, have limitations, including residual virulence and potential reversion of pathogenicity. This study aims to develop safer and more effective SG vaccine strains through targeted genetic modifications, focusing on genes involved in lipopolysaccharide (LPS) biosynthesis and modification. We evaluated two novel mutant SG strains, JOL3015 and JOL3016, carrying in-frame deletions in ΔlonΔrfaLΔarnT and ΔlonΔrfaLΔpagL, respectively. Intramuscular immunisation of 4-week-old young birds with JOL3015 and JOL3016 strains showed minimal impact on their growth. However, the immunisation significantly increased antigen-specific IgY, sIgA secretion, and CD4+ and CD8+ T-cell responses while inducing lower pro-inflammatory cytokine levels than SG9R. Histopathological evaluations revealed substantial protection in the immunised birds, with minimal tissue damage and inflammatory responses, thus reducing the in vivo bacterial burden. Furthermore, none of the immunised birds died. This outcome highlights the significant safety and protection the selected genetic modifications conferred. Our results indicate that JOL3016 provided comparable protective outcomes on par with SG9R, yet with significantly lower endotoxicity responses during the lethal challenge with SG WT JOL422. The novel detoxified SG strains, particularly JOL3016, offer a promising alternative to existing vaccines for FT. They provide effective protection with minimal impact on poultry growth, thereby minimising the risks associated with reversion and endotoxicity. The study highlights the potential of genetically engineered vaccine strains in improving poultry health and productivity, emphasising the importance of continued research.
Collapse
Affiliation(s)
- Ram Prasad Aganja
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Iksan, 54596, Republic of Korea
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University Campus, Iksan, 54596, Republic of Korea
| | - Jun Kwon
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Iksan, 54596, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Iksan, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Iksan, 54596, Republic of Korea.
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University Campus, Iksan, 54596, Republic of Korea.
| |
Collapse
|
4
|
Zhi Y, Mei C, Liu Z, Liu Y, Wang H. Glutathione reductase modulates endogenous oxidative stress and affects growth and virulence in Avibacterium paragallinarum. Vet Res 2025; 56:1. [PMID: 39748435 PMCID: PMC11697956 DOI: 10.1186/s13567-024-01388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/03/2024] [Indexed: 01/04/2025] Open
Abstract
Glutathione reductase (GR) plays a pivotal role in managing oxidative stress, a process crucial for microbial virulence and adaptation, yet it has not been extensively explored in bacteria such as Avibacterium paragallinarum (Av. paragallinarum). This study examined the specific roles of GR in Av. paragallinarum, focusing on how GR modulates the bacterium's response to oxidative stress and impacts its pathogenic behavior. Using gene knockouts together with transcriptomic and metabolomic profiling, we identified an important shift in redox balance due to GR deficiency, which disrupted energy metabolism and weakened the oxidative stress defense, culminating in a notable decline in virulence. In addition, decreased growth rates, reduced biofilm production, and weakened macrophage interactions were observed in GR-deficient strains. Notably, our findings reveal a sophisticated adaptation mechanism wherein the bacterium recalibrated its metabolic pathways in response to GR deficiency without fully restoring virulence. Our in vivo studies further highlight the pivotal role of GR in pathogen fitness. Together, our findings connect GR-mediated redox control to bacterial virulence, thereby furthering the understanding of microbial adaptation and positioning GR as a potential antimicrobial target. Our insights into the GR-centric regulatory network pave the way for leveraging bacterial redox mechanisms in the development of novel antimicrobial therapies, highlighting the importance of oxidative stress management in bacterial pathogenicity.
Collapse
Affiliation(s)
- Yan Zhi
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chen Mei
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhenyi Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ying Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Hongjun Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
5
|
Liu M, Wang M, Huang M, Gao Q, Zhu D, Wang M, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Tian B, Sun D, Cheng A. Iron efflux by IetA enhances β-lactam aztreonam resistance and is linked to oxidative stress through cellular respiration in Riemerella anatipestifer. J Antimicrob Chemother 2024; 79:1385-1396. [PMID: 38629469 DOI: 10.1093/jac/dkae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/20/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Riemerella anatipestifer encodes an iron acquisition system, but whether it encodes the iron efflux pump and its role in antibiotic resistance are largely unknown. OBJECTIVES To screen and identify an iron efflux gene in R. anatipestifer and determine whether and how the iron efflux gene is involved in antibiotic resistance. METHODS In this study, gene knockout, streptonigrin susceptibility assay and inductively coupled plasma mass spectrometry were used to screen for the iron efflux gene ietA. The MIC measurements, scanning electron microscopy and reactive oxygen species (ROS) detection were used to verify the role of IetA in aztreonam resistance and its mechanism. Mortality and colonization assay were used to investigate the role of IetA in virulence. RESULTS The deletion mutant ΔietA showed heightened susceptibility to streptonigrin, and prominent intracellular iron accumulation was observed in ΔfurΔietA under excess iron conditions. Additionally, ΔietA exhibited increased sensitivity to H2O2-produced oxidative stress. Under aerobic conditions with abundant iron, ΔietA displayed increased susceptibility to the β-lactam antibiotic aztreonam due to heightened ROS production. However, the killing efficacy of aztreonam was diminished in both WT and ΔietA under anaerobic or iron restriction conditions. Further experiments demonstrated that the efficiency of aztreonam against ΔietA was dependent on respiratory complexes Ⅰ and Ⅱ. Finally, in a duckling model, ΔietA had reduced virulence compared with the WT. CONCLUSION Iron efflux is critical to alleviate oxidative stress damage and β-lactam aztreonam killing in R. anatipestifer, which is linked by cellular respiration.
Collapse
Affiliation(s)
- Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengying Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mi Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qun Gao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Sai Mao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
6
|
Chandra HB, Lalhmangaihzuali L, Shome A, Sahoo R, Irungbam K, Mahawar M. Comparative analysis reveals the trivial role of MsrP in defending oxidative stress and virulence of Salmonella Typhimurium in mice. Free Radic Biol Med 2024; 213:322-326. [PMID: 38262547 DOI: 10.1016/j.freeradbiomed.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Sulphur containing amino acids, methionine and cysteine are highly prone to oxidation. Reduction of oxidized methionine (Met-SO) residues to methionine (Met) by methionine sulfoxide reductases (Msrs) enhances the survival of bacterial pathogens under oxidative stress conditions. S. Typhimurium encodes two types (cytoplasmic and periplasmic) of Msrs. Periplasmic proteins, due to their location are highly vulnerable to host-generated oxidants. Therefore, the periplasmic Msr (MsrP) mediated repair (as compared to the cytoplasmic counterpart) might play a more imperative role in defending host-generated oxidants. Contrary to this, we show that in comparison to the ΔmsrP strain, the mutant strains in the cytoplasmic Msrs (ΔmsrA and ΔmsrAC strains) showed many folds more susceptibility to chloramine-T and neutrophils. Further ΔmsrA and ΔmsrAC strains accumulated higher levels of ROS and showed compromised fitness in mice spleen and liver. Our data suggest the pivotal role of cytoplasmic Msrs in oxidative stress survival of S. Typhimurium.
Collapse
Affiliation(s)
- Hari Balaji Chandra
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - L Lalhmangaihzuali
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Arijit Shome
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Raj Sahoo
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Karuna Irungbam
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Manish Mahawar
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India.
| |
Collapse
|
7
|
Wang X, Xie W, Cai L, Han C, Kuang H, Shao Y, Zhang S, Zhang Q, Li J, Cui W, Jiang Y, Tang L. Microencapsulated Limosilactobacillus reuteri Encoding Lactoferricin-Lactoferrampin Targeted Intestine against Salmonella typhimurium Infection. Nutrients 2023; 15:5141. [PMID: 38140400 PMCID: PMC10745908 DOI: 10.3390/nu15245141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. typhimurium) is an important foodborne pathogen that infects both humans and animals and develops acute gastroenteritis. As porcine intestines are relatively similar to the human ones due to their relatively similar sizes and structural similarity, S. typhimurium causes analogous symptoms in both. Novel strategies for controlling S. typhimurium infection are also desired, such as mucosal-targeted delivery of probiotics and antimicrobial peptides. The bovine lactoferricin-lactoferrampin-encoding Limosilactobacillus reuteri (LR-LFCA) strain improves intestinal barrier function by strengthening the intestinal barrier. Weaned piglets were selected for oral administration of microencapsulated LR-LFCA (microcapsules entrap LR-LFCA into gastro-resistant polymers) and then infected with S. typhimurium for 3 days. We found that orally administering microencapsulated LR-LFCA to weaned piglets attenuated S. typhimurium-induced production of inflammatory factors in the intestinal mucosa by inhibiting the nuclear factor-kappa B (NF-κB) and P38 mitogen-activated protein kinases (MAPK) signaling pathway. Moreover, microencapsulated LR-LFCA administration significantly suppressed the oxidative stress that may correlate with gut microbiota (reduced Salmonella population and increased α-diversity and Lactobacillus abundance) and intestinal function (membrane transport and metabolism). Our work demonstrated that microencapsulated LR-LFCA effectively targeted intestine delivery of Lactobacillus and antimicrobial peptides and modulated gut microbiota and mucosal immunity. This study reveals a novel targeting mucosal strategy against S. typhimurium infection.
Collapse
Affiliation(s)
- Xueying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Limeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Chuang Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Hongdi Kuang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Yilan Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Senhao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Qi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.W.); (W.X.); (L.C.); (C.H.); (H.K.); (Y.S.); (S.Z.); (Q.Z.); (J.L.); (W.C.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Sahoo R, Chauhan TKS, Lalhmangaihzuali L, Sinha E, Qureshi S, Mahawar M. Pan msr gene deleted strain of Salmonella Typhimurium suffers oxidative stress, depicts macromolecular damage and attenuated virulence. Sci Rep 2023; 13:21852. [PMID: 38071209 PMCID: PMC10710478 DOI: 10.1038/s41598-023-48734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Salmonella encounters but survives host inflammatory response. To defend host-generated oxidants, Salmonella encodes primary antioxidants and protein repair enzymes. Methionine (Met) residues are highly prone to oxidation and convert into methionine sulfoxide (Met-SO) which compromises protein functions and subsequently cellular survival. However, by reducing Met-SO to Met, methionine sulfoxide reductases (Msrs) enhance cellular survival under stress conditions. Salmonella encodes five Msrs which are specific for particular Met-SO (free/protein bound), and 'R'/'S' types. Earlier studies assessed the effect of deletions of one or two msrs on the stress physiology of S. Typhimurium. We generated a pan msr gene deletion (Δ5msr) strain in S. Typhimurium. The Δ5msr mutant strain shows an initial lag in in vitro growth. However, the Δ5msr mutant strain depicts very high sensitivity (p < 0.0001) to hypochlorous acid (HOCl), chloramine T (ChT) and superoxide-generating oxidant paraquat. Further, the Δ5msr mutant strain shows high levels of malondialdehyde (MDA), protein carbonyls, and protein aggregation. On the other side, the Δ5msr mutant strain exhibits lower levels of free amines. Further, the Δ5msr mutant strain is highly susceptible to neutrophils and shows defective fitness in the spleen and liver of mice. The results of the current study suggest that the deletions of all msrs render S. Typhimurium highly prone to oxidative stress and attenuate its virulence.
Collapse
Affiliation(s)
- Raj Sahoo
- Division of Biochemistry, ICAR-IVRI, Izatnagar, 243122, India
| | | | | | - Esha Sinha
- Division of Biological Standardization, ICAR-IVRI, Izatnagar, 243122, India
| | - Salauddin Qureshi
- Division of Biological Standardization, ICAR-IVRI, Izatnagar, 243122, India
| | - Manish Mahawar
- Division of Biochemistry, ICAR-IVRI, Izatnagar, 243122, India.
| |
Collapse
|