1
|
Maldonado RJK, Parent LJ. Dynamic interactions of retroviral Gag condensates with nascent viral RNA at transcriptional burst sites: implications for genomic RNA packaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632546. [PMID: 39829876 PMCID: PMC11741468 DOI: 10.1101/2025.01.11.632546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Retroviruses are responsible for significant pathology in humans and animals, including the acquired immunodeficiency syndrome and a wide range of malignancies. A crucial yet poorly understood step in the replication cycle is the recognition and selection of unspliced viral RNA (USvRNA) by the retroviral Gag protein, which binds to the psi (Ψ) packaging sequence in the 5' leader, to package it as genomic RNA (gRNA) into nascent virions. It was previously thought that Gag initially bound gRNA in the cytoplasm. However, previous studies demonstrated that the Rous sarcoma virus (RSV) Gag protein traffics transiently through the nucleus, which is necessary for efficient gRNA packaging. These data formed a strong premise for the hypothesis that Gag selects nascent gRNA at transcription sites in the nucleus, the location of the highest concentration of USvRNA molecules in the cell. In support of this model, previous studies using fixed cells infected with RSV revealed that Gag co-localizes with large USvRNA nuclear foci representing viral transcriptional burst sites. To test this idea, we used single molecule labeling and imaging techniques to visualize fluorescently-tagged, actively transcribing viral genomes, and Gag proteins in living cells. Gag condensates were observed in the nucleus, transiently co-localized with USvRNA at transcriptional burst sites, forming co-localized viral ribonucleoprotein complexes (vRNPs). These results support a novel paradigm for retroviral assembly in which Gag traffics to transcriptional burst sites and interacts through a dynamic kissing interaction to capture nascent gRNA for incorporation into virions.
Collapse
Affiliation(s)
- Rebecca J. Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033
- Department of Microbiology & Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033
| | - Leslie J. Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033
- Department of Microbiology & Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033
| |
Collapse
|
2
|
Keeley O, Coyne AN. Nuclear and degradative functions of the ESCRT-III pathway: implications for neurodegenerative disease. Nucleus 2024; 15:2349085. [PMID: 38700207 PMCID: PMC11073439 DOI: 10.1080/19491034.2024.2349085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The ESCRT machinery plays a pivotal role in membrane-remodeling events across multiple cellular processes including nuclear envelope repair and reformation, nuclear pore complex surveillance, endolysosomal trafficking, and neuronal pruning. Alterations in ESCRT-III functionality have been associated with neurodegenerative diseases including Frontotemporal Dementia (FTD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD). In addition, mutations in specific ESCRT-III proteins have been identified in FTD/ALS. Thus, understanding how disruptions in the fundamental functions of this pathway and its individual protein components in the human central nervous system (CNS) may offer valuable insights into mechanisms underlying neurodegenerative disease pathogenesis and identification of potential therapeutic targets. In this review, we discuss ESCRT components, dynamics, and functions, with a focus on the ESCRT-III pathway. In addition, we explore the implications of altered ESCRT-III function for neurodegeneration with a primary emphasis on nuclear surveillance and endolysosomal trafficking within the CNS.
Collapse
Affiliation(s)
- Olivia Keeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssa N. Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Riaz Z, Richardson GS, Jin H, Zenitsky G, Anantharam V, Kanthasamy A, Kanthasamy AG. Nuclear pore and nucleocytoplasmic transport impairment in oxidative stress-induced neurodegeneration: relevance to molecular mechanisms in Pathogenesis of Parkinson's and other related neurodegenerative diseases. Mol Neurodegener 2024; 19:87. [PMID: 39578912 PMCID: PMC11585115 DOI: 10.1186/s13024-024-00774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Nuclear pore complexes (NPCs) are embedded in the nuclear envelope and facilitate the exchange of macromolecules between the nucleus and cytoplasm in eukaryotic cells. The dysfunction of the NPC and nuclear transport plays a significant role in aging and the pathogenesis of various neurodegenerative diseases. Common features among these neurodegenerative diseases, including Parkinson's disease (PD), encompass mitochondrial dysfunction, oxidative stress and the accumulation of insoluble protein aggregates in specific brain regions. The susceptibility of dopaminergic neurons to mitochondrial stress underscores the pivotal role of mitochondria in PD progression. Disruptions in mitochondrial-nuclear communication are exacerbated by aging and α-synuclein-induced oxidative stress in PD. The precise mechanisms underlying mitochondrial impairment-induced neurodegeneration in PD are still unclear. Evidence suggests that perturbations in dopaminergic neuronal nuclei are linked to PD-related neurodegeneration. These perturbations involve structural damage to the nuclear envelope and mislocalization of pivotal transcription factors, potentially driven by oxidative stress or α-synuclein pathology. The presence of protein aggregates, pathogenic mutations, and ongoing oxidative stress can exacerbate the dysfunction of NPCs, yet this mechanism remains understudied in the context of oxidative stress-induced PD. This review summarizes the link between mitochondrial dysfunction and dopaminergic neurodegeneration and outlines the current evidence for nuclear envelope and nuclear transport abnormalities in PD, particularly in oxidative stress. We highlight the potential role of nuclear pore and nucleocytoplasmic transport dysfunction in PD and stress the importance of systematically investigating NPC components in PD.
Collapse
Affiliation(s)
- Zainab Riaz
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Gabriel S Richardson
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Huajun Jin
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Gary Zenitsky
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Vellareddy Anantharam
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Arthi Kanthasamy
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Anumantha G Kanthasamy
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Chen S, Jiang Q, Fan J, Cheng H. Nuclear mRNA export. Acta Biochim Biophys Sin (Shanghai) 2024; 57:84-100. [PMID: 39243141 PMCID: PMC11802349 DOI: 10.3724/abbs.2024145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 09/09/2024] Open
Abstract
In eukaryotic cells, gene expression begins with transcription in the nucleus, followed by the maturation of messenger RNAs (mRNAs). These mRNA molecules are then exported to the cytoplasm through the nuclear pore complex (NPC), a process that serves as a critical regulatory phase of gene expression. The export of mRNA is intricately linked to precursor mRNA (pre-mRNA) processing, ensuring that only properly processed mRNA reaches the cytoplasm. This coordination is essential, as recent studies have revealed that mRNA export factors not only assist in transport but also influence upstream processing steps, adding a layer of complexity to gene regulation. Furthermore, the export process competes with RNA processing and degradation pathways, maintaining a delicate balance vital for accurate gene expression. While these mechanisms are generally conserved across eukaryotes, significant differences exist between yeast and higher eukaryotic cells, particularly due to the more genome complexity of the latter. This review delves into the current research on mRNA export in higher eukaryotic cells, focusing on its role in the broader context of gene expression regulation and highlighting how it interacts with other gene expression processes to ensure precise and efficient gene functionality in complex organisms.
Collapse
Affiliation(s)
- Suli Chen
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Qingyi Jiang
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Jing Fan
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- The Key Laboratory of Developmental Genes and Human DiseaseSchool of Life Science and TechnologySoutheast UniversityNanjing210096China
| | - Hong Cheng
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| |
Collapse
|
5
|
Ikliptikawati DK, Makiyama K, Hazawa M, Wong RW. Unlocking the Gateway: The Spatio-Temporal Dynamics of the p53 Family Driven by the Nuclear Pores and Its Implication for the Therapeutic Approach in Cancer. Int J Mol Sci 2024; 25:7465. [PMID: 39000572 PMCID: PMC11242911 DOI: 10.3390/ijms25137465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The p53 family remains a captivating focus of an extensive number of current studies. Accumulating evidence indicates that p53 abnormalities rank among the most prevalent in cancer. Given the numerous existing studies, which mostly focus on the mutations, expression profiles, and functional perturbations exhibited by members of the p53 family across diverse malignancies, this review will concentrate more on less explored facets regarding p53 activation and stabilization by the nuclear pore complex (NPC) in cancer, drawing on several studies. p53 integrates a broad spectrum of signals and is subject to diverse regulatory mechanisms to enact the necessary cellular response. It is widely acknowledged that each stage of p53 regulation, from synthesis to degradation, significantly influences its functionality in executing specific tasks. Over recent decades, a large body of data has established that mechanisms of regulation, closely linked with protein activation and stabilization, involve intricate interactions with various cellular components. These often transcend canonical regulatory pathways. This new knowledge has expanded from the regulation of genes themselves to epigenomics and proteomics, whereby interaction partners increase in number and complexity compared with earlier paradigms. Specifically, studies have recently shown the involvement of the NPC protein in such complex interactions, underscoring the further complexity of p53 regulation. Furthermore, we also discuss therapeutic strategies based on recent developments in this field in combination with established targeted therapies.
Collapse
Affiliation(s)
- Dini Kurnia Ikliptikawati
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
| | - Kei Makiyama
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| | - Richard W. Wong
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| |
Collapse
|
6
|
Huang P, Zhang X, Cheng Z, Wang X, Miao Y, Huang G, Fu YF, Feng X. The nuclear pore Y-complex functions as a platform for transcriptional regulation of FLOWERING LOCUS C in Arabidopsis. THE PLANT CELL 2024; 36:346-366. [PMID: 37877462 PMCID: PMC10827314 DOI: 10.1093/plcell/koad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
Abstract
The nuclear pore complex (NPC) has multiple functions beyond the nucleo-cytoplasmic transport of large molecules. Subnuclear compartmentalization of chromatin is critical for gene expression in animals and yeast. However, the mechanism by which the NPC regulates gene expression is poorly understood in plants. Here we report that the Y-complex (Nup107-160 complex, a subcomplex of the NPC) self-maintains its nucleoporin homeostasis and modulates FLOWERING LOCUS C (FLC) transcription via changing histone modifications at this locus. We show that Y-complex nucleoporins are intimately associated with FLC chromatin through their interactions with histone H2A at the nuclear membrane. Fluorescence in situ hybridization assays revealed that Nup96, a Y-complex nucleoporin, enhances FLC positioning at the nuclear periphery. Nup96 interacted with HISTONE DEACETYLASE 6 (HDA6), a key repressor of FLC expression via histone modification, at the nuclear membrane to attenuate HDA6-catalyzed deposition at the FLC locus and change histone modifications. Moreover, we demonstrate that Y-complex nucleoporins interact with RNA polymerase II to increase its occupancy at the FLC locus, facilitating transcription. Collectively, our findings identify an attractive mechanism for the Y-complex in regulating FLC expression via tethering the locus at the nuclear periphery and altering its histone modification.
Collapse
Affiliation(s)
- Penghui Huang
- Zhejiang Lab, Research Institute of Intelligent Computing, Hangzhou 310012, China
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaomei Zhang
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Cheng
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xu Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261325, China
| | - Yuchen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Guowen Huang
- Department of Biological Sciences and Chemical Engineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Yong-Fu Fu
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianzhong Feng
- Zhejiang Lab, Research Institute of Intelligent Computing, Hangzhou 310012, China
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
7
|
Bascom C. Location, location, location: Nuclear pore complexes tether flowering loci to nuclear envelope to boost gene expression. THE PLANT CELL 2024; 36:217-218. [PMID: 37943685 PMCID: PMC10827310 DOI: 10.1093/plcell/koad282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Affiliation(s)
- Carlisle Bascom
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Natural Resources and the Environment Department, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
8
|
Ester L, Cabrita I, Ventzke M, Kieckhöfer E, Christodoulou M, Mandel AM, Diefenhardt P, Fabretti F, Benzing T, Habbig S, Schermer B. The role of the FSGS disease gene product and nuclear pore protein NUP205 in regulating nuclear localization and activity of transcriptional regulators YAP and TAZ. Hum Mol Genet 2023; 32:3153-3165. [PMID: 37565816 PMCID: PMC10630254 DOI: 10.1093/hmg/ddad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023] Open
Abstract
Mutations in genes encoding nuclear pore proteins (NUPs) lead to the development of steroid-resistant nephrotic syndrome and focal segmental glomerulosclerosis (FSGS). However, the precise molecular mechanisms by which NUP dysfunction contributes to podocyte injury preceding FSGS remain unclear. The tightly regulated activity of Yes-associated protein (YAP) and WW-domain-containing transcription regulator 1 (TAZ), the transcriptional effectors of the Hippo pathway, is crucial for podocytes and the maintenance of the glomerular filter. In this study, we investigate the impact of NUPs on the regulation of YAP/TAZ nuclear import and activity in podocytes. In unbiased interactome studies using quantitative label-free mass spectrometry, we identify the FSGS disease gene products NUP107, NUP133, NUP205, and Exportin-5 (XPO5) as components of YAP and TAZ protein complexes in podocytes. Moreover, we demonstrate that NUP205 is essential for YAP/TAZ nuclear import. Consistently, both the nuclear interaction of YAP/TAZ with TEA domain transcription factor 1 and their transcriptional activity were dependent on NUP205 expression. Additionally, we elucidate a regulatory feedback mechanism whereby YAP activity is modulated in response to TAZ-mediated NUP205 expression. In conclusion, this study establishes a connection between the FSGS disease protein NUP205 and the activity of the transcriptional regulators and Hippo effectors YAP and TAZ and it proposes a potential pathological role of YAP/TAZ dysregulation in podocytes of patients with pathogenic NUP205 variants.
Collapse
Affiliation(s)
- Lioba Ester
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Inês Cabrita
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Michel Ventzke
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Emilia Kieckhöfer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Marita Christodoulou
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Amrei M Mandel
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Paul Diefenhardt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Francesca Fabretti
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Sandra Habbig
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
9
|
Wang W, Jakobi A, Wu YL, Ries J, Stallinga S, Rieger B. Particle fusion of super-resolution data reveals the unit structure of Nup96 in Nuclear Pore Complex. Sci Rep 2023; 13:13327. [PMID: 37587192 PMCID: PMC10432550 DOI: 10.1038/s41598-023-39829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Single molecule localization microscopy offers resolution nearly down to the molecular level with specific molecular labelling, and is thereby a promising tool for structural biology. In practice, however, the actual value to this field is limited primarily by incomplete fluorescent labelling of the structure. This missing information can be completed by merging information from many structurally identical particles in a particle fusion approach similar to cryo-EM single-particle analysis. In this paper, we present a data analysis of particle fusion results of fluorescently labelled Nup96 nucleoporins in the Nuclear Pore Complex to show that Nup96 occurs in a spatial arrangement of two rings of 8 units with two Nup96 copies per unit giving a total of 32 Nup96 copies per pore. We use Artificial Intelligence assisted modeling in Alphafold to extend the existing cryo-EM model of Nup96 to accurately pinpoint the positions of the fluorescent labels and show the accuracy of the match between fluorescent and cryo-EM data to be better than 3 nm in-plane and 5 nm out-of-plane.
Collapse
Affiliation(s)
- Wenxiu Wang
- Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Arjen Jakobi
- Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Yu-Le Wu
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jonas Ries
- Department of Chromosome Biology, University of Vienna, Max-Perutz Labs, Center for Molecular Biology, Vienna, Austria
| | - Sjoerd Stallinga
- Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands.
| | - Bernd Rieger
- Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
10
|
Balasooriya GI, Spector DL. Allele pairing at Sun1-enriched domains at the nuclear periphery via T1A3 tandem DNA repeats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536031. [PMID: 37066204 PMCID: PMC10104147 DOI: 10.1101/2023.04.07.536031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Spatiotemporal gene regulation is fundamental to the biology of diploid cells. Therefore, effective communication between two alleles and their geometry in the nucleus is important. However, the mechanism that fine-tunes the expression from each of the two alleles of an autosome is enigmatic. Establishing an allele-specific gene expression visualization system in living cells, we show that alleles of biallelically expressed Cth and Ttc4 genes are paired prior to acquiring monoallelic expression. We found that active alleles of monoallelic genes are preferentially localized at Sun1-enriched domains at the nuclear periphery. These peripherally localized active DNA loci are enriched with adenine-thymidine-rich tandem repeats that interact with Hnrnpd and reside in a Hi-C-defined A compartment within the B compartment. Our results demonstrate the biological significance of T 1 A 3 tandem repeat sequences in genome organization and how the regulation of gene expression, at the level of individual alleles, relates to their spatial arrangement.
Collapse
|
11
|
Panatta E, Butera A, Celardo I, Leist M, Melino G, Amelio I. p53 regulates expression of nuclear envelope components in cancer cells. Biol Direct 2022; 17:38. [PMID: 36461070 PMCID: PMC9716746 DOI: 10.1186/s13062-022-00349-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Nuclear organisation and architecture are essential for the maintenance of genomic integrity as well as for the epigenetic regulations and gene expression. Disruption of lamin B1, major structural and functional member of the nuclear lamina, is observed in human laminopathies and in sporadic cancers, and leads to chromosomal rearrangements and alterations of gene expression. The tumour suppressor p53 has been shown to direct specific transcriptional programmes by regulating lamin A/C, however its relationship with lamin B1 has remained elusive. Here, we show that loss of p53 correlates with increased expression of members belonging to the nuclear pore complex and nuclear lamina and directly regulates transcription of lamin B1. We show that the genomic loci of a fraction of p53-dependent genes physically interact with lamin B1 and Nup210. This observation provides a possible mechanistic explanation for the p53-depedent changes of chromatin accessibility, with the consequent influence of expression and rearrangement of these genomic sites in pancreatic cancer. Overall, these data suggest a potential functional and biochemical regulatory network connecting p53 and nuclear architecture.
Collapse
Affiliation(s)
- Emanuele Panatta
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessio Butera
- grid.9811.10000 0001 0658 7699Division of Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ivana Celardo
- grid.9811.10000 0001 0658 7699Division of in-Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marcel Leist
- grid.9811.10000 0001 0658 7699Division of in-Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gerry Melino
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ivano Amelio
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy ,grid.9811.10000 0001 0658 7699Division of Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
12
|
Abstract
Eukaryotic cells possess considerable internal complexity, differentiating them from prokaryotes. Eukaryogenesis, an evolutionary transitional period culminating in the last eukaryotic common ancestor (LECA), marked the origin of the eukaryotic endomembrane system. LECA is reconstructed as possessing intracellular complexity akin to modern eukaryotes. Construction of endomembrane compartments involved three key gene families: coatomer, BAR-domain proteins, and ESCRT. Each has a distinct evolutionary origin, but of these coatomer and BAR proteins are eukaryote specific, while ESCRT has more ancient origins. We discuss the structural motifs defining these three membrane-coating complexes and suggest that compared with BAR and ESCRT, the coatomer architecture had a unique ability to be readily and considerably modified, unlocking functional diversity and enabling the development of the eukaryotic cell.
Collapse
Affiliation(s)
- Mark C. Field
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK,Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 Ceske Budejovice, Czechia,*Address corresponding to: Mark C. Field (); Michael P. Rout ()
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY10021,*Address corresponding to: Mark C. Field (); Michael P. Rout ()
| |
Collapse
|
13
|
Up-regulation of POM121 is linked to prostate cancer aggressiveness and serves as a prognostic biomarker. Urol Oncol 2022; 40:380.e11-380.e18. [DOI: 10.1016/j.urolonc.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/13/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
|
14
|
Dutta S, Polavaram NS, Islam R, Bhattacharya S, Bodas S, Mayr T, Roy S, Albala SAY, Toma MI, Darehshouri A, Borkowetz A, Conrad S, Fuessel S, Wirth M, Baretton GB, Hofbauer LC, Ghosh P, Pienta KJ, Klinkebiel DL, Batra SK, Muders MH, Datta K. Neuropilin-2 regulates androgen-receptor transcriptional activity in advanced prostate cancer. Oncogene 2022; 41:3747-3760. [PMID: 35754042 PMCID: PMC9979947 DOI: 10.1038/s41388-022-02382-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 01/22/2023]
Abstract
Aberrant transcriptional activity of androgen receptor (AR) is one of the dominant mechanisms for developing of castration-resistant prostate cancer (CRPC). Analyzing AR-transcriptional complex related to CRPC is therefore important towards understanding the mechanism of therapy resistance. While studying its mechanism, we observed that a transmembrane protein called neuropilin-2 (NRP2) plays a contributory role in forming a novel AR-transcriptional complex containing nuclear pore proteins. Using immunogold electron microscopy, high-resolution confocal microscopy, chromatin immunoprecipitation, proteomics, and other biochemical techniques, we delineated the molecular mechanism of how a specific splice variant of NRP2 becomes sumoylated upon ligand stimulation and translocates to the inner nuclear membrane. This splice variant of NRP2 then stabilizes the complex between AR and nuclear pore proteins to promote CRPC specific gene expression. Both full-length and splice variants of AR have been identified in this specific transcriptional complex. In vitro cell line-based assays indicated that depletion of NRP2 not only destabilizes the AR-nuclear pore protein interaction but also inhibits the transcriptional activities of AR. Using an in vivo bone metastasis model, we showed that the inhibition of NRP2 led to the sensitization of CRPC cells toward established anti-AR therapies such as enzalutamide. Overall, our finding emphasize the importance of combinatorial inhibition of NRP2 and AR as an effective therapeutic strategy against treatment refractory prostate cancer.
Collapse
Affiliation(s)
- Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Navatha Shree Polavaram
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanika Bodas
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Thomas Mayr
- Rudolf Becker Laboratory for Prostate Cancer Research, Medical Faculty, University of Bonn, Germany,Institute of Pathology, Medical Faculty, University of Bonn, Germany,Institute of Pathology, Technische Universitaet Dresden, Dresden, Germany
| | - Sohini Roy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Marieta I. Toma
- Institute of Pathology, Medical Faculty, University of Bonn, Germany,Institute of Pathology, Technische Universitaet Dresden, Dresden, Germany
| | - Anza Darehshouri
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Angelika Borkowetz
- Department of Urology, Technische Universitaet Dresden, Dresden, Germany
| | - Stefanie Conrad
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universitaet Dresden, Dresden, Germany,Center for Healthy Aging, Technische Universitaet Dresden, Dresden, Germany
| | - Susanne Fuessel
- Department of Urology, Technische Universitaet Dresden, Dresden, Germany
| | - Manfred Wirth
- Department of Urology, Technische Universitaet Dresden, Dresden, Germany
| | - Gustavo B. Baretton
- Institute of Pathology, Technische Universitaet Dresden, Dresden, Germany,German Cancer Consortium (DKTK), partner site Dresden and German Research Center (DKFZ), Heidelberg, Germany,Tumor and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital and Faculty of Medicine, Technische Universitaet Dresden, Germany
| | - Lorenz C. Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universitaet Dresden, Dresden, Germany,Center for Healthy Aging, Technische Universitaet Dresden, Dresden, Germany,German Cancer Consortium (DKTK), partner site Dresden and German Research Center (DKFZ), Heidelberg, Germany
| | - Paramita Ghosh
- Department of Biochemistry and Molecular Medicine, University of California Davis
| | - Kenneth J. Pienta
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David L Klinkebiel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael H. Muders
- Rudolf Becker Laboratory for Prostate Cancer Research, Medical Faculty, University of Bonn, Germany,Institute of Pathology, Medical Faculty, University of Bonn, Germany,Institute of Pathology, Technische Universitaet Dresden, Dresden, Germany
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
15
|
Coyne AN, Rothstein JD. Nuclear pore complexes - a doorway to neural injury in neurodegeneration. Nat Rev Neurol 2022; 18:348-362. [PMID: 35488039 PMCID: PMC10015220 DOI: 10.1038/s41582-022-00653-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/13/2022]
Abstract
The genetic underpinnings and end-stage pathological hallmarks of neurodegenerative diseases are increasingly well defined, but the cellular pathophysiology of disease initiation and propagation remains poorly understood, especially in sporadic forms of these diseases. Altered nucleocytoplasmic transport is emerging as a prominent pathomechanism of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer disease, frontotemporal dementia and Huntington disease. The nuclear pore complex (NPC) and interactions between its individual nucleoporin components and nuclear transport receptors regulate nucleocytoplasmic transport, as well as genome organization and gene expression. Specific nucleoporin abnormalities have been identified in sporadic and familial forms of neurodegenerative disease, and these alterations are thought to contribute to disrupted nucleocytoplasmic transport. The specific nucleoporins and nucleocytoplasmic transport proteins that have been linked to different neurodegenerative diseases are partially distinct, suggesting that NPC injury contributes to the cellular specificity of neurodegenerative disease and could be an early initiator of the pathophysiological cascades that underlie neurodegenerative disease. This concept is consistent with the fact that rare genetic mutations in some nucleoporins cause cell-type-specific neurological disease. In this Review, we discuss nucleoporin and NPC disruptions and consider their impact on cellular function and the pathophysiology of neurodegenerative disease.
Collapse
Affiliation(s)
- Alyssa N Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
NUP133 Controls Nuclear Pore Assembly, Transcriptome Composition, and Cytoskeleton Regulation in Podocytes. Cells 2022; 11:cells11081259. [PMID: 35455939 PMCID: PMC9025798 DOI: 10.3390/cells11081259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) frequently leads to end-stage renal disease, ultimately requiring kidney replacement therapies. SRNS is often caused by hereditary monogenic mutations, specifically affecting specialized epithelial cells (podocytes) of the glomerular filtration barrier. Mutations in several components of the nuclear pore complex, including NUP133 and NUP107, have been recently identified to cause hereditary SRNS. However, underlying pathomechanisms, eliciting podocyte-specific manifestations of these nucleoporopathies, remained largely elusive. Here, we generated an in vitro model of NUP133-linked nucleoporopathies using CRISPR/Cas9-mediated genome editing in human podocytes. Transcriptome, nuclear pore assembly, and cytoskeleton regulation of NUP133 loss-of-function, mutant, and wild-type podocytes were analyzed. Loss of NUP133 translated into a disruption of the nuclear pore, alterations of the podocyte-specific transcriptome, and impaired cellular protrusion generation. Surprisingly, comparative analysis of the described SRNS-related NUP133 mutations revealed only mild defects. Am impaired protein interaction in the Y-complex and decrease of NUP133 protein levels might be the primary and unifying consequence of mutant variants, leading to a partial loss-of-function phenotype and disease manifestation in susceptible cell types, such as podocytes.
Collapse
|
17
|
Shore T, Levi T, Kalifa R, Dreifuss A, Rekler D, Weinberg-Shukron A, Nevo Y, Bialistoky T, Moyal V, Gold MY, Leebhoff S, Zangen D, Deshpande G, Gerlitz O. Nucleoporin107 mediates female sexual differentiation via Dsx. eLife 2022; 11:72632. [PMID: 35311642 PMCID: PMC8975549 DOI: 10.7554/elife.72632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
We recently identified a missense mutation in Nucleoporin107 (Nup107; D447N) underlying XX-ovarian-dysgenesis, a rare disorder characterized by underdeveloped and dysfunctional ovaries. Modeling of the human mutation in Drosophila or specific knockdown of Nup107 in the gonadal soma resulted in ovarian-dysgenesis-like phenotypes. Transcriptomic analysis identified the somatic sex-determination gene doublesex (dsx) as a target of Nup107. Establishing Dsx as a primary relevant target of Nup107, either loss or gain of Dsx in the gonadal soma is sufficient to mimic or rescue the phenotypes induced by Nup107 loss. Importantly, the aberrant phenotypes induced by compromising either Nup107 or dsx are reminiscent of BMP signaling hyperactivation. Remarkably, in this context, the metalloprotease AdamTS-A, a transcriptional target of both Dsx and Nup107, is necessary for the calibration of BMP signaling. As modulation of BMP signaling is a conserved critical determinant of soma-germline interaction, the sex and tissue specific deployment of Dsx-F by Nup107 seems crucial for the maintenance of the homeostatic balance between the germ cells and somatic gonadal cells.
Collapse
Affiliation(s)
- Tikva Shore
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Tgst Levi
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Rachel Kalifa
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Amatzia Dreifuss
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Dina Rekler
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | | | - Yuval Nevo
- Bioinformatics Unit of the I-CORE Computation Center, The Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Tzofia Bialistoky
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Victoria Moyal
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Merav Yaffa Gold
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Shira Leebhoff
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - David Zangen
- Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Offer Gerlitz
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
18
|
Wu X, Han J, Guo C. Function of Nuclear Pore Complexes in Regulation of Plant Defense Signaling. Int J Mol Sci 2022; 23:3031. [PMID: 35328452 PMCID: PMC8953349 DOI: 10.3390/ijms23063031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
In eukaryotes, the nucleus is the regulatory center of cytogenetics and metabolism, and it is critical for fundamental biological processes, including DNA replication and transcription, protein synthesis, and biological macromolecule transportation. The eukaryotic nucleus is surrounded by a lipid bilayer called the nuclear envelope (NE), which creates a microenvironment for sophisticated cellular processes. The NE is perforated by the nuclear pore complex (NPC), which is the channel for biological macromolecule bi-directional transport between the nucleus and cytoplasm. It is well known that NPC is the spatial designer of the genome and the manager of genomic function. Moreover, the NPC is considered to be a platform for the continual adaptation and evolution of eukaryotes. So far, a number of nucleoporins required for plant-defense processes have been identified. Here, we first provide an overview of NPC organization in plants, and then discuss recent findings in the plant NPC to elaborate on and dissect the distinct defensive functions of different NPC subcomponents in plant immune defense, growth and development, hormone signaling, and temperature response. Nucleoporins located in different components of NPC have their unique functions, and the link between the NPC and nucleocytoplasmic trafficking promotes crosstalk of different defense signals in plants. It is necessary to explore appropriate components of the NPC as potential targets for the breeding of high-quality and broad spectrum resistance crop varieties.
Collapse
Affiliation(s)
- Xi Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| | - Junyou Han
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| | - Changkui Guo
- Laboratory of Plant Molecular and Developmental Biology, Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
19
|
Shared genetic loci for body fat storage and adipocyte lipolysis in humans. Sci Rep 2022; 12:3666. [PMID: 35256633 PMCID: PMC8901764 DOI: 10.1038/s41598-022-07291-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
Total body fat and central fat distribution are heritable traits and well-established predictors of adverse metabolic outcomes. Lipolysis is the process responsible for the hydrolysis of triacylglycerols stored in adipocytes. To increase our understanding of the genetic regulation of body fat distribution and total body fat, we set out to determine if genetic variants associated with body mass index (BMI) or waist-hip-ratio adjusted for BMI (WHRadjBMI) in genome-wide association studies (GWAS) mediate their effect by influencing adipocyte lipolysis. We utilized data from the recent GWAS of spontaneous and isoprenaline-stimulated lipolysis in the unique GENetics of Adipocyte Lipolysis (GENiAL) cohort. GENiAL consists of 939 participants who have undergone abdominal subcutaneous adipose biopsy for the determination of spontaneous and isoprenaline-stimulated lipolysis in adipocytes. We report 11 BMI and 15 WHRadjBMI loci with SNPs displaying nominal association with lipolysis and allele-dependent gene expression in adipose tissue according to in silico analysis. Functional evaluation of candidate genes in these loci by small interfering RNAs (siRNA)-mediated knock-down in adipose-derived stem cells identified ZNF436 and NUP85 as intrinsic regulators of lipolysis consistent with the associations observed in the clinical cohorts. Furthermore, candidate genes in another BMI-locus (STX17) and two more WHRadjBMI loci (NID2, GGA3, GRB2) control lipolysis alone, or in conjunction with lipid storage, and may hereby be involved in genetic control of body fat. The findings expand our understanding of how genetic variants mediate their impact on the complex traits of fat storage and distribution.
Collapse
|
20
|
Luciano M, Versaevel M, Vercruysse E, Procès A, Kalukula Y, Remson A, Deridoux A, Gabriele S. Appreciating the role of cell shape changes in the mechanobiology of epithelial tissues. BIOPHYSICS REVIEWS 2022; 3:011305. [PMID: 38505223 PMCID: PMC10903419 DOI: 10.1063/5.0074317] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/23/2022] [Indexed: 03/21/2024]
Abstract
The wide range of epithelial cell shapes reveals the complexity and diversity of the intracellular mechanisms that serve to construct their morphology and regulate their functions. Using mechanosensitive steps, epithelial cells can sense a variety of different mechanochemical stimuli and adapt their behavior by reshaping their morphology. These changes of cell shape rely on a structural reorganization in space and time that generates modifications of the tensional state and activates biochemical cascades. Recent studies have started to unveil how the cell shape maintenance is involved in mechanical homeostatic tasks to sustain epithelial tissue folding, identity, and self-renewal. Here, we review relevant works that integrated mechanobiology to elucidate some of the core principles of how cell shape may be conveyed into spatial information to guide collective processes such as epithelial morphogenesis. Among many other parameters, we show that the regulation of the cell shape can be understood as the result of the interplay between two counteracting mechanisms: actomyosin contractility and intercellular adhesions, and that both do not act independently but are functionally integrated to operate on molecular, cellular, and tissue scales. We highlight the role of cadherin-based adhesions in force-sensing and mechanotransduction, and we report recent developments that exploit physics of liquid crystals to connect cell shape changes to orientational order in cell aggregates. Finally, we emphasize that the further intermingling of different disciplines to develop new mechanobiology assays will lead the way toward a unified picture of the contribution of cell shape to the pathophysiological behavior of epithelial tissues.
Collapse
Affiliation(s)
- Marine Luciano
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Marie Versaevel
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Eléonore Vercruysse
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Anthony Procès
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Yohalie Kalukula
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Alexandre Remson
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Amandine Deridoux
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Sylvain Gabriele
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| |
Collapse
|
21
|
Li W, Jiang C, Zhang E. Advances in the phase separation-organized membraneless organelles in cells: a narrative review. Transl Cancer Res 2022; 10:4929-4946. [PMID: 35116344 PMCID: PMC8797891 DOI: 10.21037/tcr-21-1111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/29/2021] [Indexed: 11/26/2022]
Abstract
Membraneless organelles (MLOs) are micro-compartments that lack delimiting membranes, concentrating several macro-molecules with a high local concentration in eukaryotic cells. Recent studies have shown that MLOs have pivotal roles in multiple biological processes, including gene transcription, RNA metabolism, translation, protein modification, and signal transduction. These biological processes in cells have essential functions in many diseases, such as cancer, neurodegenerative diseases, and virus-related diseases. The liquid-liquid phase separation (LLPS) microenvironment within cells is thought to be the driving force for initiating the formation of micro-compartments with a liquid-like property, becoming an important organizing principle for MLOs to mediate organism responses. In this review, we comprehensively elucidated the formation of these MLOs and the relationship between biological functions and associated diseases. The mechanisms underlying the influence of protein concentration and valency on phase separation in cells are also discussed. MLOs undergoing the LLPS process have diverse functions, including stimulation of some adaptive and reversible responses to alter the transcriptional or translational processes, regulation of the concentrations of biomolecules in living cells, and maintenance of cell morphogenesis. Finally, we highlight that the development of this field could pave the way for developing novel therapeutic strategies for the treatment of LLPS-related diseases based on the understanding of phase separation in the coming years.
Collapse
Affiliation(s)
- Weihan Li
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Chenwei Jiang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Erhao Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.,Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
22
|
Akey CW, Singh D, Ouch C, Echeverria I, Nudelman I, Varberg JM, Yu Z, Fang F, Shi Y, Wang J, Salzberg D, Song K, Xu C, Gumbart JC, Suslov S, Unruh J, Jaspersen SL, Chait BT, Sali A, Fernandez-Martinez J, Ludtke SJ, Villa E, Rout MP. Comprehensive structure and functional adaptations of the yeast nuclear pore complex. Cell 2022; 185:361-378.e25. [PMID: 34982960 PMCID: PMC8928745 DOI: 10.1016/j.cell.2021.12.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Nuclear pore complexes (NPCs) mediate the nucleocytoplasmic transport of macromolecules. Here we provide a structure of the isolated yeast NPC in which the inner ring is resolved by cryo-EM at sub-nanometer resolution to show how flexible connectors tie together different structural and functional layers. These connectors may be targets for phosphorylation and regulated disassembly in cells with an open mitosis. Moreover, some nucleoporin pairs and transport factors have similar interaction motifs, which suggests an evolutionary and mechanistic link between assembly and transport. We provide evidence for three major NPC variants that may foreshadow functional specializations at the nuclear periphery. Cryo-electron tomography extended these studies, providing a model of the in situ NPC with a radially expanded inner ring. Our comprehensive model reveals features of the nuclear basket and central transporter, suggests a role for the lumenal Pom152 ring in restricting dilation, and highlights structural plasticity that may be required for transport.
Collapse
Affiliation(s)
- Christopher W Akey
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA.
| | - Digvijay Singh
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Christna Ouch
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Ignacia Echeverria
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, San Francisco, San Francisco, CA 94158, USA
| | - Ilona Nudelman
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA
| | | | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Fei Fang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Junjie Wang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Daniel Salzberg
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kangkang Song
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Chen Xu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sergey Suslov
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | | | - Steven J Ludtke
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA.
| | - Elizabeth Villa
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
23
|
Labade AS, Salvi A, Kar S, Karmodiya K, Sengupta K. Nup93 and CTCF modulate spatiotemporal dynamics and function of the HOXA gene locus during differentiation. J Cell Sci 2021; 134:273378. [PMID: 34746948 DOI: 10.1242/jcs.259307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/30/2021] [Indexed: 11/20/2022] Open
Abstract
Nucleoporins regulate nuclear transport and are also involved in DNA damage, repair, cell cycle, chromatin organization, and gene expression. Here, we studied the role of nucleoporin Nup93 and the chromatin organizer CTCF in regulating HOXA expression during differentiation. ChIP sequencing revealed a significant overlap between Nup93 and CTCF peaks. Interestingly, Nup93 and CTCF are associated with the 3' and 5'HOXA genes respectively. Depletions of Nup93 and CTCF antagonistically modulate expression levels of 3'and 5'HOXA genes in undifferentiated NT2/D1 cells. Nup93 also regulates the localization of the HOXA gene locus, which disengages from the nuclear periphery upon Nup93 but not CTCF depletion, consistent with its upregulation. The dynamic association of Nup93 and CTCF with the HOXA locus during differentiation correlates with its spatial positioning and expression. While Nup93 tethers the HOXA locus to the nuclear periphery, CTCF potentially regulates looping of the HOXA gene cluster in a temporal manner. In summary, Nup93 and CTCF complement one another in modulating the spatiotemporal dynamics and function of the HOXA gene locus during differentiation.
Collapse
Affiliation(s)
- Ajay S Labade
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008 Maharashtra, INDIA
| | - Adwait Salvi
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008 Maharashtra, INDIA
| | - Saswati Kar
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008 Maharashtra, INDIA
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008 Maharashtra, INDIA
| | - Kundan Sengupta
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008 Maharashtra, INDIA
| |
Collapse
|
24
|
Iyer SR, Folker ES, Lovering RM. The Nucleoskeleton: Crossroad of Mechanotransduction in Skeletal Muscle. Front Physiol 2021; 12:724010. [PMID: 34721058 PMCID: PMC8554227 DOI: 10.3389/fphys.2021.724010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Intermediate filaments (IFs) are a primary structural component of the cytoskeleton extending throughout the muscle cell (myofiber). Mechanotransduction, the process by which mechanical force is translated into a biochemical signal to activate downstream cellular responses, is crucial to myofiber function. Mechanical forces also act on the nuclear cytoskeleton, which is integrated with the myofiber cytoskeleton by the linker of the nucleoskeleton and cytoskeleton (LINC) complexes. Thus, the nucleus serves as the endpoint for the transmission of force through the cell. The nuclear lamina, a dense meshwork of lamin IFs between the nuclear envelope and underlying chromatin, plays a crucial role in responding to mechanical input; myofibers constantly respond to mechanical perturbation via signaling pathways by activation of specific genes. The nucleus is the largest organelle in cells and a master regulator of cell homeostasis, thus an understanding of how it responds to its mechanical environment is of great interest. The importance of the cell nucleus is magnified in skeletal muscle cells due to their syncytial nature and the extreme mechanical environment that muscle contraction creates. In this review, we summarize the bidirectional link between the organization of the nucleoskeleton and the contractile features of skeletal muscle as they relate to muscle function.
Collapse
Affiliation(s)
- Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Eric S Folker
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
25
|
Bonnet A, Chaput C, Palmic N, Palancade B, Lesage P. A nuclear pore sub-complex restricts the propagation of Ty retrotransposons by limiting their transcription. PLoS Genet 2021; 17:e1009889. [PMID: 34723966 PMCID: PMC8585004 DOI: 10.1371/journal.pgen.1009889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 11/11/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022] Open
Abstract
Beyond their canonical function in nucleocytoplasmic exchanges, nuclear pore complexes (NPCs) regulate the expression of protein-coding genes. Here, we have implemented transcriptomic and molecular methods to specifically address the impact of the NPC on retroelements, which are present in multiple copies in genomes. We report a novel function for the Nup84 complex, a core NPC building block, in specifically restricting the transcription of LTR-retrotransposons in yeast. Nup84 complex-dependent repression impacts both Copia and Gypsy Ty LTR-retrotransposons, all over the S. cerevisiae genome. Mechanistically, the Nup84 complex restricts the transcription of Ty1, the most active yeast retrotransposon, through the tethering of the SUMO-deconjugating enzyme Ulp1 to NPCs. Strikingly, the modest accumulation of Ty1 RNAs caused by Nup84 complex loss-of-function is sufficient to trigger an important increase of Ty1 cDNA levels, resulting in massive Ty1 retrotransposition. Altogether, our study expands our understanding of the complex interactions between retrotransposons and the NPC, and highlights the importance for the cells to keep retrotransposons under tight transcriptional control.
Collapse
Affiliation(s)
- Amandine Bonnet
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944, CNRS UMR 7212, Paris, France
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Carole Chaput
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944, CNRS UMR 7212, Paris, France
| | - Noé Palmic
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944, CNRS UMR 7212, Paris, France
| | - Benoit Palancade
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Pascale Lesage
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944, CNRS UMR 7212, Paris, France
| |
Collapse
|
26
|
Li K, Liu T. Evaluation of Oncogene NUP37 as a Potential Novel Biomarker in Breast Cancer. Front Oncol 2021; 11:669655. [PMID: 34386417 PMCID: PMC8353244 DOI: 10.3389/fonc.2021.669655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose There is an urgent need to identify oncogenes that may be beneficial to diagnose and develop target therapy for breast cancer. Methods Based on the GEO database, DECenter was used to screen the differentially overexpressed genes in breast cancer samples. Search Tool for the Retrieval of Interacting Genes and Cytoscape were performed to construct the PPI network to predict the hub gene. Functional and pathway enrichment were performed based on GO analysis. GEO2R, Oncomine, human tissue microarray staining, and western blot were applied to confirm the expression of NUP37. The association between NUP37 expression and prognosis in patients with breast cancer were assessed using the Kaplan–Meier plotter online tool and OncoLnc. siRNAs were used to knock down NUP37 and evaluate proliferation, migration, and stemness in breast cancer cells. Results We found that 138 genes were differentially upregulated in breast cancer samples, mainly comprising components of the nucleus and involved in the cell cycle process. NUP37 was identified as a hub gene that is upregulated in breast cancer patients related to a significantly worse survival rate. Furthermore, we confirmed that the downregulation of NUP37 in breast cancer cells results in the inhibition of cell growth, migration, and stemness. Conclusions High expression of NUP37 in breast cancer patients is associated with a poorer prognosis and promotion of cell growth, migration, and stemness. The multiple bioinformatics and experimental analysis help provide a comprehensive understanding of the roles of NUP37 as a potential marker for diagnosis and prognosis and as a novel therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Kangdi Li
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Liu
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
One Ring to Rule them All? Structural and Functional Diversity in the Nuclear Pore Complex. Trends Biochem Sci 2021; 46:595-607. [PMID: 33563541 DOI: 10.1016/j.tibs.2021.01.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
The nuclear pore complex (NPC) is the massive protein assembly that regulates the transport of macromolecules between the nucleus and the cytoplasm. Recent breakthroughs have provided major insights into the structure of the NPC in different eukaryotes, revealing a previously unsuspected diversity of NPC architectures. In parallel, the NPC has been shown to be a key player in regulating essential nuclear processes such as chromatin organization, gene expression, and DNA repair. However, our knowledge of the NPC structure has not been able to address the molecular mechanisms underlying its regulatory roles. We discuss potential explanations, including the coexistence of alternative NPC architectures with specific functional roles.
Collapse
|
28
|
Cunha-Silva S, Conde C. From the Nuclear Pore to the Fibrous Corona: A MAD Journey to Preserve Genome Stability. Bioessays 2020; 42:e2000132. [PMID: 32885448 DOI: 10.1002/bies.202000132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/22/2020] [Indexed: 11/09/2022]
Abstract
The relationship between kinetochores and nuclear pore complexes (NPCs) is intimate but poorly understood. Several NPC components and associated proteins are relocated to mitotic kinetochores to assist in different activities that ensure faithful chromosome segregation. Such is the case of the Mad1-c-Mad2 complex, the catalytic core of the spindle assembly checkpoint (SAC), a surveillance pathway that delays anaphase until all kinetochores are attached to spindle microtubules. Mad1-c-Mad2 is recruited to discrete domains of unattached kinetochores from where it promotes the rate-limiting step in the assembly of anaphase-inhibitory complexes. SAC proficiency further requires Mad1-c-Mad2 to be anchored at NPCs during interphase. However, the mechanistic relevance of this arrangement for SAC function remains ill-defined. Recent studies uncover the molecular underpinnings that coordinate the release of Mad1-c-Mad2 from NPCs with its prompt recruitment to kinetochores. Here, current knowledge on Mad1-c-Mad2 function and spatiotemporal regulation is reviewed and the critical questions that remain unanswered are highlighted.
Collapse
Affiliation(s)
- Sofia Cunha-Silva
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, 4200-135, Portugal.,Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, 4050-313, Portugal
| | - Carlos Conde
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, 4200-135, Portugal
| |
Collapse
|
29
|
Bitetto G, Di Fonzo A. Nucleo-cytoplasmic transport defects and protein aggregates in neurodegeneration. Transl Neurodegener 2020; 9:25. [PMID: 32616075 PMCID: PMC7333321 DOI: 10.1186/s40035-020-00205-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
In the ongoing process of uncovering molecular abnormalities in neurodegenerative diseases characterized by toxic protein aggregates, nucleo-cytoplasmic transport defects have an emerging role. Several pieces of evidence suggest a link between neuronal protein inclusions and nuclear pore complex (NPC) damage. These processes lead to oxidative stress, inefficient transcription, and aberrant DNA/RNA maintenance. The clinical and neuropathological spectrum of NPC defects is broad, ranging from physiological aging to a suite of neurodegenerative diseases. A better understanding of the shared pathways among these conditions may represent a significant step toward dissecting their underlying molecular mechanisms, opening the way to a real possibility of identifying common therapeutic targets.
Collapse
Affiliation(s)
- Giacomo Bitetto
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
30
|
López-García P, Moreira D. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nat Microbiol 2020; 5:655-667. [DOI: 10.1038/s41564-020-0710-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/13/2020] [Indexed: 11/10/2022]
|
31
|
Phillips CA, Reading BJ, Livingston M, Livingston K, Ashwell CM. Evaluation via Supervised Machine Learning of the Broiler Pectoralis Major and Liver Transcriptome in Association With the Muscle Myopathy Wooden Breast. Front Physiol 2020; 11:101. [PMID: 32158398 PMCID: PMC7052112 DOI: 10.3389/fphys.2020.00101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/27/2020] [Indexed: 01/07/2023] Open
Abstract
The muscle myopathy wooden breast (WB) has recently appeared in broiler production and has a negative impact on meat quality. WB is described as hard/firm consistency found within the pectoralis major (PM). In the present study, we use machine learning from our PM and liver transcriptome dataset to capture the complex relationships that are not typically revealed by traditional statistical methods. Gene expression data was evaluated between the PM and liver of birds with WB and those that were normal. Two separate machine learning algorithms were performed to analyze the data set including the sequential minimal optimization (SMO) of support vector machines (SVMs) and Multilayer Perceptron (MLP) Artificial Neural Network (ANN). Machine learning algorithms were compared to identify genes within a gene expression data set of approximately 16,000 genes for both liver and PM, which can be correctly classified from birds with or without WB. The performance of both machine learning algorithms SMO and MLP was determined using percent correct classification during the cross-validations. By evaluating the WB transcriptome datasets by 5× cross-validation using ANNs, the expression of nine genes ranked based on Shannon Entropy (Information Gain) from PM were able to correctly classify if the individual bird was normal or exhibited WB 100% of the time. These top nine genes were all protein coding and potential biomarkers. When PM gene expression data were evaluated between normal birds and those with WB using SVMs they were correctly classified 95% of the time using 450 of the top genes sorted ranked based on Shannon Entropy (Information Gain) as a preprocessing step. When evaluating the 450 attributes that were 95% correctly classified using SVMs through Ingenuity Pathway Analysis (IPA) there was an overlap in top genes identified through MLP. This analysis allowed the identification of critical transcriptional responses for the first time in both liver and muscle during the onset of WB. The information provided has revealed many molecules and pathways making up a complex molecular mechanism involved with the progression of wooden breast and suggests that the etiology of the myopathy is not limited to activity in the muscle alone, but is an altered systemic pathology.
Collapse
Affiliation(s)
- Chelsea A. Phillips
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| | - Benjamin J. Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| | - Matthew Livingston
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| | - Kimberly Livingston
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| | - Chris M. Ashwell
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
32
|
Schlachetzki JCM, Toda T, Mertens J. When function follows form: Nuclear compartment structure and the epigenetic landscape of the aging neuron. Exp Gerontol 2020; 133:110876. [PMID: 32068088 DOI: 10.1016/j.exger.2020.110876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
The human brain is affected by cellular aging. Neurons are primarily generated during embryogenesis and early life with a limited capacity for renewal and replacement, making them some of the oldest cells in the human body. Our present understanding of neurodegenerative diseases points towards advanced neuronal age as a prerequisite for the development of these disorders. While significant progress has been made in understanding the relationship between aging and neurological disease, it will be essential to delve further into the molecular mechanisms of neuronal aging in order to develop therapeutic interventions targeting age-related brain dysfunction. In this mini review, we highlight recent findings on the relationship between the aging of nuclear structures and changes in the epigenetic landscape during neuronal aging and disease.
Collapse
Affiliation(s)
- Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tomohisa Toda
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.
| | - Jerome Mertens
- Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, Austria; Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
33
|
Leonard RJ, Preston CC, Gucwa ME, Afeworki Y, Selya AS, Faustino RS. Protein Subdomain Enrichment of NUP155 Variants Identify a Novel Predicted Pathogenic Hotspot. Front Cardiovasc Med 2020; 7:8. [PMID: 32118046 PMCID: PMC7019101 DOI: 10.3389/fcvm.2020.00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/17/2020] [Indexed: 01/05/2023] Open
Abstract
Functional variants in nuclear envelope genes are implicated as underlying causes of cardiopathology. To examine the potential association of single nucleotide variants of nucleoporin genes with cardiac disease, we employed a prognostic scoring approach to investigate variants of NUP155, a nucleoporin gene clinically linked with atrial fibrillation. Here we implemented bioinformatic profiling and predictive scoring, based on the gnomAD, National Heart Lung and Blood Institute-Exome Sequencing Project (NHLBI-ESP) Exome Variant Server, and dbNSFP databases to identify rare single nucleotide variants (SNVs) of NUP155 potentially associated with cardiopathology. This predictive scoring revealed 24 SNVs of NUP155 as potentially cardiopathogenic variants located primarily in the N-terminal crescent-shaped domain of NUP155. In addition, a predicted NUP155 R672G variant prioritized in our study was mapped to a region within the alpha helical stack of the crescent domain of NUP155. Bioinformatic analysis of inferred protein-protein interactions of NUP155 revealed over representation of top functions related to molecular transport, RNA trafficking, and RNA post-transcriptional modification. Topology analysis revealed prioritized hubs critical for maintaining network integrity and informational flow that included FN1, SIRT7, and CUL7 with nodal enrichment of RNA helicases in the topmost enriched subnetwork. Furthermore, integration of the top 5 subnetworks to capture network topology of an expanded framework revealed that FN1 maintained its hub status, with elevation of EED, CUL3, and EFTUD2. This is the first study to report novel discovery of a NUP155 subdomain hotspot that enriches for allelic variants of NUP155 predicted to be clinically damaging, and supports a role for RNA metabolism in cardiac disease and development.
Collapse
Affiliation(s)
- Riley J. Leonard
- Genetics and Genomics Group, Sanford Research, Sioux Falls, SD, United States
- Department of Biology, College of St. Benedict/St. John's University, Collegeville, MN, United States
| | - Claudia C. Preston
- Genetics and Genomics Group, Sanford Research, Sioux Falls, SD, United States
| | - Melanie E. Gucwa
- Genetics and Genomics Group, Sanford Research, Sioux Falls, SD, United States
- Department of Biology, Carthage College, Kenosha, WI, United States
| | - Yohannes Afeworki
- Functional Genomics & Bioinformatics Core Facility, Sanford Research, Sioux Falls, SD, United States
| | - Arielle S. Selya
- Behavioral Sciences Group, Sanford Research, Sioux Falls, SD, United States
| | - Randolph S. Faustino
- Genetics and Genomics Group, Sanford Research, Sioux Falls, SD, United States
- Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, United States
| |
Collapse
|
34
|
Hoffman LM, Smith MA, Jensen CC, Yoshigi M, Blankman E, Ullman KS, Beckerle MC. Mechanical stress triggers nuclear remodeling and the formation of transmembrane actin nuclear lines with associated nuclear pore complexes. Mol Biol Cell 2020; 31:1774-1787. [PMID: 31967947 PMCID: PMC7521858 DOI: 10.1091/mbc.e19-01-0027] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mechanical stimulation of fibroblasts induces changes in the actin cytoskeleton including stress fiber (SF) reinforcement and realignment. Here we characterize the nuclear response to mechanical stimulation (uniaxial cyclic stretch). Using fluorescence microscopy and quantitative image analysis we find that stretch-induced nuclear elongation and alignment perpendicular to the stretch vector are dependent on formin-regulated actin polymerization. The mechanosensitive transcription factors Yes-associated protein/Transcriptional coactivator with PDZ domain (YAP/TAZ) and myocardin-related transcription factor (MRTF-A, also known as MKL1 and MAL1) accumulate in the nucleus and activate their target genes in response to uniaxial cyclic stretch. We show that transmembrane actin nuclear (TAN) lines are induced by stretch stimulation and nuclear envelope (NE) proteins including nesprins, SUN2, and lamins form Linkers of the Nucleoskeleton and Cytoskeleton (LINC) complexes aligned with actin SFs. These NE structures are altered by pharmacological treatments (Cytochalasin D and Jasplakinolide) or genetic disruption (zyxin gene deletion) that alter actin, and their persistence requires maintenance of stretch stimulation. Nuclear pore complexes (NPCs) accumulate at TAN lines providing a potential mechanism for linking mechanical cues to NPC function.
Collapse
Affiliation(s)
- Laura M Hoffman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112
| | - Mark A Smith
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112
| | | | - Masaaki Yoshigi
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84112
| | | | - Katharine S Ullman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Mary C Beckerle
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
35
|
Gomar-Alba M, Mendoza M. Modulation of Cell Identity by Modification of Nuclear Pore Complexes. Front Genet 2020; 10:1301. [PMID: 31969901 PMCID: PMC6960265 DOI: 10.3389/fgene.2019.01301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/26/2019] [Indexed: 11/17/2022] Open
Abstract
Nuclear pore complexes (NPCs) are protein assemblies that form channels across the nuclear envelope to mediate communication between the nucleus and the cytoplasm. Additionally, NPCs interact with chromatin and influence the position and expression of multiple genes. Interestingly, the composition of NPCs can vary in different cell-types, tissues, and developmental states. Here, we review recent findings suggesting that modifications of NPC composition, including post-translational modifications, play an instructive role in cell fate establishment. In particular, we focus on the role of cell-specific NPC deacetylation in asymmetrically dividing budding yeast, which modulates transport-dependent and transport-independent NPC functions to determine the time of commitment to a new division cycle in daughter cells. By modulating protein localization and gene expression, NPCs are therefore emerging as central regulators of cell identity.
Collapse
Affiliation(s)
- Mercè Gomar-Alba
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Manuel Mendoza
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|
36
|
Azagra A, Marina-Zárate E, Ramiro AR, Javierre BM, Parra M. From Loops to Looks: Transcription Factors and Chromatin Organization Shaping Terminal B Cell Differentiation. Trends Immunol 2019; 41:46-60. [PMID: 31822368 DOI: 10.1016/j.it.2019.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
Abstract
B lymphopoiesis is tightly regulated at the level of gene transcription. In recent years, investigators have shed light on the transcription factor networks and the epigenetic machinery involved at all differentiation steps of mammalian B cell development. During terminal differentiation, B cells undergo dramatic changes in gene transcriptional programs to generate germinal center B cells, plasma cells and memory B cells. Recent evidence indicates that mature B cell formation involves an essential contribution from 3D chromatin conformations through its interplay with transcription factors and epigenetic machinery. Here, we provide an up-to-date overview of the coordination between transcription factors, epigenetic changes, and chromatin architecture during terminal B cell differentiation, focusing on recent discoveries and technical advances for studying 3D chromatin structures.
Collapse
Affiliation(s)
- Alba Azagra
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Badalona, Spain
| | - Ester Marina-Zárate
- B Cell Biology Laboratory, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Almudena R Ramiro
- B Cell Biology Laboratory, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Biola M Javierre
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Badalona, Spain.
| | - Maribel Parra
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Badalona, Spain.
| |
Collapse
|
37
|
Gumber HK, McKenna JF, Tolmie AF, Jalovec AM, Kartick AC, Graumann K, Bass HW. MLKS2 is an ARM domain and F-actin-associated KASH protein that functions in stomatal complex development and meiotic chromosome segregation. Nucleus 2019; 10:144-166. [PMID: 31221013 PMCID: PMC6649574 DOI: 10.1080/19491034.2019.1629795] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 01/25/2023] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex is an essential multi-protein structure spanning the eukaryotic nuclear envelope. The LINC complex functions to maintain nuclear architecture, positioning, and mobility, along with specialized functions in meiotic prophase and chromosome segregation. Members of the LINC complex were recently identified in maize, an important scientific and agricultural grass species. Here we characterized Maize LINC KASH AtSINE-like2, MLKS2, which encodes a highly conserved SINE-group plant KASH protein with characteristic N-terminal armadillo repeats (ARM). Using a heterologous expression system, we showed that actively expressed GFP-MLKS2 is targeted to the nuclear periphery and colocalizes with F-actin and the endoplasmic reticulum, but not microtubules in the cell cortex. Expression of GFP-MLKS2, but not GFP-MLKS2ΔARM, resulted in nuclear anchoring. Genetic analysis of transposon-insertion mutations, mlks2-1 and mlks2-2, showed that the mutant phenotypes were pleiotropic, affecting root hair nuclear morphology, stomatal complex development, multiple aspects of meiosis, and pollen viability. In male meiosis, the mutants showed defects for bouquet-stage telomere clustering, nuclear repositioning, perinuclear actin accumulation, dispersal of late prophase bivalents, and meiotic chromosome segregation. These findings support a model in which the nucleus is connected to cytoskeletal F-actin through the ARM-domain, predicted alpha solenoid structure of MLKS2. Functional conservation of MLKS2 was demonstrated through genetic rescue of the misshapen nuclear phenotype of an Arabidopsis (triple-WIP) KASH mutant. This study establishes a role for the SINE-type KASH proteins in affecting the dynamic nuclear phenomena required for normal plant growth and fertility. Abbreviations: FRAP: Fluorescence recovery after photobleaching; DPI: Days post infiltration; OD: Optical density; MLKS2: Maize LINC KASH AtSINE-like2; LINC: Linker of nucleoskeleton and cytoskeleton; NE: Nuclear envelope; INM: Inner nuclear membrane; ONM: Outer nuclear membrane.
Collapse
Affiliation(s)
- Hardeep K. Gumber
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Joseph F. McKenna
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Andrea F. Tolmie
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Alexis M. Jalovec
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Andre C. Kartick
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Katja Graumann
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Hank W. Bass
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
38
|
Kuhn TM, Capelson M. Nuclear Pore Proteins in Regulation of Chromatin State. Cells 2019; 8:cells8111414. [PMID: 31717499 PMCID: PMC6912232 DOI: 10.3390/cells8111414] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022] Open
Abstract
Nuclear pore complexes (NPCs) are canonically known to regulate nucleocytoplasmic transport. However, research efforts over the last decade have demonstrated that NPCs and their constituent nucleoporins (Nups) also interact with the genome and perform important roles in regulation of gene expression. It has become increasingly clear that many Nups execute these roles specifically through regulation of chromatin state, whether through interactions with histone modifiers and downstream changes in post-translational histone modifications, or through relationships with chromatin-remodeling proteins that can result in physical changes in nucleosome occupancy and chromatin compaction. This review focuses on these findings, highlighting the functional connection between NPCs/Nups and regulation of chromatin structure, and how this connection can manifest in regulation of transcription.
Collapse
|
39
|
Developmental conservation of microRNA gene localization at the nuclear periphery. PLoS One 2019; 14:e0223759. [PMID: 31682635 PMCID: PMC6827902 DOI: 10.1371/journal.pone.0223759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022] Open
Abstract
microRNAs are of vital importance for the regulation of the adaptive and innate immune responses, modulating gene expression at the post transcriptional level. Although there is cumulative information regarding the steady state mature microRNA levels and their respective targets, little is known about the effect of the three-dimensional chromatin architecture on the transcriptional regulation of microRNA gene loci. Here, we sought to investigate the effect of subnuclear localization on the transcriptional activation of eight murine microRNA loci in the immune system. Our results show that microRNA genes display a preferential monoallelic gene expression profile accompanied with perinuclear localization irrespectively of their transcription status or differentiation state. The expression profile and perinuclear localization are developmentally conserved while microRNA gene loci localization outside constitutive lamin associated domains is cross-species conserved. Our findings provide support for an active nuclear periphery and its role in chromatin organization of the non-coding genome.
Collapse
|
40
|
Abstract
The name “eukaryote” is derived from Greek, meaning “true kernel”, and describes the domain of organisms whose cells have a nucleus. The nucleus is thus the defining feature of eukaryotes and distinguishes them from prokaryotes (Archaea and Bacteria), whose cells lack nuclei. Despite this, we discuss the intriguing possibility that organisms on the path from the first eukaryotic common ancestor to the last common ancestor of all eukaryotes did not possess a nucleus at all—at least not in a form we would recognize today—and that the nucleus in fact arrived relatively late in the evolution of eukaryotes. The clues to this alternative evolutionary path lie, most of all, in recent discoveries concerning the structure of the nuclear pore complex. We discuss the evidence for such a possibility and how this impacts our views of eukaryote origins and how eukaryotes have diversified subsequent to their last common ancestor.
Collapse
Affiliation(s)
- Mark C Field
- School of Life Sciences, University of Dundee, Dundee, UK.,Biology Centre, Institute of Parasitology, Faculty of Sciences, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | |
Collapse
|
41
|
Chen S, Wang R, Zheng D, Zhang H, Chang X, Wang K, Li W, Fan J, Tian B, Cheng H. The mRNA Export Receptor NXF1 Coordinates Transcriptional Dynamics, Alternative Polyadenylation, and mRNA Export. Mol Cell 2019; 74:118-131.e7. [PMID: 30819645 DOI: 10.1016/j.molcel.2019.01.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/06/2018] [Accepted: 01/17/2019] [Indexed: 02/08/2023]
Abstract
Alternative polyadenylation (APA) produces mRNA isoforms with different 3' UTR lengths. Previous studies indicated that 3' end processing and mRNA export are intertwined in gene regulation. Here, we show that mRNA export factors generally facilitate usage of distal cleavage and polyadenylation sites (PASs), leading to long 3' UTR isoform expression. By focusing on the export receptor NXF1, which exhibits the most potent effect on APA in this study, we reveal several gene features that impact NXF1-dependent APA, including 3' UTR size, gene size, and AT content. Surprisingly, NXF1 downregulation results in RNA polymerase II (Pol II) accumulation at the 3' end of genes, correlating with its role in APA regulation. Moreover, NXF1 cooperates with CFI-68 to facilitate nuclear export of long 3' UTR isoform with UGUA motifs. Together, our work reveals important roles of NXF1 in coordinating transcriptional dynamics, 3' end processing, and nuclear export of long 3' UTR transcripts, implicating NXF1 as a nexus of gene regulation.
Collapse
Affiliation(s)
- Suli Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruijia Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Heng Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xingya Chang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wencheng Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jing Fan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
42
|
Olsen LA, Nicoll JX, Fry AC. The skeletal muscle fiber: a mechanically sensitive cell. Eur J Appl Physiol 2019; 119:333-349. [PMID: 30612167 DOI: 10.1007/s00421-018-04061-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
The plasticity of skeletal muscle, whether an increase in size, change in metabolism, or alteration in structural properties, is in a continuous state of flux largely dependent upon physical activity. Much of the past research has expounded upon these ever-changing aspects of the muscle fiber following exercise. Specifically, endocrine and paracrine signaling have been heavily investigated lending to much of the past literature comprised of such endocrinological dynamics following muscle activity. Mechanotransduction, the ability of a cell to convert a mechanical stimulus into an intracellular biochemical response, has garnered much less attention. Recent work, however, has demonstrated the physical continuity of the muscle fiber, specifically demonstrating a continuous physical link between the extracellular matrix (ECM), cytoskeleton, and nuclear matrix as a means to rapidly regulate gene expression following a mechanical stimulus. Similarly, research has shown mechanical stimuli to directly influence cytoplasmic signaling whether through oxidative adaptations, increased muscle size, or enhanced muscle integrity. Regrettably, minimal research has investigated the role that exercise may play within the mechanotransducing signaling cascades. This proposed line of study may prove paramount as muscle-related diseases greatly impact one's ability to lead an independent lifestyle along with contributing a substantial burden upon the economy. Thus, this review explores both biophysical and biochemical mechanotransduction, and how these signaling pathways may be influenced following exercise.
Collapse
Affiliation(s)
- Luke A Olsen
- Biomedical Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Justin X Nicoll
- Department of Kinesiology, California State University, Northridge, CA, 91330-8287, USA
| | - Andrew C Fry
- Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|