1
|
Ashraf W, Ahmad T, Reynoird N, Hamiche A, Mély Y, Bronner C, Mousli M. Natural and Synthetic Anticancer Epidrugs Targeting the Epigenetic Integrator UHRF1. Molecules 2023; 28:5997. [PMID: 37630248 PMCID: PMC10459542 DOI: 10.3390/molecules28165997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, and its incidence and mortality are increasing each year. Improved therapeutic strategies against cancer have progressed, but remain insufficient to invert this trend. Along with several other risk factors, abnormal genetic and epigenetic regulations play a critical role in the initiation of cellular transformation, as well as tumorigenesis. The epigenetic regulator UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is a multidomain protein with oncogenic abilities overexpressed in most cancers. Through the coordination of its multiple domains and other epigenetic key players, UHRF1 regulates DNA methylation and histone modifications. This well-coordinated dialogue leads to the silencing of tumor-suppressor genes (TSGs) and facilitates tumor cells' resistance toward anticancer drugs, ultimately promoting apoptosis escape and uncontrolled proliferation. Several studies have shown that the downregulation of UHRF1 with natural compounds in tumor cells induces the reactivation of various TSGs, inhibits cell growth, and promotes apoptosis. In this review, we discuss the underlying mechanisms and the potential of various natural and synthetic compounds that can inhibit/minimize UHRF1's oncogenic activities and/or its expression.
Collapse
Affiliation(s)
- Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Tanveer Ahmad
- Institut Pour L’avancée des Biosciences, Centre de Recherche UGA, INSERM U1209, CNRS 5309, Université Grenoble Alpes, 38058 Grenoble, France; (T.A.); (N.R.)
| | - Nicolas Reynoird
- Institut Pour L’avancée des Biosciences, Centre de Recherche UGA, INSERM U1209, CNRS 5309, Université Grenoble Alpes, 38058 Grenoble, France; (T.A.); (N.R.)
| | - Ali Hamiche
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Equipe Labellisée Ligue Contre le Cancer, 67401 Illkirch, France;
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France;
| | - Christian Bronner
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Equipe Labellisée Ligue Contre le Cancer, 67401 Illkirch, France;
| | - Marc Mousli
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France;
| |
Collapse
|
2
|
Ciaco S, Mazzoleni V, Javed A, Eiler S, Ruff M, Mousli M, Mori M, Mély Y. Inhibitors of UHRF1 base flipping activity showing cytotoxicity against cancer cells. Bioorg Chem 2023; 137:106616. [PMID: 37247564 DOI: 10.1016/j.bioorg.2023.106616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1) is a nuclear multi-domain protein overexpressed in numerous human cancer types. We previously disclosed the anthraquinone derivative UM63 that inhibits UHRF1-SRA domain base-flipping activity, although having DNA intercalating properties. Herein, based on the UM63 structure, new UHRF1-SRA inhibitors were identified through a multidisciplinary approach, combining molecular modelling, biophysical assays, molecular and cell biology experiments. We identified AMSA2 and MPB7, that inhibit UHRF1-SRA mediated base flipping at low micromolar concentrations, but do not intercalate into DNA, which is a key advantage over UM63. These molecules prevent UHRF1/DNMT1 interaction at replication forks and decrease the overall DNA methylation in cells. Moreover, both compounds specifically induce cell death in numerous cancer cell lines, displaying marginal effect on non-cancer cells, as they preferentially affect cells with high level of UHRF1. Overall, these two compounds are promising leads for the development of anti-cancer drugs targeting UHRF1.
Collapse
Affiliation(s)
- Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France; Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Viola Mazzoleni
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Aqib Javed
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Sylvia Eiler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Marc Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Marc Mousli
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| |
Collapse
|
3
|
Chang W, Zhao Y, Rayêe D, Xie Q, Suzuki M, Zheng D, Cvekl A. Dynamic changes in whole genome DNA methylation, chromatin and gene expression during mouse lens differentiation. Epigenetics Chromatin 2023; 16:4. [PMID: 36698218 PMCID: PMC9875507 DOI: 10.1186/s13072-023-00478-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Cellular differentiation is marked by temporally and spatially coordinated gene expression regulated at multiple levels. DNA methylation represents a universal mechanism to control chromatin organization and its accessibility. Cytosine methylation of CpG dinucleotides regulates binding of methylation-sensitive DNA-binding transcription factors within regulatory regions of transcription, including promoters and distal enhancers. Ocular lens differentiation represents an advantageous model system to examine these processes as lens comprises only two cell types, the proliferating lens epithelium and postmitotic lens fiber cells all originating from the epithelium. RESULTS Using whole genome bisulfite sequencing (WGBS) and microdissected lenses, we investigated dynamics of DNA methylation and chromatin changes during mouse lens fiber and epithelium differentiation between embryos (E14.5) and newborns (P0.5). Histone H3.3 variant chromatin landscapes were also generated for both P0.5 lens epithelium and fibers by chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Tissue-specific features of DNA methylation patterns are demonstrated via comparative studies with embryonic stem (ES) cells and neural progenitor cells (NPCs) at Nanog, Pou5f1, Sox2, Pax6 and Six3 loci. Comparisons with ATAC-seq and RNA-seq data demonstrate that reduced methylation is associated with increased expression of fiber cell abundant genes, including crystallins, intermediate filament (Bfsp1 and Bfsp2) and gap junction proteins (Gja3 and Gja8), marked by high levels of histone H3.3 within their transcribed regions. Interestingly, Pax6-binding sites exhibited predominantly DNA hypomethylation in lens chromatin. In vitro binding of Pax6 proteins showed Pax6's ability to interact with sites containing one or two methylated CpG dinucleotides. CONCLUSIONS Our study has generated the first data on methylation changes between two different stages of mammalian lens development and linked these data with chromatin accessibility maps, presence of histone H3.3 and gene expression. Reduced DNA methylation correlates with expression of important genes involved in lens morphogenesis and lens fiber cell differentiation.
Collapse
Affiliation(s)
- William Chang
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yilin Zhao
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Danielle Rayêe
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Qing Xie
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Masako Suzuki
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Deyou Zheng
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
4
|
Mei X, Wang J, Zhang C, Zhu J, Liu B, Xie Q, Yuan T, Wu Y, Chen R, Xie X, Wei Y, Wang L, Shao G, Xiong Q, Xu Y, Feng Z, Zhang Z. Apigenin suppresses mycoplasma-induced alveolar macrophages necroptosis via enhancing the methylation of TNF-α promoter by PPARγ-Uhrf1 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154504. [PMID: 36332388 DOI: 10.1016/j.phymed.2022.154504] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Mycoplasma-associated pneumonia is characterized by severe lung inflammation and immunological dysfunction. However, current anti-mycoplasma agents used in clinical practice do not prevent dysfunction of alveolar macrophages caused by the high level of the cytokine tumor necrosis factor-α (TNF-α) after mycoplasma infection. Apigenin inhibits the production of TNF-α in variet inflammation associated disease. PURPOSE This study aimed to investigate apigenin's effect on mycoplasma-induced alveolar immune cell injury and the mechanism by which it inhibits TNF-α transcription. METHODS In this study, we performed a mouse model of Mycoplasma hyopneumoniae infection to evaluate the effect of apigenin on reducing mycoplasma-induced alveolar immune cell injury. Furthermore, we carried out transcriptome analysis, RNA interference assay, methylated DNA bisulfite sequencing assay, and chromatin immunoprecipitation assay to explore the mechanism of action for apigenin in reducing TNF-α. RESULTS We discovered that M. hyopneumoniae infection-induced necroptosis in alveolar macrophages MH-S cells and primary mouse alveolar macrophages, which was activated by TNF-α autocrine. Apigenin inhibited M. hyopneumoniae-induced elevation of TNF-α and necroptosis in alveolar macrophages. Apigenin inhibited TNF-a mRNA production via increasing ubiquitin-like with PHD and RING finger domains 1 (Uhrf1)-dependent DNA methylation of the TNF-a promotor. Finally, we demonstrated that apigenin regulated Uhrf1 transcription via peroxisome proliferator activated receptor gamma (PPARγ) activation, which acts as a transcription factor binding to the Uhrf1 promoter and protected infected mice's lungs, and promoted alveolar macrophage survival. CONCLUTSION This study identified a novel mechanism of action for apigenin in reducing alveolar macrophage necroptosis via the PPARγ/ Uhrf1/TNF-α pathway, which may have implications for the treatment of Mycoplasma pneumonia.
Collapse
Affiliation(s)
- Xiuzhen Mei
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, China
| | - Chao Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiale Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Beibei Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qingyun Xie
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ting Yuan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuzi Wu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xing Xie
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanna Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Li Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guoqing Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yefen Xu
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, China.
| | - Zhixin Feng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, China.
| | - Zhenzhen Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
5
|
Liu Y, Cheng D, Wang Y, Xi S, Wang T, Sun W, Li G, Ma D, Zhou S, Li Z, Ni C. UHRF1-mediated ferroptosis promotes pulmonary fibrosis via epigenetic repression of GPX4 and FSP1 genes. Cell Death Dis 2022; 13:1070. [PMID: 36566325 PMCID: PMC9789966 DOI: 10.1038/s41419-022-05515-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
Pulmonary fibrosis (PF), as an end-stage clinical phenotype of interstitial lung diseases (ILDs), is frequently initiated after alveolar injury, in which ferroptosis has been identified as a critical event aggravating the pathophysiological progression of this disease. Here in, a comprehensive analysis of two mouse models of pulmonary fibrosis developed in our lab demonstrated that lung damage-induced ferroptosis of alveolar epithelial Type2 cells (AEC2) significantly accumulates during the development of pulmonary fibrosis while ferroptosis suppressor genes GPX4 and FSP1 are dramatically inactivated. Mechanistically, upregulation of de novo methylation regulator Uhrf1 sensitively elevates CpG site methylation levels in promoters of both GPX4 and FSP1 genes and induces the epigenetic repression of both genes, subsequently leading to ferroptosis in chemically interfered AEC2 cells. Meanwhile, specific inhibition of UHRF1 highly arrests the ferroptosis formation and blocks the progression of pulmonary fibrosis in both of our research models. This study first, to our knowledge, identified the involvement of Uhrf1 in mediating the ferroptosis of chemically injured AEC2s via de novo promoter-specific methylation of both GPX4 and FSP1 genes, which consequently accelerates the process of pulmonary fibrosis. The above findings also strongly suggested Uhrf1 as a novel potential target in the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yi Liu
- grid.89957.3a0000 0000 9255 8984Gusu School, Nanjing Medical University, Nanjing, 211166 China
| | - Demin Cheng
- grid.89957.3a0000 0000 9255 8984Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Yue Wang
- grid.89957.3a0000 0000 9255 8984Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Sichuan Xi
- grid.48336.3a0000 0004 1936 8075Thoracic Epigenetics Section, Thoracic Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892 USA
| | - Ting Wang
- grid.412676.00000 0004 1799 0784Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000 China
| | - Wenqing Sun
- grid.89957.3a0000 0000 9255 8984Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Guanru Li
- grid.89957.3a0000 0000 9255 8984Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Dongyu Ma
- grid.89957.3a0000 0000 9255 8984Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Siyun Zhou
- grid.89957.3a0000 0000 9255 8984Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Ziwei Li
- grid.89957.3a0000 0000 9255 8984Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Chunhui Ni
- grid.89957.3a0000 0000 9255 8984Gusu School, Nanjing Medical University, Nanjing, 211166 China ,grid.89957.3a0000 0000 9255 8984Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| |
Collapse
|
6
|
Mandal P, Eswara K, Yerkesh Z, Kharchenko V, Zandarashvili L, Szczepski K, Bensaddek D, Jaremko Ł, Black BE, Fischle W. Molecular basis of hUHRF1 allosteric activation for synergistic histone modification binding by PI5P. SCIENCE ADVANCES 2022; 8:eabl9461. [PMID: 36001657 PMCID: PMC9401617 DOI: 10.1126/sciadv.abl9461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Chromatin marks are recognized by distinct binding modules, many of which are embedded in multidomain proteins. How the different functionalities of such complex chromatin modulators are regulated is often unclear. Here, we delineated the interplay of the H3 amino terminus- and K9me-binding activities of the multidomain hUHRF1 protein. We show that the phosphoinositide PI5P interacts simultaneously with two distant flexible linker regions connecting distinct domains of hUHRF1. The binding is dependent on both, the polar head group, and the acyl part of the phospholipid and induces a conformational rearrangement juxtaposing the H3 amino terminus and K9me3 recognition modules of the protein. In consequence, the two features of the H3 tail are bound in a multivalent, synergistic manner. Our work highlights a previously unidentified molecular function for PI5P outside of the context of lipid mono- or bilayers and establishes a molecular paradigm for the allosteric regulation of complex, multidomain chromatin modulators by small cellular molecules.
Collapse
Affiliation(s)
- Papita Mandal
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Karthik Eswara
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Zhadyra Yerkesh
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Vladlena Kharchenko
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Levani Zandarashvili
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kacper Szczepski
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Dalila Bensaddek
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Łukasz Jaremko
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wolfgang Fischle
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Comprehensive Pan-Cancer Analysis Reveals the Role of UHRF1-Mediated DNA Methylation and Immune Infiltration in Renal Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:3842547. [PMID: 35656341 PMCID: PMC9152404 DOI: 10.1155/2022/3842547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022]
Abstract
Ubiquitin-like PHD and ring finger domain protein 1 (UHRF1) are members of the multifunctional UHRF family, which can participate in DNA methylation change and histone posttranslational change through particular domains and participate in the event and development of tumors. The purpose of this study was to decide the molecular traits and potential medicine-based importance of UHRF1 that helped settle methylated immune infiltration in generalized cancer by carefully studying the relationship between UHRF1 expression and a variety of tumors and to further check for truth the functional role of UHRF1 in kidney-related cancer. A comprehensive analysis of UHRF1 in 33 cancers was performed based on TCGA database. This research involves analysis of mRNA expression profiles, prognostic value, immune infiltration, immune neoantigens, TMB, microsatellite instability, DNA methylation, and gene set enrichment analysis (GSEA). Both immune infiltration and DNA methylation were used to evaluate the importance and method of UHRF1 in renal cancer. The results showed that tumor tissue had higher expression level of UHRF1 than usual tissue. The high expression level of UHRF1 is related to the survival rate of renal cancer. UHRF1 expression was associated with tumor mutation load and microsatellite instability in different cancer types, and enrichment analysis identified terminology and pathways associated with UHRF1. This study showed that UHRF1 plays an important role in the group of objects and development of 33 tumors. UHRF1 may serve as a biomarker of immune infiltration and poor outlook of cancer.
Collapse
|
8
|
Marunde MR, Popova IK, Weinzapfel EN, Keogh MC. The dCypher Approach to Interrogate Chromatin Reader Activity Against Posttranslational Modification-Defined Histone Peptides and Nucleosomes. Methods Mol Biol 2022; 2458:231-255. [PMID: 35103971 DOI: 10.1007/978-1-0716-2140-0_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bulk chromatin encompasses complex sets of histone posttranslational modifications (PTMs) that recruit (or repel) the diverse reader domains of Chromatin-Associated Proteins (CAPs) to regulate genome processes (e.g., gene expression, DNA repair, mitotic transmission). The binding preference of reader domains for their PTMs mediates localization and functional output, and are often dysregulated in disease. As such, understanding chromatin interactions may lead to novel therapeutic strategies, However the immense chemical diversity of histone PTMs, combined with low-throughput, variable, and nonquantitative methods, has defied accurate CAP characterization. This chapter provides a detailed protocol for dCypher, a novel approach for the rapid, quantitative interrogation of CAPs (as mono- or multivalent Queries) against large panels (10s to 100s) of PTM-defined histone peptide and semisynthetic nucleosomes (the potential Targets). We describe key optimization steps and controls to generate robust binding data. Further, we compare the utility of histone peptide and nucleosome substrates in CAP studies, outlining important considerations in experimental design and data interpretation.
Collapse
|
9
|
Ahmad T, Ashraf W, Ibrahim A, Zaayter L, Muller CD, Hamiche A, Mély Y, Bronner C, Mousli M. TIP60 governs the auto‑ubiquitination of UHRF1 through USP7 dissociation from the UHRF1/USP7 complex. Int J Oncol 2021; 59:89. [PMID: 34558642 PMCID: PMC8480382 DOI: 10.3892/ijo.2021.5269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Tat interactive protein, 60 kDa (TIP60) is an important partner of ubiquitin-like, containing PHD and RING finger domains 1 (UHRF1), ensuring various cellular processes through its acetyltransferase activity. TIP60 is believed to play a tumor suppressive role, partly explained by its downregulated expression in a number of cancers. The aim of the present study was to investigate the role and mechanisms of action of TIP60 in the regulation of UHRF1 expression. The results revealed that TIP60 overexpression downregulated the UHRF1 and DNA methyltransferase 1 (DNMT1) expression levels. TIP60 interfered with USP7-UHRF1 association and induced the degradation of UHRF1 in an auto-ubiquitination-dependent manner. Moreover, TIP60 activated the p73-mediated apoptotic pathway. Taken together, the data of the present study suggest that the tumor suppressor role of TIP60 is mediated by its regulation to UHRF1.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Laboratory of Bioimaging and Pathologies, CNRS UMR‑7021, Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch, France
| | - Waseem Ashraf
- Laboratory of Bioimaging and Pathologies, CNRS UMR‑7021, Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch, France
| | - Abdulkhaleg Ibrahim
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258 CNRS UMR 7104, University of Strasbourg, 67400 Illkirch, France
| | - Liliyana Zaayter
- Laboratory of Bioimaging and Pathologies, CNRS UMR‑7021, Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch, France
| | - Christian D Muller
- Hubert Curien Pluridisciplinary Institute (IPHC), CNRS UMR‑7178, University of Strasbourg, 67401 Illkirch, France
| | - Ali Hamiche
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258 CNRS UMR 7104, University of Strasbourg, 67400 Illkirch, France
| | - Yves Mély
- Laboratory of Bioimaging and Pathologies, CNRS UMR‑7021, Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch, France
| | - Christian Bronner
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258 CNRS UMR 7104, University of Strasbourg, 67400 Illkirch, France
| | - Marc Mousli
- Laboratory of Bioimaging and Pathologies, CNRS UMR‑7021, Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch, France
| |
Collapse
|
10
|
Mancini M, Magnani E, Macchi F, Bonapace IM. The multi-functionality of UHRF1: epigenome maintenance and preservation of genome integrity. Nucleic Acids Res 2021; 49:6053-6068. [PMID: 33939809 PMCID: PMC8216287 DOI: 10.1093/nar/gkab293] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
During S phase, the cooperation between the macromolecular complexes regulating DNA synthesis, epigenetic information maintenance and DNA repair is advantageous for cells, as they can rapidly detect DNA damage and initiate the DNA damage response (DDR). UHRF1 is a fundamental epigenetic regulator; its ability to coordinate DNA methylation and histone code is unique across proteomes of different species. Recently, UHRF1’s role in DNA damage repair has been explored and recognized to be as important as its role in maintaining the epigenome. UHRF1 is a sensor for interstrand crosslinks and a determinant for the switch towards homologous recombination in the repair of double-strand breaks; its loss results in enhanced sensitivity to DNA damage. These functions are finely regulated by specific post-translational modifications and are mediated by the SRA domain, which binds to damaged DNA, and the RING domain. Here, we review recent studies on the role of UHRF1 in DDR focusing on how it recognizes DNA damage and cooperates with other proteins in its repair. We then discuss how UHRF1’s epigenetic abilities in reading and writing histone modifications, or its interactions with ncRNAs, could interlace with its role in DDR.
Collapse
Affiliation(s)
- Monica Mancini
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| | - Elena Magnani
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Filippo Macchi
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| |
Collapse
|
11
|
Discovery of small molecules targeting the tandem tudor domain of the epigenetic factor UHRF1 using fragment-based ligand discovery. Sci Rep 2021; 11:1121. [PMID: 33441849 PMCID: PMC7806715 DOI: 10.1038/s41598-020-80588-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Despite the established roles of the epigenetic factor UHRF1 in oncogenesis, no UHRF1-targeting therapeutics have been reported to date. In this study, we use fragment-based ligand discovery to identify novel scaffolds for targeting the isolated UHRF1 tandem Tudor domain (TTD), which recognizes the heterochromatin-associated histone mark H3K9me3 and supports intramolecular contacts with other regions of UHRF1. Using both binding-based and function-based screens of a ~ 2300-fragment library in parallel, we identified 2,4-lutidine as a hit for follow-up NMR and X-ray crystallography studies. Unlike previous reported ligands, 2,4-lutidine binds to two binding pockets that are in close proximity on TTD and so has the potential to be evolved into more potent inhibitors using a fragment-linking strategy. Our study provides a useful starting point for developing potent chemical probes against UHRF1.
Collapse
|
12
|
Franks JL, Martinez-Chacin RC, Wang X, Tiedemann RL, Bonacci T, Choudhury R, Bolhuis DL, Enrico TP, Mouery RD, Damrauer JS, Yan F, Harrison JS, Major MB, Hoadley KA, Suzuki A, Rothbart SB, Brown NG, Emanuele MJ. In silico APC/C substrate discovery reveals cell cycle-dependent degradation of UHRF1 and other chromatin regulators. PLoS Biol 2020; 18:e3000975. [PMID: 33306668 PMCID: PMC7758050 DOI: 10.1371/journal.pbio.3000975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/23/2020] [Accepted: 11/05/2020] [Indexed: 01/07/2023] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and critical regulator of cell cycle progression. Despite its vital role, it has remained challenging to globally map APC/C substrates. By combining orthogonal features of known substrates, we predicted APC/C substrates in silico. This analysis identified many known substrates and suggested numerous candidates. Unexpectedly, chromatin regulatory proteins are enriched among putative substrates, and we show experimentally that several chromatin proteins bind APC/C, oscillate during the cell cycle, and are degraded following APC/C activation, consistent with being direct APC/C substrates. Additional analysis revealed detailed mechanisms of ubiquitylation for UHRF1, a key chromatin regulator involved in histone ubiquitylation and DNA methylation maintenance. Disrupting UHRF1 degradation at mitotic exit accelerates G1-phase cell cycle progression and perturbs global DNA methylation patterning in the genome. We conclude that APC/C coordinates crosstalk between cell cycle and chromatin regulatory proteins. This has potential consequences in normal cell physiology, where the chromatin environment changes depending on proliferative state, as well as in disease.
Collapse
Affiliation(s)
- Jennifer L Franks
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Raquel C Martinez-Chacin
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Xianxi Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Rochelle L Tiedemann
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Thomas Bonacci
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Rajarshi Choudhury
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Derek L Bolhuis
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Taylor P Enrico
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ryan D Mouery
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeffrey S Damrauer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Feng Yan
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joseph S Harrison
- Department of Chemistry, University of the Pacific, Stockton, California, United States of America
| | - M Ben Major
- Department of Cell Biology and Physiology, Department of Otolaryngology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Nicholas G Brown
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michael J Emanuele
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
13
|
Tauber M, Kreuz S, Lemak A, Mandal P, Yerkesh Z, Veluchamy A, Al-Gashgari B, Aljahani A, Cortés-Medina LV, Azhibek D, Fan L, Ong MS, Duan S, Houliston S, Arrowsmith CH, Fischle W. Alternative splicing and allosteric regulation modulate the chromatin binding of UHRF1. Nucleic Acids Res 2020; 48:7728-7747. [PMID: 32609811 PMCID: PMC7430637 DOI: 10.1093/nar/gkaa520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/29/2022] Open
Abstract
UHRF1 is an important epigenetic regulator associated with apoptosis and tumour development. It is a multidomain protein that integrates readout of different histone modification states and DNA methylation with enzymatic histone ubiquitylation activity. Emerging evidence indicates that the chromatin-binding and enzymatic modules of UHRF1 do not act in isolation but interplay in a coordinated and regulated manner. Here, we compared two splicing variants (V1, V2) of murine UHRF1 (mUHRF1) with human UHRF1 (hUHRF1). We show that insertion of nine amino acids in a linker region connecting the different TTD and PHD histone modification-binding domains causes distinct H3K9me3-binding behaviour of mUHRF1 V1. Structural analysis suggests that in mUHRF1 V1, in contrast to V2 and hUHRF1, the linker is anchored in a surface groove of the TTD domain, resulting in creation of a coupled TTD-PHD module. This establishes multivalent, synergistic H3-tail binding causing distinct cellular localization and enhanced H3K9me3-nucleosome ubiquitylation activity. In contrast to hUHRF1, H3K9me3-binding of the murine proteins is not allosterically regulated by phosphatidylinositol 5-phosphate that interacts with a separate less-conserved polybasic linker region of the protein. Our results highlight the importance of flexible linkers in regulating multidomain chromatin binding proteins and point to divergent evolution of their regulation.
Collapse
Affiliation(s)
- Maria Tauber
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sarah Kreuz
- Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Alexander Lemak
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada
| | - Papita Mandal
- Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Zhadyra Yerkesh
- Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Alaguraj Veluchamy
- Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Bothayna Al-Gashgari
- Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Abrar Aljahani
- Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Lorena V Cortés-Medina
- Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Dulat Azhibek
- Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core Facility of the National Cancer Institute, Frederick, MD 21702, USA
| | - Michelle S Ong
- Structural Genomics Consortium, University of Toronto, Toronto M5G 1L7, Canada
| | - Shili Duan
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada
| | - Scott Houliston
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada.,Structural Genomics Consortium, University of Toronto, Toronto M5G 1L7, Canada
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
14
|
Sybirna A, Tang WWC, Pierson Smela M, Dietmann S, Gruhn WH, Brosh R, Surani MA. A critical role of PRDM14 in human primordial germ cell fate revealed by inducible degrons. Nat Commun 2020; 11:1282. [PMID: 32152282 PMCID: PMC7062732 DOI: 10.1038/s41467-020-15042-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 12/31/2019] [Indexed: 11/09/2022] Open
Abstract
PRDM14 is a crucial regulator of mouse primordial germ cells (mPGCs), epigenetic reprogramming and pluripotency, but its role in the evolutionarily divergent regulatory network of human PGCs (hPGCs) remains unclear. Besides, a previous knockdown study indicated that PRDM14 might be dispensable for human germ cell fate. Here, we decided to use inducible degrons for a more rapid and comprehensive PRDM14 depletion. We show that PRDM14 loss results in significantly reduced specification efficiency and an aberrant transcriptome of hPGC-like cells (hPGCLCs) obtained in vitro from human embryonic stem cells (hESCs). Chromatin immunoprecipitation and transcriptomic analyses suggest that PRDM14 cooperates with TFAP2C and BLIMP1 to upregulate germ cell and pluripotency genes, while repressing WNT signalling and somatic markers. Notably, PRDM14 targets are not conserved between mouse and human, emphasising the divergent molecular mechanisms of PGC specification. The effectiveness of degrons for acute protein depletion is widely applicable in various developmental contexts.
Collapse
Affiliation(s)
- Anastasiya Sybirna
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, CB2 3EL, UK
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Walfred W C Tang
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Merrick Pierson Smela
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Sabine Dietmann
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Wolfram H Gruhn
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Ran Brosh
- Institute for Systems Genetics, NYU Langone Health, New York, NY, 10016, USA
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, CB2 1QN, UK.
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, CB2 3EL, UK.
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK.
| |
Collapse
|
15
|
Ganz J, Melancon E, Wilson C, Amores A, Batzel P, Strader M, Braasch I, Diba P, Kuhlman JA, Postlethwait JH, Eisen JS. Epigenetic factors Dnmt1 and Uhrf1 coordinate intestinal development. Dev Biol 2019; 455:473-484. [PMID: 31394080 DOI: 10.1016/j.ydbio.2019.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
Intestinal tract development is a coordinated process involving signaling among the progenitors and developing cells from all three germ layers. Development of endoderm-derived intestinal epithelium has been shown to depend on epigenetic modifications, but whether that is also the case for intestinal tract cell types from other germ layers remains unclear. We found that functional loss of a DNA methylation machinery component, ubiquitin-like protein containing PHD and RING finger domains 1 (uhrf1), leads to reduced numbers of ectoderm-derived enteric neurons and severe disruption of mesoderm-derived intestinal smooth muscle. Genetic chimeras revealed that Uhrf1 functions both cell-autonomously in enteric neuron precursors and cell-non-autonomously in surrounding intestinal cells, consistent with what is known about signaling interactions between these cell types that promote one another's development. Uhrf1 recruits the DNA methyltransferase Dnmt1 to unmethylated DNA during replication. Dnmt1 is also expressed in enteric neurons and smooth muscle progenitors. dnmt1 mutants have fewer enteric neurons and disrupted intestinal smooth muscle compared to wildtypes. Because dnmt1;uhrf1 double mutants have a similar phenotype to dnmt1 and uhrf1 single mutants, Dnmt1 and Uhrf1 must function together during enteric neuron and intestinal muscle development. This work shows that genes controlling epigenetic modifications are important to coordinate intestinal tract development, provides the first demonstration that these genes influence development of the ENS, and advances uhrf1 and dnmt1 as potential new Hirschsprung disease candidates.
Collapse
Affiliation(s)
- Julia Ganz
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Ellie Melancon
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Catherine Wilson
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Angel Amores
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Peter Batzel
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Marie Strader
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Ingo Braasch
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Parham Diba
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Julie A Kuhlman
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - John H Postlethwait
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Judith S Eisen
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
16
|
Nuclear Phosphoinositides: Their Regulation and Roles in Nuclear Functions. Int J Mol Sci 2019; 20:ijms20122991. [PMID: 31248120 PMCID: PMC6627530 DOI: 10.3390/ijms20122991] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
Polyphosphoinositides (PPIns) are a family of seven lipid messengers that regulate a vast array of signalling pathways to control cell proliferation, migration, survival and differentiation. PPIns are differentially present in various sub-cellular compartments and, through the recruitment and regulation of specific proteins, are key regulators of compartment identity and function. Phosphoinositides and the enzymes that synthesise and degrade them are also present in the nuclear membrane and in nuclear membraneless compartments such as nuclear speckles. Here we discuss how PPIns in the nucleus are modulated in response to external cues and how they function to control downstream signalling. Finally we suggest a role for nuclear PPIns in liquid phase separations that are involved in the formation of membraneless compartments within the nucleus.
Collapse
|
17
|
UHRF1 promotes renal cell carcinoma progression through epigenetic regulation of TXNIP. Oncogene 2019; 38:5686-5699. [PMID: 31043707 DOI: 10.1038/s41388-019-0822-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/18/2017] [Accepted: 03/29/2019] [Indexed: 12/24/2022]
Abstract
UHRF1 is an important epigenetic regulator that belongs to the UHRF family. Overexpression of UHRF1 has been found in many kinds of tumors and its overexpression is associated with poor prognosis and short survival in certain cancer types. However, its function in renal cell carcinoma (RCC) is not clear. Here we report that RCC tumor tissues had obviously higher UHRF1 expression than normal renal tissues. Downregulation of UHRF1 by siRNA or shRNA in RCC cell lines resulted in decreased cell viability, inhibited cell migration and invasion, and increased apoptosis. UHRF1 knockdown RCC xenografts also resulted in obviously inhibited tumor growth in vivo. After downregulation of UHRF1 in RCC cells, the expression of TXNIP was upregulated. In addition, after UHRF1 and TXNIP were simultaneously downregulated, cell viability and cell invasion increased, whereas cell apoptosis decreased compared with UHRF1 single downregulated cells. We also showed that UHRF1 could recruit HDAC1 to the TXNIP promoter and mediate the deacetylation of histone H3K9, resulting in the inhibition of TXNIP expression. Our results confirm that UHRF1 has oncogenic function in RCC and UHRF1 may promote tumor progression through epigenetic regulation of TXNIP. UHRF1 might be used as a therapeutic target for RCC treatment.
Collapse
|
18
|
Coordinated Dialogue between UHRF1 and DNMT1 to Ensure Faithful Inheritance of Methylated DNA Patterns. Genes (Basel) 2019; 10:genes10010065. [PMID: 30669400 PMCID: PMC6360023 DOI: 10.3390/genes10010065] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/22/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
DNA methylation, catalyzed by DNA methyltransferases (DNMTs), is an epigenetic mark that needs to be faithfully replicated during mitosis in order to maintain cell phenotype during successive cell divisions. This epigenetic mark is located on the 5′-carbon of the cytosine mainly within cytosine–phosphate–guanine (CpG) dinucleotides. DNA methylation is asymmetrically positioned on both DNA strands, temporarily generating a hemi-methylated state after DNA replication. Hemi-methylation is a particular status of DNA that is recognized by ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1) through its SET- (Su(var)3-9, Enhancer-of-zeste and Trithorax) and RING-associated (SRA) domain. This interaction is considered to be involved in the recruitment of DNMT1 to chromatin in order to methylate the adequate cytosine on the newly synthetized DNA strand. The UHRF1/DNMT1 tandem plays a pivotal role in the inheritance of DNA methylation patterns, but the fine-tuning mechanism remains a mystery. Indeed, because DNMT1 experiences difficulties in finding the cytosine to be methylated, it requires the help of a guide, i.e., of UHRF1, which exhibits higher affinity for hemi-methylated DNA vs. non-methylated DNA. Two models of the UHRF1/DNMT1 dialogue were suggested to explain how DNMT1 is recruited to chromatin: (i) an indirect communication via histone H3 ubiquitination, and (ii) a direct interaction of UHRF1 with DNMT1. In the present review, these two models are discussed, and we try to show that they are compatible with each other.
Collapse
|
19
|
Patnaik D, Estève PO, Pradhan S. Targeting the SET and RING-associated (SRA) domain of ubiquitin-like, PHD and ring finger-containing 1 (UHRF1) for anti-cancer drug development. Oncotarget 2018; 9:26243-26258. [PMID: 29899856 PMCID: PMC5995235 DOI: 10.18632/oncotarget.25425] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022] Open
Abstract
Ubiquitin-like containing PHD Ring Finger 1 (UHRF1) is a multi-domain protein with a methyl-DNA binding SRA (SET and RING-associated) domain, required for maintenance DNA methylation mediated by DNMT1. Primarily expressed in proliferating cells, UHRF1 is a cell-cycle regulated protein that is required for S phase entry. Furthermore, UHRF1 participates in transcriptional gene regulation by connecting DNA methylation to histone modifications. Upregulation of UHRF1 may serve as a biomarker for a variety of cancers; including breast, gastric, prostate, lung and colorectal carcinoma. To this end, overexpression of UHRF1 promotes cancer metastasis by triggering aberrant patterns of DNA methylation, and subsequently, silencing tumor suppressor genes. Various small molecule effectors of UHRF1 have been reported in the literature, although the mechanism of action may not be fully characterized. Small molecules that potentially bind to the SRA domain may affect the ability of UHRF1 to bind hemimethylated DNA; thereby reducing aberrant DNA methylation. Therefore, in a subset of cancers, small molecule UHRF1 inhibitors may restore normal gene expression and serve as useful anti-cancer therapeutics.
Collapse
|
20
|
Houliston RS, Lemak A, Iqbal A, Ivanochko D, Duan S, Kaustov L, Ong MS, Fan L, Senisterra G, Brown PJ, Wang YX, Arrowsmith CH. Conformational dynamics of the TTD-PHD histone reader module of the UHRF1 epigenetic regulator reveals multiple histone-binding states, allosteric regulation, and druggability. J Biol Chem 2017; 292:20947-20959. [PMID: 29074623 PMCID: PMC5743070 DOI: 10.1074/jbc.m117.799700] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/29/2017] [Indexed: 11/06/2022] Open
Abstract
UHRF1 is a key mediator of inheritance of epigenetic DNA methylation patterns during cell division and is a putative target for cancer therapy. Recent studies indicate that interdomain interactions critically influence UHRF1's chromatin-binding properties, including allosteric regulation of its histone binding. Here, using an integrative approach that combines small angle X-ray scattering, NMR spectroscopy, and molecular dynamics simulations, we characterized the dynamics of the tandem tudor domain-plant homeodomain (TTD-PHD) histone reader module, including its 20-residue interdomain linker. We found that the apo TTD-PHD module in solution comprises a dynamic ensemble of conformers, approximately half of which are compact conformations, with the linker lying in the TTD peptide-binding groove. These compact conformations are amenable to cooperative, high-affinity histone binding. In the remaining conformations, the linker position was in flux, and the reader adopted both extended and compact states. Using a small-molecule fragment screening approach, we identified a compound, 4-benzylpiperidine-1-carboximidamide, that binds to the TTD groove, competes with linker binding, and promotes open TTD-PHD conformations that are less efficient at H3K9me3 binding. Our work reveals a mechanism by which the dynamic TTD-PHD module can be allosterically targeted with small molecules to modulate its histone reader function for therapeutic or experimental purposes.
Collapse
Affiliation(s)
- R Scott Houliston
- From the Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Alexander Lemak
- From the Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aman Iqbal
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Danton Ivanochko
- From the Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Shili Duan
- From the Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Lilia Kaustov
- From the Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Michelle S Ong
- From the Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Lixin Fan
- the Small-Angle X-ray Scattering Core Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, and
| | - Guillermo Senisterra
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Peter J Brown
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yun-Xing Wang
- the NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Cheryl H Arrowsmith
- From the Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada,
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
21
|
Kostrhon S, Kontaxis G, Kaufmann T, Schirghuber E, Kubicek S, Konrat R, Slade D. A histone-mimicking interdomain linker in a multidomain protein modulates multivalent histone binding. J Biol Chem 2017; 292:17643-17657. [PMID: 28864776 PMCID: PMC5663869 DOI: 10.1074/jbc.m117.801464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/28/2017] [Indexed: 01/18/2023] Open
Abstract
N-terminal histone tails are subject to many posttranslational modifications that are recognized by and interact with designated reader domains in histone-binding proteins. BROMO domain adjacent to zinc finger 2B (BAZ2B) is a multidomain histone-binding protein that contains two histone reader modules, a plant homeodomain (PHD) and a bromodomain (BRD), linked by a largely disordered linker. Although previous studies have reported specificity of the PHD domain for the unmodified N terminus of histone H3 and of the BRD domain for H3 acetylated at Lys14 (H3K14ac), the exact mode of H3 binding by BAZ2B and its regulation are underexplored. Here, using isothermal titration calorimetry and NMR spectroscopy, we report that acidic residues in the BAZ2B PHD domain are essential for H3 binding and that BAZ2B PHD–BRD establishes a polyvalent interaction with H3K14ac. Furthermore, we provide evidence that the disordered interdomain linker modulates the histone-binding affinity by interacting with the PHD domain. In particular, lysine-rich stretches in the linker, which resemble the positively charged N terminus of histone H3, reduce the binding affinity of the PHD finger toward the histone substrate. Phosphorylation, acetylation, or poly(ADP-ribosyl)ation of the linker residues may therefore act as a cellular mechanism to transiently tune BAZ2B histone-binding affinity. Our findings further support the concept of interdomain linkers serving a dual role in substrate binding by appropriately positioning the adjacent domains and by electrostatically modulating substrate binding. Moreover, inhibition of histone binding by a histone-mimicking interdomain linker represents another example of regulation of protein–protein interactions by intramolecular mimicry.
Collapse
Affiliation(s)
- Sebastian Kostrhon
- From the Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Georg Kontaxis
- the Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Tanja Kaufmann
- From the Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Erika Schirghuber
- the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1030 Vienna, Austria, and.,the Christian Doppler Laboratory for Chemical Epigenetics and Antiinfectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Stefan Kubicek
- the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1030 Vienna, Austria, and.,the Christian Doppler Laboratory for Chemical Epigenetics and Antiinfectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Robert Konrat
- the Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Dea Slade
- From the Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria,
| |
Collapse
|
22
|
PIM1 induces cellular senescence through phosphorylation of UHRF1 at Ser311. Oncogene 2017; 36:4828-4842. [PMID: 28394343 DOI: 10.1038/onc.2017.96] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 01/23/2017] [Accepted: 02/26/2017] [Indexed: 12/13/2022]
Abstract
PIM1 is a proto-oncogene, encoding a serine/threonine protein kinase that regulates cell proliferation, survival, differentiation and apoptosis. Previous reports suggest that overexpression of PIM1 can induce cellular senescence. However, the molecular mechanism underlying this process is not fully understood. Here we report that UHRF1 is a novel substrate of PIM1 kinase, which could be phosphorylated at Ser311 and therefore promoted to degradation. Our data demonstrates that PIM1 destabilizes UHRF1, leading to DNA hypomethylation, which consequently results in genomic instability, increased p16 expression and subsequent induction of cellular senescence. Taken together, our results suggest that down-regulation of UHRF1 is an important mechanism of PIM1-mediated cellular senescence.
Collapse
|
23
|
Sidhu H, Capalash N. UHRF1: The key regulator of epigenetics and molecular target for cancer therapeutics. Tumour Biol 2017; 39:1010428317692205. [PMID: 28218043 DOI: 10.1177/1010428317692205] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UHRF1 is a master regulator of epigenome as it coordinates DNA methylation and histone modifications. Compelling evidence suggests a strong link between UHRF1 overexpression and tumorigenesis, substantiating its ability to act as a potential biomarker for cancer diagnosis and prognosis. UHRF1 also mediates repair of damaged DNA that makes cancer cells resistant toward cytocidal drugs. Hence, understanding the molecular mechanism of UHRF1 regulation would help in developing cancer therapeutics. Natural compounds have shown applicability to downregulate UHRF1 leading to growth arrest and apoptosis in cancer cells.
Collapse
Affiliation(s)
- Harsimran Sidhu
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
24
|
Milagre I, Stubbs TM, King MR, Spindel J, Santos F, Krueger F, Bachman M, Segonds-Pichon A, Balasubramanian S, Andrews SR, Dean W, Reik W. Gender Differences in Global but Not Targeted Demethylation in iPSC Reprogramming. Cell Rep 2017; 18:1079-1089. [PMID: 28147265 PMCID: PMC5300890 DOI: 10.1016/j.celrep.2017.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 12/23/2016] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
Global DNA demethylation is an integral part of reprogramming processes in vivo and in vitro, but whether it occurs in the derivation of induced pluripotent stem cells (iPSCs) is not known. Here, we show that iPSC reprogramming involves both global and targeted demethylation, which are separable mechanistically and by their biological outcomes. Cells at intermediate-late stages of reprogramming undergo transient genome-wide demethylation, which is more pronounced in female cells. Global demethylation requires activation-induced cytidine deaminase (AID)-mediated downregulation of UHRF1 protein, and abolishing demethylation leaves thousands of hypermethylated regions in the iPSC genome. Independently of AID and global demethylation, regulatory regions, particularly ESC enhancers and super-enhancers, are specifically targeted for hypomethylation in association with transcription of the pluripotency network. Our results show that global and targeted DNA demethylation are conserved and distinct reprogramming processes, presumably because of their respective roles in epigenetic memory erasure and in the establishment of cell identity.
Collapse
Affiliation(s)
- Inês Milagre
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK.
| | - Thomas M Stubbs
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Michelle R King
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Julia Spindel
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Fátima Santos
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Felix Krueger
- Bioinformatics Group, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Martin Bachman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Simon R Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Wendy Dean
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.
| |
Collapse
|
25
|
Alhosin M, Omran Z, Zamzami MA, Al-Malki AL, Choudhry H, Mousli M, Bronner C. Signalling pathways in UHRF1-dependent regulation of tumor suppressor genes in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:174. [PMID: 27839516 PMCID: PMC5108085 DOI: 10.1186/s13046-016-0453-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022]
Abstract
Epigenetic silencing of tumor suppressor genes (TSGs) through DNA methylation and histone changes is a main hallmark of cancer. Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is a potent oncogene overexpressed in various solid and haematological tumors and its high expression levels are associated with decreased expression of several TSGs including p16INK4A, BRCA1, PPARG and KiSS1. Using its several functional domains, UHRF1 creates a strong coordinated dialogue between DNA methylation and histone post-translation modification changes causing the epigenetic silencing of TSGs which allows cancer cells to escape apoptosis. To ensure the silencing of TSGs during cell division, UHRF1 recruits several enzymes including histone deacetylase 1 (HDAC1), DNA methyltransferase 1 (DNMT1) and histone lysine methyltransferases G9a and Suv39H1 to the right place at the right moment. Several in vitro and in vivo works have reported the direct implication of the epigenetic player UHRF1 in tumorigenesis through the repression of TSGs expression and suggested UHRF1 as a promising target for cancer treatment. This review describes the molecular mechanisms underlying UHRF1 regulation in cancer and discusses its importance as a therapeutic target to induce the reactivation of TSGs and subsequent apoptosis.
Collapse
Affiliation(s)
- Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia. .,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia. .,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia. .,Biochemistry Department, Faculty of Sciences, Cancer and Mutagenesis Unit, King Fahd Centre for Medical Research, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Ziad Omran
- College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Kingdom of Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman L Al-Malki
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marc Mousli
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.
| |
Collapse
|
26
|
Kent B, Magnani E, Walsh MJ, Sadler KC. UHRF1 regulation of Dnmt1 is required for pre-gastrula zebrafish development. Dev Biol 2016; 412:99-113. [PMID: 26851214 DOI: 10.1016/j.ydbio.2016.01.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 12/16/2022]
Abstract
Landmark epigenetic events underlie early embryonic development, yet how epigenetic modifiers are regulated to achieve rapid epigenome re-patterning is not known. Uhrf1 and DNA methyltransferase 1 (Dnmt1) are known to largely mediate maintenance DNA methylation and Uhrf1 is also required for both Dnmt1 localization and stability. Here, we investigate how these two key epigenetic modifiers regulate early zebrafish development and characterize the developmental consequences of disrupting their homeostatic relationship. Unlike Uhrf1 knockdown, which causes developmental arrest and death prior to gastrulation, overexpression of human UHRF1 (WT-UHRF1) caused asymmetric epiboly, inefficient gastrulation and multi-systemic defects. UHRF1 phosphorylation was previously demonstrated as essential for zebrafish embryogenesis, and we found that penetrance of the asymmetric epiboly phenotype was significantly increased in embryos injected with mRNA encoding non-phosphorylatable UHRF1 (UHRF1(S661A)). Surprisingly, both WT-UHRF1 and UHRF1(S661A) overexpression caused DNA hypomethylation. However, since other approaches that caused an equivalent degree of DNA hypomethylation did not cause the asymmetric epiboly phenotype, we conclude that bulk DNA methylation is not the primary mechanism. Instead, UHRF1(S661A) overexpression resulted in accumulation of Dnmt1 protein and the overexpression of both WT and a catalytically inactive Dnmt1 phenocopied the assymetric epiboly phenotype. Dnmt1 knockdown suppressed the phenotype caused by UHRF1(S661A) overexpression, and Uhrf1 knockdown suppressed the effect of Dnmt1 overexpression. Therefore, we conclude that the interaction between these two proteins is the mechanism underlying the gastrulation defects. This indicates that Dnmt1 stability requires UHRF1 phosphorylation and that crosstalk between the proteins is essential for the function of these two important epigenetic regulators during gastrulation.
Collapse
Affiliation(s)
- Brandon Kent
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, United States; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, United States
| | - Elena Magnani
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, United States; Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, United States
| | - Martin J Walsh
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, United States; Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, United States; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, United States
| | - Kirsten C Sadler
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, United States; Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, United States.
| |
Collapse
|
27
|
Moreno SP, Gambus A. Regulation of Unperturbed DNA Replication by Ubiquitylation. Genes (Basel) 2015; 6:451-68. [PMID: 26121093 PMCID: PMC4584310 DOI: 10.3390/genes6030451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/05/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023] Open
Abstract
Posttranslational modification of proteins by means of attachment of a small globular protein ubiquitin (i.e., ubiquitylation) represents one of the most abundant and versatile mechanisms of protein regulation employed by eukaryotic cells. Ubiquitylation influences almost every cellular process and its key role in coordination of the DNA damage response is well established. In this review we focus, however, on the ways ubiquitylation controls the process of unperturbed DNA replication. We summarise the accumulated knowledge showing the leading role of ubiquitin driven protein degradation in setting up conditions favourable for replication origin licensing and S-phase entry. Importantly, we also present the emerging major role of ubiquitylation in coordination of the active DNA replication process: preventing re-replication, regulating the progression of DNA replication forks, chromatin re-establishment and disassembly of the replisome at the termination of replication forks.
Collapse
Affiliation(s)
- Sara Priego Moreno
- School of Cancer Sciences, University of Birmingham, Vincent Drive, B15 2TT, Birmingham, UK
| | - Agnieszka Gambus
- School of Cancer Sciences, University of Birmingham, Vincent Drive, B15 2TT, Birmingham, UK.
| |
Collapse
|