1
|
Maji M, Khajanchi S. Mathematical models on Alzheimer's disease and its treatment: A review. Phys Life Rev 2025; 52:207-244. [PMID: 39813887 DOI: 10.1016/j.plrev.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Alzheimer's disease is a gradually advancing neurodegenerative disease. According to the report by "World Health Organization (WHO)", there are over 55 million individuals currently living with Alzheimer's disease and other dementia globally, and the number of sufferers is increasing every day. In absence of effective cures and preventive measures, this number is predicted to triple by 2050. The disease's origin is still unclear, and also no such treatment is available for eradicating the disease. Based on the crucial factors that are connected to the disease's progression, the authors developed several types of mathematical models. We review such mathematical models that are utilized to better understand the pathophysiology of Alzheimer's disease. Section-wise, we categorize the mathematical models in terms of different components that might be responsible for Alzheimer's disease. We explain the mathematical models with their descriptions and respective conclusions. In addition to mathematical models, we concentrate on biological aspects of the disease and possible therapeutic targets. We explore the disease's biological basis primarily to understand how proteins, glial cells, cytokines, genes, calcium signaling and oxidative stress contribute to the disease. We go through several treatment targets that might stop the progression of the disease or at least slow it down. We present a table that summarizes the mathematical models in terms of their formalisms, highlighting key components and important remarks.
Collapse
Affiliation(s)
- Mitali Maji
- Department of Mathematics, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Subhas Khajanchi
- Department of Mathematics, Presidency University, 86/1 College Street, Kolkata 700073, India.
| |
Collapse
|
2
|
Grahl MVC, Hohl KS, Smaniotto T, Carlini CR. Microbial Trojan Horses: Virulence Factors as Key Players in Neurodegenerative Diseases. Molecules 2025; 30:687. [PMID: 39942791 PMCID: PMC11820544 DOI: 10.3390/molecules30030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/01/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Changes in population demographics indicate that the elderly population will reach 2.1 billion worldwide by 2050. In parallel, there will be an increase in neurodegenerative diseases such as Alzheimer's and Parkinson's. This review explores dysbiosis occurring in these pathologies and how virulence factors contribute to the worsening or development of clinical conditions, and it summarizes existing and potential ways to combat microorganisms related to these diseases. Microbiota imbalances can contribute to the progression of neurodegenerative diseases by increasing intestinal permeability, exchanging information through innervation, and even acting as a Trojan horse affecting immune cells. The microorganisms of the microbiota produce virulence factors to protect themselves from host defenses, many of which contribute to neurodegenerative diseases. These virulence factors are expressed according to the genetic composition of each microorganism, leading to a wide range of factors to be considered. Among the main virulence factors are LPS, urease, curli proteins, amyloidogenic proteins, VacA, and CagA. These factors can also be packed into bacterial outer membrane vesicles, which transport proteins, RNA, and DNA, enabling distal communication that impacts various diseases, including Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Matheus V. C. Grahl
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil
| | - Kelvin Siqueira Hohl
- Graduate Program in Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (K.S.H.); (T.S.)
| | - Thiago Smaniotto
- Graduate Program in Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (K.S.H.); (T.S.)
| | - Célia R. Carlini
- Center of Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Graduate Program of Biosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
3
|
Kalsariya RA, Kavila D, Shorter S, Negi D, Goodall ICA, Boussios S, Ovsepian SV. Molecular biomarkers of glial activation and injury in epilepsy. Drug Discov Today 2025; 30:104289. [PMID: 39799990 DOI: 10.1016/j.drudis.2025.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Increasing evidence from fluid biopsies suggests activation and injury of glial cells in epilepsy. The prevalence of clinical and subclinical seizures in neurodegenerative conditions such as Alzheimer's disease, frontotemporal dementia, and others merits review and comparison of the effects of seizures on glial markers in epilepsy and neurodegenerative diseases with concomitant seizures. Herein, we revisit preclinical and clinical reports of alterations in glial proteins in cerebrospinal fluid and blood associated with various types of epilepsy. We consider shared and distinct characteristics of changes in different age groups and sexes, in humans and animal models of epilepsy, and compare them with those reported in biofluids in neurodegenerative diseases. Our analysis indicates a significant overlap of glial response in these prevalent neurological conditions.
Collapse
Affiliation(s)
- Reema A Kalsariya
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime ME4 4TB, UK
| | - Dave Kavila
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime ME4 4TB, UK
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime ME4 4TB, UK
| | - Deepika Negi
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime ME4 4TB, UK
| | - Iain C A Goodall
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime ME4 4TB, UK
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, ME7 5NY, UK; Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury CT2 7PB, UK; Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, Strand, London WC2R 2LS, UK; Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK; AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime ME4 4TB, UK; Faculty of Medicine, Tbilisi State University, Tbilisi 0179, Georgia.
| |
Collapse
|
4
|
Tahir M, Kang MH, Park TJ, Ali J, Choe K, Park JS, Kim MO. Multifaceted neuroprotective approach of Trolox in Alzheimer's disease mouse model: targeting Aβ pathology, neuroinflammation, oxidative stress, and synaptic dysfunction. Front Cell Neurosci 2024; 18:1453038. [PMID: 39355174 PMCID: PMC11442280 DOI: 10.3389/fncel.2024.1453038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder pathologically characterized by the deposition of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. The accumulation of these aggregated proteins causes memory and synaptic dysfunction, neuroinflammation, and oxidative stress. This research study is significant as it aims to assess the neuroprotective properties of vitamin E (VE) analog Trolox in an Aβ1 - 42-induced AD mouse model. Aβ1 - 42 5μL/5min/mouse was injected intracerebroventricularly (i.c.v.) into wild-type adult mice brain to induce AD-like neurotoxicity. For biochemical analysis, Western blotting and confocal microscopy were performed. Remarkably, intraperitoneal (i.p.) treatment of Trolox (30 mg/kg/mouse for 2 weeks) reduced the AD pathology by reducing the expression of Aβ, phosphorylated tau (p-tau), and β-site amyloid precursor protein cleaving enzyme1 (BACE1) in both cortex and hippocampus regions of mice brain. Furthermore, Trolox-treatment decreased neuroinflammation by inhibiting Toll-like receptor 4 (TLR4), phosphorylated nuclear factor-κB (pNF-κB) and interleukin-1β (IL-1β), and other inflammatory biomarkers of glial cells [ionized calcium-binding adaptor molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP)]. Moreover, Trolox reduced oxidative stress by enhancing the expression of nuclear factor erythroid-related factor 2 (NRF2) and heme oxygenase 1 (HO1). Similarly, Trolox-induced synaptic markers, including synaptosomal associated protein 23 (SNAP23), synaptophysin (SYN), and post-synaptic density protein 95 (PSD-95), and memory functions in AD mice. Our findings could provide a useful and novel strategy for investigating new medications to treat AD-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Muhammad Tahir
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju-si, Republic of Korea
| | - Min Hwa Kang
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju-si, Republic of Korea
| | - Tae Ju Park
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, MVLS, University of Glasgow, Glasgow, United Kingdom
| | - Jawad Ali
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju-si, Republic of Korea
| | - Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju-si, Republic of Korea
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju-si, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju-si, Republic of Korea
- Alz-Dementia Korea Co., Jinju-si, Republic of Korea
| |
Collapse
|
5
|
Chen YY, Chang CJ, Liang YW, Tseng HY, Li SJ, Chang CW, Wu YT, Shao HH, Chen PC, Lai ML, Deng WC, Hsu R, Lo YC. Utilizing diffusion tensor imaging as an image biomarker in exploring the therapeutic efficacy of forniceal deep brain stimulation in a mice model of Alzheimer's disease. J Neural Eng 2024; 21:056003. [PMID: 39230033 DOI: 10.1088/1741-2552/ad7322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Objective.With prolonged life expectancy, the incidence of memory deficits, especially in Alzheimer's disease (AD), has increased. Although multiple treatments have been evaluated, no promising treatment has been found to date. Deep brain stimulation (DBS) of the fornix area was explored as a possible treatment because the fornix is intimately connected to memory-related areas that are vulnerable in AD; however, a proper imaging biomarker for assessing the therapeutic efficiency of forniceal DBS in AD has not been established.Approach.This study assessed the efficacy and safety of DBS by estimating the optimal intersection volume between the volume of tissue activated and the fornix. Utilizing a gold-electroplating process, the microelectrode's surface area on the neural probe was increased, enhancing charge transfer performance within potential water window limits. Bilateral fornix implantation was conducted in triple-transgenic AD mice (3 × Tg-AD) and wild-type mice (strain: B6129SF1/J), with forniceal DBS administered exclusively to 3 × Tg-AD mice in the DBS-on group. Behavioral tasks, diffusion tensor imaging (DTI), and immunohistochemistry (IHC) were performed in all mice to assess the therapeutic efficacy of forniceal DBS.Main results.The results illustrated that memory deficits and increased anxiety-like behavior in 3 × Tg-AD mice were rescued by forniceal DBS. Furthermore, forniceal DBS positively altered DTI indices, such as increasing fractional anisotropy (FA) and decreasing mean diffusivity (MD), together with reducing microglial cell and astrocyte counts, suggesting a potential causal relationship between revised FA/MD and reduced cell counts in the anterior cingulate cortex, hippocampus, fornix, amygdala, and entorhinal cortex of 3 × Tg-AD mice following forniceal DBS.Significance.The efficacy of forniceal DBS in AD can be indicated by alterations in DTI-based biomarkers reflecting the decreased activation of glial cells, suggesting reduced neural inflammation as evidenced by improvements in memory and anxiety-like behavior.
Collapse
Affiliation(s)
- You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Chih-Ju Chang
- Department of Neurosurgery, Cathay General Hospital, No. 280, Sec. 4, Renai Rd., Taipei 10629, Taiwan, Republic of China
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., New Taipei City 242062, Taiwan, Republic of China
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Hsin-Yi Tseng
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Yen-Ting Wu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Huai-Hsuan Shao
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Ming-Liang Lai
- Graduate Institute of Intellectual Property, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Wen-Chun Deng
- Departments of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, No.222, Maijin Rd., Keelung 20400, Taiwan, Republic of China
| | - RuSiou Hsu
- Department of Ophthalmology, Stanford University, 1651 Page Mill Rd., Palo Alto, CA 94304, United States of America
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| |
Collapse
|
6
|
Li Y, Zhang X, Zhao H, Wang Y, Zhang D, Wang X, Dong R, Yan XX, Wu J, Sui Y, Zhang J, Cui M. Screening of [ 18F]Florbetazine for Aβ Plaques and a Head-to-Head Comparison Study with [ 11C]Pittsburgh Compound-B ([ 11C]PiB) in Human Subjects. ACS Pharmacol Transl Sci 2024; 7:2054-2062. [PMID: 39022359 PMCID: PMC11249633 DOI: 10.1021/acsptsci.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
Positron emission tomography (PET) imaging of amyloid-β (Aβ) has emerged as a crucial strategy for early diagnosis and monitoring of therapeutic advancements targeting Aβ. In our previous first-in-human study, we identified that [18F]Florbetazine ([18F]92), featuring a diaryl-azine scaffold, exhibits higher cortical uptake in Alzheimer's disease (AD) patients compared to healthy controls (HC). Building upon these promising findings, this study aimed to characterize the diagnostic potential of [18F]92 and its dimethylamino-modified tracer [18F]91 and further compare them with the benchmark [11C]PiB in the same cohort of AD patients and age-matched HC subjects. The cortical accumulation of these tracers was evident, with no significant radioactivity retention observed in the cortex of HC subjects, consistent with [11C]PiB images (correlation coefficient of 0.9125 and 0.7883 between [18F]Florbetazine/[18F]91 and [11C]PiB, respectively). Additionally, quantified data revealed higher standardized uptake value ratios (SUVR) (with the cerebellum as the reference region) of [18F]Florbetazine/[18F]91 in AD patients compared to the HC group ([18F]Florbetazine: 1.49 vs 1.16; [18F]91: 1.33 vs 1.20). Notably, [18F]Florbetazine exhibited less nonspecific bindings in myelin-rich regions, compared to the dimethylamino-substituted [18F]91, akin to [11C]PiB. Overall, this study suggests that [18F]Florbetazine displays superior characteristics to [18F]91 in identifying Aβ pathology in AD. Furthermore, the close agreement between the uptakes in nontarget regions for [18F]Florbetazine and [11C]PiB in this head-to-head comparison study underscores its suitability for both clinical and research applications.
Collapse
Affiliation(s)
- Yuying Li
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Xiaojun Zhang
- Department
of Nuclear Medicine, Chinese PLA General
Hospital, Beijing 100853, China
| | | | - Yan Wang
- Department
of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Changsha 410013, China
| | - Dandan Zhang
- Center
for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China
| | | | - Ruilin Dong
- HighTech
Atom Co., Ltd., Beijing 102413, China
| | - Xiao-xin Yan
- Department
of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Changsha 410013, China
| | - Jing Wu
- Center
for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Yanying Sui
- HighTech
Atom Co., Ltd., Beijing 102413, China
| | - Jinming Zhang
- Department
of Nuclear Medicine, Chinese PLA General
Hospital, Beijing 100853, China
| | - Mengchao Cui
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Yadikar H, Ansari MA, Abu-Farha M, Joseph S, Thomas BT, Al-Mulla F. Deciphering Early and Progressive Molecular Signatures in Alzheimer's Disease through Integrated Longitudinal Proteomic and Pathway Analysis in a Rodent Model. Int J Mol Sci 2024; 25:6469. [PMID: 38928172 PMCID: PMC11203991 DOI: 10.3390/ijms25126469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia worldwide, remains a challenge due to its complex origin and degenerative character. The need for accurate biomarkers and treatment targets hinders early identification and intervention. To fill this gap, we used a novel longitudinal proteome methodology to examine the temporal development of molecular alterations in the cortex of an intracerebroventricular streptozotocin (ICV-STZ)-induced AD mouse model for disease initiation and progression at one, three-, and six-weeks post-treatment. Week 1 revealed metabolic protein downregulation, such as Aldoa and Pgk1. Week 3 showed increased Synapsin-1, and week 6 showed cytoskeletal protein alterations like Vimentin. The biological pathways, upstream regulators, and functional effects of proteome alterations were dissected using advanced bioinformatics methods, including Ingenuity Pathway Analysis (IPA) and machine learning algorithms. We identified Mitochondrial Dysfunction, Synaptic Vesicle Pathway, and Neuroinflammation Signaling as disease-causing pathways. Huntington's Disease Signaling and Synaptogenesis Signaling were stimulated while Glutamate Receptor and Calcium Signaling were repressed. IPA also found molecular connections between PPARGC1B and AGT, which are involved in myelination and possible neoplastic processes, and MTOR and AR, which imply mechanistic involvements beyond neurodegeneration. These results help us comprehend AD's molecular foundation and demonstrate the promise of focused proteomic techniques to uncover new biomarkers and therapeutic targets for AD, enabling personalized medicine.
Collapse
Affiliation(s)
- Hamad Yadikar
- Department of Biological Sciences, Faculty of Science, Kuwait University, Sabah AlSalem University City, Kuwait City 13060, Kuwait
- OMICS Research Unit, Research Core Facility, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait;
| | - Mubeen A. Ansari
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait;
| | - Mohamed Abu-Farha
- Department of Translational Research, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (M.A.-F.); (F.A.-M.)
| | - Shibu Joseph
- Department of Special Service Facility, Dasman Diabetes Institute, Kuwait City 15462, Kuwait;
| | - Betty T. Thomas
- OMICS Research Unit, Research Core Facility, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait;
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (M.A.-F.); (F.A.-M.)
| |
Collapse
|
8
|
Shin HJ, Kim IS, Choi SG, Lee K, Park H, Shin J, Kim D, Beom J, Yi YY, Gupta DP, Song GJ, Chung WS, Lee CJ, Kim DW. Rejuvenating aged microglia by p16 ink4a-siRNA-loaded nanoparticles increases amyloid-β clearance in animal models of Alzheimer's disease. Mol Neurodegener 2024; 19:25. [PMID: 38493185 PMCID: PMC10943801 DOI: 10.1186/s13024-024-00715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
Age-dependent accumulation of amyloid plaques in patients with sporadic Alzheimer's disease (AD) is associated with reduced amyloid clearance. Older microglia have a reduced ability to phagocytose amyloid, so phagocytosis of amyloid plaques by microglia could be regulated to prevent amyloid accumulation. Furthermore, considering the aging-related disruption of cell cycle machinery in old microglia, we hypothesize that regulating their cell cycle could rejuvenate them and enhance their ability to promote more efficient amyloid clearance. First, we used gene ontology analysis of microglia from young and old mice to identify differential expression of cyclin-dependent kinase inhibitor 2A (p16ink4a), a cell cycle factor related to aging. We found that p16ink4a expression was increased in microglia near amyloid plaques in brain tissue from patients with AD and 5XFAD mice, a model of AD. In BV2 microglia, small interfering RNA (siRNA)-mediated p16ink4a downregulation transformed microglia with enhanced amyloid phagocytic capacity through regulated the cell cycle and increased cell proliferation. To regulate microglial phagocytosis by gene transduction, we used poly (D,L-lactic-co-glycolic acid) (PLGA) nanoparticles, which predominantly target microglia, to deliver the siRNA and to control microglial reactivity. Nanoparticle-based delivery of p16ink4a siRNA reduced amyloid plaque formation and the number of aged microglia surrounding the plaque and reversed learning deterioration and spatial memory deficits. We propose that downregulation of p16ink4a in microglia is a promising strategy for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Hyo Jung Shin
- Department of Anatomy and Cell Biology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Seung Gyu Choi
- Department of Anatomy and Cell Biology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Kayoung Lee
- Department of Anatomy and Cell Biology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyewon Park
- Department of Anatomy and Cell Biology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Juhee Shin
- Department of Anatomy and Cell Biology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Dayoung Kim
- Department of Anatomy and Cell Biology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jaewon Beom
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yoon Young Yi
- Department of Pediatrics, College of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Deepak Prasad Gupta
- Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-Do, Republic of Korea
| | - Gyun Jee Song
- Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-Do, Republic of Korea
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - C Justin Lee
- Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Dong Woon Kim
- Department of Anatomy and Cell Biology, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Department of Oral Anatomy and Developmental Biology, College of Dentistry Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Amlerova Z, Chmelova M, Anderova M, Vargova L. Reactive gliosis in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2024; 18:1335849. [PMID: 38481632 PMCID: PMC10933082 DOI: 10.3389/fncel.2024.1335849] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 01/03/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the most common pathological conditions impacting the central nervous system (CNS). A neurological deficit associated with TBI results from a complex of pathogenetic mechanisms including glutamate excitotoxicity, inflammation, demyelination, programmed cell death, or the development of edema. The critical components contributing to CNS response, damage control, and regeneration after TBI are glial cells-in reaction to tissue damage, their activation, hypertrophy, and proliferation occur, followed by the formation of a glial scar. The glial scar creates a barrier in damaged tissue and helps protect the CNS in the acute phase post-injury. However, this process prevents complete tissue recovery in the late/chronic phase by producing permanent scarring, which significantly impacts brain function. Various glial cell types participate in the scar formation, but this process is mostly attributed to reactive astrocytes and microglia, which play important roles in several brain pathologies. Novel technologies including whole-genome transcriptomic and epigenomic analyses, and unbiased proteomics, show that both astrocytes and microglia represent groups of heterogenic cell subpopulations with different genomic and functional characteristics, that are responsible for their role in neurodegeneration, neuroprotection and regeneration. Depending on the representation of distinct glia subpopulations, the tissue damage as well as the regenerative processes or delayed neurodegeneration after TBI may thus differ in nearby or remote areas or in different brain structures. This review summarizes TBI as a complex process, where the resultant effect is severity-, region- and time-dependent and determined by the model of the CNS injury and the distance of the explored area from the lesion site. Here, we also discuss findings concerning intercellular signaling, long-term impacts of TBI and the possibilities of novel therapeutical approaches. We believe that a comprehensive study with an emphasis on glial cells, involved in tissue post-injury processes, may be helpful for further research of TBI and be the decisive factor when choosing a TBI model.
Collapse
Affiliation(s)
- Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslava Anderova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
10
|
Khan A, Park JS, Kang MH, Lee HJ, Ali J, Tahir M, Choe K, Kim MO. Caffeic Acid, a Polyphenolic Micronutrient Rescues Mice Brains against Aβ-Induced Neurodegeneration and Memory Impairment. Antioxidants (Basel) 2023; 12:1284. [PMID: 37372012 DOI: 10.3390/antiox12061284] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Oxidative stress plays an important role in cognitive dysfunctions and is seen in neurodegeneration and Alzheimer's disease (AD). It has been reported that the polyphenolic compound caffeic acid possesses strong neuroprotective and antioxidant effects. The current study was conducted to investigate the therapeutic potential of caffeic acid against amyloid beta (Aβ1-42)-induced oxidative stress and memory impairments. Aβ1-42 (5 μL/5 min/mouse) was administered intracerebroventricularly (ICV) into wild-type adult mice to induce AD-like pathological changes. Caffeic acid was administered orally at 50 mg/kg/day for two weeks to AD mice. Y-maze and Morris water maze (MWM) behavior tests were conducted to assess memory and cognitive abilities. Western blot and immunofluorescence analyses were used for the biochemical analyses. The behavioral results indicated that caffeic acid administration improved spatial learning, memory, and cognitive abilities in AD mice. Reactive oxygen species (ROS) and lipid peroxidation (LPO) assays were performed and showed that the levels of ROS and LPO were markedly reduced in the caffeic acid-treated mice, as compared to Aβ-induced AD mice brains. Moreover, the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were regulated with the administration of caffeic acid, compared to the Aβ-injected mice. Next, we checked the expression of ionized calcium-binding adaptor molecule 1 (Iba-1), glial fibrillary acidic proteins (GFAP), and other inflammatory markers in the experimental mice, which suggested enhanced expression of these markers in AD mice brains, and were reduced with caffeic acid treatment. Furthermore, caffeic acid enhanced synaptic markers in the AD mice model. Additionally, caffeic acid treatment also decreased Aβ and BACE-1 expression in the Aβ-induced AD mice model.
Collapse
Affiliation(s)
- Amjad Khan
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Hwa Kang
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeon Jin Lee
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jawad Ali
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Muhammad Tahir
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229ER Maastricht, The Netherlands
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Alz-Dementia Korea Co., Jinju 52828, Republic of Korea
| |
Collapse
|
11
|
Kim S, Sharma C, Jung UJ, Kim SR. Pathophysiological Role of Microglial Activation Induced by Blood-Borne Proteins in Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051383. [PMID: 37239054 DOI: 10.3390/biomedicines11051383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The blood-brain barrier (BBB) restricts entry of neurotoxic plasma components, blood cells, and pathogens into the brain, leading to proper neuronal functioning. BBB impairment leads to blood-borne protein infiltration such as prothrombin, thrombin, prothrombin kringle-2, fibrinogen, fibrin, and other harmful substances. Thus, microglial activation and release of pro-inflammatory mediators commence, resulting in neuronal damage and leading to impaired cognition via neuroinflammatory responses, which are important features observed in the brain of Alzheimer's disease (AD) patients. Moreover, these blood-borne proteins cluster with the amyloid beta plaque in the brain, exacerbating microglial activation, neuroinflammation, tau phosphorylation, and oxidative stress. These mechanisms work in concert and reinforce each other, contributing to the typical pathological changes in AD in the brain. Therefore, the identification of blood-borne proteins and the mechanisms involved in microglial activation and neuroinflammatory damage can be a promising therapeutic strategy for AD prevention. In this article, we review the current knowledge regarding the mechanisms of microglial activation-mediated neuroinflammation caused by the influx of blood-borne proteins into the brain via BBB disruption. Subsequently, the mechanisms of drugs that inhibit blood-borne proteins, as a potential therapeutic approach for AD, along with the limitations and potential challenges of these approaches, are also summarized.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Chanchal Sharma
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
12
|
Hwang Y, Park JH, Kim HC, Shin EJ. GABA B receptor activation alters astrocyte phenotype changes induced by trimethyltin via ERK signaling in the dentate gyrus of mice. Life Sci 2023; 319:121529. [PMID: 36841471 DOI: 10.1016/j.lfs.2023.121529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
AIMS We examined the effect of γ-aminobutyric acid (GABA)B receptor activation on astrocyte phenotype changes induced by trimethyltin (TMT) in the dentate gyrus of mice. MAIN METHODS Male C57BL/6N mice received TMT (2.6 mg/kg, i.p.), and the expression of GABAB receptors was evaluated in the hippocampus. The GABAB receptor agonist baclofen (2.5, 5, or 10 mg/kg, i.p. × 5 at 12-h intervals) was administered 3-5 days after TMT treatment, and the expression of Iba-1, GFAP, and astrocyte phenotype markers was evaluated 6 days after TMT. SL327 (30 mg/kg, i.p.), an extracellular signal-related kinase (ERK) inhibitor, was administered 1 h after each baclofen treatment. KEY FINDINGS TMT insult significantly induced the astroglial expression of GABAB receptors in the dentate molecular layer. Baclofen significantly promoted the expression of S100A10, EMP1, and CD109, but not that of C3, GGTA1, and MX1 induced by TMT. In addition, baclofen significantly increased the TMT-induced expression of p-ERK in the dentate molecular layer. Interestingly, p-ERK was more colocalized with S100A10 than with C3 after TMT insult, and a significant positive correlation was found between the expression of p-ERK and S100A10. Consistently, SL327 reversed the effect of baclofen on astrocyte phenotype changes. Baclofen also enhanced the TMT-induced astroglial expression of glial cell-derived neurotrophic factor (GDNF), an anti-inflammatory astrocytes-to-microglia mediator, and consequently attenuated Iba-1 expression and delayed apoptotic neuronal death. SIGNIFICANCE Our results suggest that GABAB receptor activation increases S100A10-positive anti-inflammatory astrocytes and astroglial GDNF expression via ERK signaling after TMT excitotoxicity in the dentate molecular layer of mice.
Collapse
Affiliation(s)
- Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jung Hoon Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
13
|
Identification of a Novel Wnt Antagonist Based Therapeutic and Diagnostic Target for Alzheimer's Disease Using a Stem Cell-Derived Model. Bioengineering (Basel) 2023; 10:bioengineering10020192. [PMID: 36829686 PMCID: PMC9952699 DOI: 10.3390/bioengineering10020192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 02/05/2023] Open
Abstract
Currently, all the existing treatments for Alzheimer's disease (AD) fail to stall progression due to longer duration of time between onset of the symptoms and diagnosis of the disease, raising the necessity of effective diagnostics and novel treatment. Specific molecular regulation of the onset and progression of disease is not yet elucidated. This warranted investigation of the role of Wnt signaling regulators which are thought to be involved in neurogenesis. The AD model was established using amyloid beta (Aβ) in human mesenchymal stem cells derived from amniotic membranes which were differentiated into neuronal cell types. In vivo studies were carried out with Aβ or a Wnt antagonist, AD201, belonging to the sFRP family. We further created an AD201-knockdown in vitro model to determine the role of Wnt antagonism. BACE1 upregulation, ChAT and α7nAChR downregulation with synapse and functionality loss with increases in ROS confirmed the neurodegeneration. Reduced β-catenin and increased AD201 expression indicated Wnt/canonical pathway inhibition. Similar results were exhibited in the in vivo study along with AD-associated behavioural and molecular changes. AD201-knockdown rescued neurons from Aβ-induced toxicity. We demonstrated for the first time a role of AD201 in Alzheimer's disease manifestation, which indicates a promising disease target and biomarker.
Collapse
|
14
|
Amyloid-β in Alzheimer's disease - front and centre after all? Neuronal Signal 2023; 7:NS20220086. [PMID: 36687366 PMCID: PMC9829960 DOI: 10.1042/ns20220086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
The amyloid hypothesis, which proposes that accumulation of the peptide amyloid-β at synapses is the key driver of Alzheimer's disease (AD) pathogenesis, has been the dominant idea in the field of Alzheimer's research for nearly 30 years. Recently, however, serious doubts about its validity have emerged, largely motivated by disappointing results from anti-amyloid therapeutics in clinical trials. As a result, much of the AD research effort has shifted to understanding the roles of a variety of other entities implicated in pathogenesis, such as microglia, astrocytes, apolipoprotein E and several others. All undoubtedly play an important role, but the nature of this has in many cases remained unclear, partly due to their pleiotropic functions. Here, we propose that all of these AD-related entities share at least one overlapping function, which is the local regulation of amyloid-β levels, and that this may be critical to their role in AD pathogenesis. We also review what is currently known of the actions of amyloid-β at the synapse in health and disease, and consider in particular how it might interact with the key AD-associated protein tau in the disease setting. There is much compelling evidence in support of the amyloid hypothesis; rather than detract from this, the implication of many disparate AD-associated cell types, molecules and processes in the regulation of amyloid-β levels may lend further support.
Collapse
|
15
|
Kiaie N, Gorabi AM, Loveless R, Teng Y, Jamialahmadi T, Sahebkar A. The regenerative potential of glial progenitor cells and reactive astrocytes in CNS injuries. Neurosci Biobehav Rev 2022; 140:104794. [PMID: 35902044 DOI: 10.1016/j.neubiorev.2022.104794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Cell therapeutic approaches focusing on the regeneration of damaged tissue have been a popular topic among researchers in recent years. In particular, self-repair scarring from the central nervous system (CNS) can significantly complicate the treatment of an injured patient. In CNS regeneration schemes, either glial progenitor cells or reactive glial cells have key roles to play. In this review, the contribution and underlying mechanisms of these progenitor/reactive glial cells during CNS regeneration are discussed, as well as their role in CNS-related diseases.
Collapse
Affiliation(s)
- Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Armita Mahdavi Gorabi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Thuraisingham RA. A kinetic scheme to examine the role of glial cells in the pathogenesis of Alzheimer's disease. Metab Brain Dis 2022; 37:801-805. [PMID: 35032278 DOI: 10.1007/s11011-022-00902-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/03/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that leads to severe impairments in cognitive functions including memory and learning. An improved kinetic model is proposed here to understand the pathogenesis of AD in particular the role of glial cells in the presence of amyloid plaques and neurofibrillary tangles (NFTs). The kinetic model describes the production of activated microglia and astroglia. It involves two rate equations and incorporates the dual role of these glial cells which can function as neuroprotective and as neurotoxic cells. Examination of the steady state solutions of the model predicts an increase in population of these glial cells as (AD) progresses, and that this continues to increase linearly even after the amyloid population has reached a plateau.This is in agreement with experimental data. Limiting AD to the effect of amyloid peptides alone is incorrect and the role of neurofibrillary tangles, clearance rate of dead neurons and neuroinflammation from glial cells are vital and must be included in understanding the pathogenesis of AD. The study shows that increasing the clearance of dead neurons and use of any method to deactivate the glial cells will diminish the progression of AD.
Collapse
|
17
|
Zhang Y, Wang X, Yang X, Yang X, Xue J, Yang Y. Ganoderic Acid A To Alleviate Neuroinflammation of Alzheimer's Disease in Mice by Regulating the Imbalance of the Th17/Tregs Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14204-14214. [PMID: 34798773 DOI: 10.1021/acs.jafc.1c06304] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ganoderic acid A (GAA) is a kind of lanostane-type triterpenoid isolated from Ganoderma lucidum. Imbalance of the Th17/Tregs axis exists in the progress of neuroinflammation of Alzheimer's disease (AD). In this study, the alleviating neuroinflammatory effect of GAA on d-galactose mice was studied from the aspect of regulating the imbalance of the Th17/Tregs axis. The Morris water maze test was used to evaluate the cognitive ability of AD mice. Flow cytometry was used to detect the percentages of IL-17A, IL-17F, IL-21, IL-22, and CD4+CD25+Foxp3+ in peripheral blood. Transmission electron microscopy was used to assess the cerebral mitochondrial ultrastructure. Metabolomic analysis based on gas chromatography-mass spectrometry was used to evaluate the mitochondrial dysfunction metabolism. Western blot analysis was used to detect the protein expressions of cytokines secreted by Th17 cells and Treg cells in the brain. As the results show, GAA has an alleviating neuroinflammatory effect on AD mice via regulating the imbalance of the Th17/Tregs axis. The potential mechanism was related to inhibition of the JAK/STAT signaling pathway induced by Th17 cells and enhancement of the mitochondrial oxidative phosphorylation by regulating Treg cells, thereby improving mitochondrial dysfunction of AD mice.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Xinyan Wang
- Graduate School, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Xiaomei Yang
- Nutritional Department, Jilin Medical University Affiliated Hospital, Jilin 132013, P. R. China
| | - Xiudong Yang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Jianfei Xue
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Yanjun Yang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| |
Collapse
|
18
|
Guo L, Ravindran N, Shamsher E, Hill D, Cordeiro MF. Retinal Changes in Transgenic Mouse Models of Alzheimer's Disease. Curr Alzheimer Res 2021; 18:89-102. [PMID: 33855942 DOI: 10.2174/1567205018666210414113634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/09/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, the most common form of dementia. AD is characterised by amyloid-β (Aβ) plaques and neurofibrillary tangles (NFT) in the brain, in association with neuronal loss and synaptic failure, causing cognitive deficits. Accurate and early diagnosis is currently unavailable in lifespan, hampering early intervention of potential new treatments. Visual deficits have been well documented in AD patients, and the pathological changes identified in the brain are also believed to be found in the retina, an integral part of the central nervous system. Retinal changes can be detected by real-time non-invasive imaging, due to the transparent nature of the ocular media, potentially allowing an earlier diagnosis as well as monitoring disease progression and treatment outcome. Animal models are essential for AD research, and this review has a focus on retinal changes in various transgenic AD mouse models with retinal imaging and immunohistochemical analysis as well as therapeutic effects in those models. We also discuss the limitations of transgenic AD models in clinical translations.
Collapse
Affiliation(s)
- Li Guo
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Nivedita Ravindran
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Ehtesham Shamsher
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Daniel Hill
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - M Francesca Cordeiro
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
19
|
Mishra D, Dey CS. PKCα: Prospects in Regulating Insulin Resistance and AD. Trends Endocrinol Metab 2021; 32:341-350. [PMID: 33858742 DOI: 10.1016/j.tem.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Protein kinase C alpha (PKCα) is known to participate in various signaling pathways due to its ubiquitous and dynamic characteristics. Previous studies report that PKCα abrogates peripheral insulin resistance, and recent publications show that it takes part in regulating Alzheimer's disease (AD). Based on evidence in the literature, we have highlighted how many of the substrates of PKCα in its signal transduction cascades are common in AD and diabetes and may have the capability to regulate both diseases simultaneously. Signaling pathways crosslinking these two diseases by PKCα have not been explored. Understanding the complexities of PKCα interactions with common molecules will deepen our understanding of its regulation of relevant pathophysiologies and, in the future, may broaden the possibility of using PKCα as a therapeutic target.
Collapse
Affiliation(s)
- Devanshi Mishra
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India.
| |
Collapse
|
20
|
Alternative Targets to Fight Alzheimer's Disease: Focus on Astrocytes. Biomolecules 2021; 11:biom11040600. [PMID: 33921556 PMCID: PMC8073475 DOI: 10.3390/biom11040600] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
The available treatments for patients affected by Alzheimer’s disease (AD) are not curative. Numerous clinical trials have failed during the past decades. Therefore, scientists need to explore new avenues to tackle this disease. In the present review, we briefly summarize the pathological mechanisms of AD known so far, based on which different therapeutic tools have been designed. Then, we focus on a specific approach that is targeting astrocytes. Indeed, these non-neuronal brain cells respond to any insult, injury, or disease of the brain, including AD. The study of astrocytes is complicated by the fact that they exert a plethora of homeostatic functions, and their disease-induced changes could be context-, time-, and disease specific. However, this complex but fervent area of research has produced a large amount of data targeting different astrocytic functions using pharmacological approaches. Here, we review the most recent literature findings that have been published in the last five years to stimulate new hypotheses and ideas to work on, highlighting the peculiar ability of palmitoylethanolamide to modulate astrocytes according to their morpho-functional state, which ultimately suggests a possible potential disease-modifying therapeutic approach for AD.
Collapse
|
21
|
Laval K, Enquist LW. The Potential Role of Herpes Simplex Virus Type 1 and Neuroinflammation in the Pathogenesis of Alzheimer's Disease. Front Neurol 2021; 12:658695. [PMID: 33889129 PMCID: PMC8055853 DOI: 10.3389/fneur.2021.658695] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease affecting ~50 million people worldwide. To date, there is no cure and current therapies have not been effective in delaying disease progression. Therefore, there is an urgent need for better understanding of the pathogenesis of AD and to rethink possible therapies. Herpes simplex virus type 1 (HSV1) has recently received growing attention for its potential role in sporadic AD. The virus is a ubiquitous human pathogen that infects mucosal epithelia and invades the peripheral nervous system (PNS) of its host to establish a reactivable, latent infection. Upon reactivation, HSV1 spreads back to the epithelium and initiates a new infection, causing epithelial lesions. Occasionally, the virus spreads from the PNS to the brain after reactivation. In this review, we discuss current work on the pathogenesis of AD and summarize research results that support a potential role for HSV1 in the infectious hypothesis of AD. We also highlight recent findings on the neuroinflammatory response, which has been proposed to be the main driving force of AD, starting early in the course of the disease. Relevant rodent models to study neuroinflammation in AD and novel therapeutic approaches are also discussed. Throughout this review, we focus on several aspects of HSV1 pathogenesis, including its primary role as an invader of the PNS, that should be considered in the etiology of AD. We also point out some of the contradictory data and remaining knowledge gaps that require further research to finally fully understand the cause of AD in humans.
Collapse
Affiliation(s)
- Kathlyn Laval
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | | |
Collapse
|
22
|
Luo Y, Sun Y, Tian X, Zheng X, Wang X, Li W, Wu X, Shu B, Hou W. Deep Brain Stimulation for Alzheimer's Disease: Stimulation Parameters and Potential Mechanisms of Action. Front Aging Neurosci 2021; 13:619543. [PMID: 33776742 PMCID: PMC7990787 DOI: 10.3389/fnagi.2021.619543] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Deep brain stimulation (DBS) is a neurosurgical technique that regulates neuron activity by using internal pulse generators to electrodes in specific target areas of the brain. As a blind treatment, DBS is widely used in the field of mental and neurological diseases, although its mechanism of action is still unclear. In the past 10 years, DBS has shown a certain positive effect in animal models and patients with Alzheimer's disease (AD), but there are also different results that may be related to the stimulation parameters of DBS. Based on this, determining the optimal stimulation parameters for DBS in AD and understanding its mechanism of action are essential to promote the clinical application of DBS in AD. This review aims to explore the therapeutic effect of DBS in AD, and to analyze its stimulation parameters and potential mechanism of action. The keywords "Deep brain stimulation" and "Alzheimer's Disease" were used for systematic searches in the literature databases of Web of Science and PubMed (from 1900 to September 29, 2020). All human clinical studies and animal studies were reported in English, including individual case studies and long-term follow-up studies, were included. These studies described the therapeutic effects of DBS in AD. The results included 16 human clinical studies and 14 animal studies, of which 28 studies clearly demonstrated the positive effect of DBS in AD. We analyzed the current stimulation parameters of DBS in AD from stimulation target, stimulation frequency, stimulation start time, stimulation duration, unilateral/bilateral treatment and current intensity, etc., and we also discussed its potential mechanism of action from multiple aspects, including regulating related neural networks, promoting nerve oscillation, reducing β-amyloid and tau levels, reducing neuroinflammation, regulating the cholinergic system, inducing the synthesis of nerve growth factor.
Collapse
Affiliation(s)
- Yinpei Luo
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Yuwei Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Xuelong Tian
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Weina Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoying Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Bin Shu
- Department of Rehabilitation Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wensheng Hou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| |
Collapse
|
23
|
Advances in 3D neuronal microphysiological systems: towards a functional nervous system on a chip. In Vitro Cell Dev Biol Anim 2021; 57:191-206. [PMID: 33438114 PMCID: PMC7802613 DOI: 10.1007/s11626-020-00532-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
Microphysiological systems (MPS) designed to study the complexities of the peripheral and central nervous systems have made marked improvements over the years and have allowed researchers to assess in two and three dimensions the functional interconnectivity of neuronal tissues. The recent generation of brain organoids has further propelled the field into the nascent recapitulation of structural, functional, and effective connectivities which are found within the native human nervous system. Herein, we will review advances in culture methodologies, focused especially on those of human tissues, which seek to bridge the gap from 2D cultures to hierarchical and defined 3D MPS with the end goal of developing a robust nervous system-on-a-chip platform. These advances have far-reaching implications within basic science, pharmaceutical development, and translational medicine disciplines.
Collapse
|
24
|
Cheng YY, Ding YX, Bian GL, Chen LW, Yao XY, Lin YB, Wang Z, Chen BY. Reactive Astrocytes Display Pro-inflammatory Adaptability with Modulation of Notch-PI3K-AKT Signaling Pathway Under Inflammatory Stimulation. Neuroscience 2020; 440:130-145. [PMID: 32450294 DOI: 10.1016/j.neuroscience.2020.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/25/2023]
Abstract
Astrocytes are major glial cells critical in assisting the function of the central nervous system (CNS), but the functional changes and regulation mechanism of reactive astrocytes are still poorly understood in CNS diseases. In this study, mouse primary astrocytes were cultured, and inflammatory insult was performed to observe functional changes in astrocytes and the involvement of Notch-PI3K-AKT signaling activation through immunofluorescence, PCR, Western blot, CCK-8, and inhibition experiments. Notch downstream signal Hes-1 was clearly observed in the astrocytes, and Notch signal inhibitor GSI dose-dependently decreased the cleaved Notch-l level without an influence on cell viability. Inflammatory insult of lipopolysaccharide plus interferon-γ (LPS+IFNγ) induced an increase in pro-inflammatory cytokines, that is, iNOS, IL-1β, IL-6, and TNF, at the protein and mRNA levels in activated astrocytes, which was reduced or blocked by GSI treatment. The cell viability of the astrocytes did not show significant differences among different groups. While an increase in MyD88, NF-кB, and phosphor-NF-кB was confirmed, upregulation of PI3K, AKT, and phosphor-AKT was observed in the activated astrocytes with LPS+IFNγ insult and was reduced by GSI treatment. Inhibitor experiments showed that inhibition of Notch-PI3K-AKT signaling activation reduced the pro-inflammatory cytokine production triggered by LPS+IFNγ inflammatory insult. This study showed that the reactive astrocytes displayed pro-inflammatory adaptability through Notch-PI3K-AKT signaling activation in response to inflammatory stimulation, suggesting that the Notch-PI3K-AKT pathway in reactive astrocytes may serve as a promising target against CNS inflammatory disorders.
Collapse
Affiliation(s)
- Ying-Ying Cheng
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China; Department of Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yin-Xiu Ding
- Department of Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan 750004, PR China
| | - Gan-Lan Bian
- Institute of Neurosciences, Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Liang-Wei Chen
- Institute of Neurosciences, Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, PR China; Department of Histology and Embryology, School of Medicine, College of Life Science, Northwest University, Xi'an 710069, PR China.
| | - Xin-Yi Yao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China; Institute of Neurosciences, Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Ye-Bin Lin
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China; Institute of Neurosciences, Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Bei-Yu Chen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
25
|
Bulgart HR, Neczypor EW, Wold LE, Mackos AR. Microbial involvement in Alzheimer disease development and progression. Mol Neurodegener 2020; 15:42. [PMID: 32709243 PMCID: PMC7382139 DOI: 10.1186/s13024-020-00378-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
Alzheimer disease (AD) is the most prominent form of dementia and the 5th leading cause of death in individuals over 65. AD is a complex disease stemming from genetic, environmental, and lifestyle factors. It is known that AD patients have increased levels of senile plaques, neurofibrillary tangles, and neuroinflammation; however, the mechanism(s) by which the plaques, tangles, and neuroinflammation manifest remain elusive. A recent hypothesis has emerged that resident bacterial populations contribute to the development and progression of AD by contributing to neuroinflammation, senile plaque formation, and potentially neurofibrillary tangle accumulation (Fig. 1). This review will highlight recent studies involved in elucidating microbial involvement in AD development and progression.
Collapse
Affiliation(s)
- Hannah R. Bulgart
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Evan W. Neczypor
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
- College of Nursing, The Ohio State University, 1585 Neil Ave, Columbus, OH 43210 USA
| | - Loren E. Wold
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
- College of Nursing, The Ohio State University, 1585 Neil Ave, Columbus, OH 43210 USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH USA
| | - Amy R. Mackos
- College of Nursing, The Ohio State University, 1585 Neil Ave, Columbus, OH 43210 USA
| |
Collapse
|
26
|
Subchronic administration of auranofin reduced amyloid-β plaque pathology in a transgenic APP NL-G-F/NL-G-F mouse model. Brain Res 2020; 1746:147022. [PMID: 32707043 DOI: 10.1016/j.brainres.2020.147022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 01/26/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Neuropathological processes, including the accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles, and neuroinflammation, lead to cognitive impairment at middle and eventually later stages of AD progression. Over the last decade, focused efforts have explored repurposed drug approaches for AD pathophysiological mechanisms. Recently, auranofin, an anti-inflammatory drug, was shown to have therapeutic potential in a number of diseases in addition to rheumatoid arthritis. Surprisingly, no data regarding the effects of auranofin on cognitive deficits in AD mice or the influence of auranofin on Aβ pathology and neuroinflammatory processes are available. In the present study, we used 14-month-old transgenic male APPNL-G-F/NL-G-F mice to assess the effects of subchronic administration of auranofin at low doses (1 and 5 mg/kg, intraperitoneal) on spatial memory, Aβ pathology and the expression of cortical and hippocampal proteins (glial fibrillary acidic protein (GFAP), ionized calcium binding adaptor molecule-1 (Iba-1)) and proteins related to synaptic plasticity (glutamic acid decarboxylase 67 (GAD67), homer proteins homologue-1 (Homer-1)). The data demonstrated that auranofin significantly decreased Aβ deposition in the hippocampus and the number of Aβ plaques in the cingulate cortex, but it did not have memory-enhancing effects or induce changes in the expression of the studied proteins. Our current results highlight the importance of considering further pre-clinical research to investigate the possible beneficial effects of auranofin on the other pathological aspects of AD.
Collapse
|
27
|
Ibrahim AM, Pottoo FH, Dahiya ES, Khan FA, Kumar JBS. Neuron‐glia interactions: Molecular basis of alzheimer’s disease and applications of neuroproteomics. Eur J Neurosci 2020; 52:2931-2943. [DOI: 10.1111/ejn.14838] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Abdallah Mohammad Ibrahim
- Fundamentals of Nursing Department College of Nursing Imam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| | - Faheem Hyder Pottoo
- Department of Pharmacology College of Clinical Pharmacy Imam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| | - Ekta Singh Dahiya
- National Institute of Stroke and Applied Neurosciences (NISAN) Auckland University of Technology Auckland New‐Zealand
| | - Firdos Alam Khan
- Department of Stem Cell Research Institute for Research and Medical Consultations Imam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| | - J. B. Senthil Kumar
- Special centre for Molecular Medicine Jawaharlal Nehru University New‐Delhi India
| |
Collapse
|
28
|
Predictive Potential of Circulating Ube2h mRNA as an E2 Ubiquitin-Conjugating Enzyme for Diagnosis or Treatment of Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21093398. [PMID: 32403399 PMCID: PMC7246987 DOI: 10.3390/ijms21093398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative disorders are caused by neuronal cell death, miscommunications between synapse, and abnormal accumulations of proteins in the brain. Alzheimer’s disease (AD) is one of the age-related disorders, which are the most common degenerative disorders today, and strongly affects memory consolidation and cognitive function in the brain. Amyloid-β and tau proteins are triggers for AD pathogenesis, and usually used as AD candidate biomarkers in the clinical research. Especially, clinical exam, brain imaging and molecular biological methods are being used to diagnosis for AD. Genome-wide association study (GWAS) is a new biomedical method, and its use contributes to understanding many human diseases, including brain diseases. Here, we identified ubiquitin conjugating enzyme E2 (Ube2) gene expression in neurons through GWAS. The subfamilies of Ube2’s genetic expression and inborn errors affect the ubiquitin proteasome system (UPS), leading to protein degradation in the brain. We found that only Ube2h mRNA transcription was significantly increased in the blood from AD, however we did not find any change of Ube2 subfamily genes’ expression in the blood and brain tissue. These data may provide information for diagnosis or clinical approach, and suggest that cell-free circulating Ube2h mRNA is a novel potential biomarker for AD.
Collapse
|
29
|
Mapstone M, Gross TJ, Macciardi F, Cheema AK, Petersen M, Head E, Handen BL, Klunk WE, Christian BT, Silverman W, Lott IT, Schupf N. Metabolic correlates of prevalent mild cognitive impairment and Alzheimer's disease in adults with Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12028. [PMID: 32258359 PMCID: PMC7131985 DOI: 10.1002/dad2.12028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Disruption of metabolic function is a recognized feature of late onset Alzheimer's disease (LOAD). We sought to determine whether similar metabolic pathways are implicated in adults with Down syndrome (DS) who have increased risk for Alzheimer's disease (AD). METHODS We examined peripheral blood from 292 participants with DS who completed baseline assessments in the Alzheimer's Biomarkers Consortium-Down Syndrome (ABC-DS) using untargeted mass spectrometry (MS). Our sample included 38 individuals who met consensus criteria for AD (DS-AD), 43 who met criteria for mild cognitive impairment (DS-MCI), and 211 who were cognitively unaffected and stable (CS). RESULTS We measured relative abundance of 8,805 features using MS and 180 putative metabolites were differentially expressed (DE) among the groups at false discovery rate-corrected q< 0.05. From the DE features, a nine-feature classifier model classified the CS and DS-AD groups with receiver operating characteristic area under the curve (ROC AUC) of 0.86 and a two-feature model classified the DS-MCI and DS-AD groups with ROC AUC of 0.88. Metabolite set enrichment analysis across the three groups suggested alterations in fatty acid and carbohydrate metabolism. DISCUSSION Our results reveal metabolic alterations in DS-AD that are similar to those seen in LOAD. The pattern of results in this cross-sectional DS cohort suggests a dynamic time course of metabolic dysregulation which evolves with clinical progression from non-demented, to MCI, to AD. Metabolomic markers may be useful for staging progression of DS-AD.
Collapse
Affiliation(s)
- Mark Mapstone
- Department of NeurologyUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Thomas J Gross
- Department of NeurologyUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Fabio Macciardi
- Department of Psychiatry and Human BehaviorUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Amrita K Cheema
- Departments of Biochemistry and Molecular & Cellular BiologyGeorgetown University Medical CenterWashingtonDCUSA
| | - Melissa Petersen
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Elizabeth Head
- Department of Pathology and Laboratory MedicineUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Benjamin L Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - William E Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Bradley T Christian
- Departments of Medical Physics and PsychiatryWaisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Wayne Silverman
- Department of PediatricsUniversity of California‐ IrvineIrvineCaliforniaUSA
| | - Ira T Lott
- Department of PediatricsUniversity of California‐ IrvineIrvineCaliforniaUSA
| | - Nicole Schupf
- Taub Institute for Research in Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Department of NeurologyColumbia University and the New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of EpidemiologyJoseph P. Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
- Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | | |
Collapse
|
30
|
Vignoli A, Paciotti S, Tenori L, Eusebi P, Biscetti L, Chiasserini D, Scheltens P, Turano P, Teunissen C, Luchinat C, Parnetti L. Fingerprinting Alzheimer's Disease by 1H Nuclear Magnetic Resonance Spectroscopy of Cerebrospinal Fluid. J Proteome Res 2020; 19:1696-1705. [PMID: 32118444 DOI: 10.1021/acs.jproteome.9b00850] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, we sought for a cerebrospinal fluid (CSF) metabolomic fingerprint in Alzheimer's disease (AD) patients characterized, according to the clinical picture and CSF AD core biomarkers (Aβ42, p-tau, and t-tau), both at pre-dementia (mild cognitive impairment due to AD, MCI-AD) and dementia stages (ADdem) and in a group of patients with a normal CSF biomarker profile (non-AD) using untargeted 1H nuclear magnetic resonance (NMR) spectroscopy-based metabolomics. This is a retrospective study based on two independent cohorts: a Dutch cohort, which comprises 20 ADdem, 20 MCI-AD, and 20 non-AD patients, and an Italian cohort, constituted by 14 ADdem and 12 non-AD patients. 1H NMR CSF spectra were analyzed using OPLS-DA. Metabolomic fingerprinting in the Dutch cohort provides a significant discrimination (86.1% accuracy) between ADdem and non-AD. MCI-AD patients show a good discrimination with respect to ADdem (70.0% accuracy) but only slight differences when compared with non-AD (59.6% accuracy). Acetate, valine, and 3-hydroxyisovalerate result to be altered in ADdem patients. Valine correlates with cognitive decline at follow-up (R = 0.53, P = 0.0011). The discrimination between ADdem and non-AD was confirmed in the Italian cohort. The CSF metabolomic fingerprinting shows a signature characteristic of ADdem patients with respect to MCI-AD and non-AD patients.
Collapse
Affiliation(s)
- Alessia Vignoli
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Sesto Fiorentino 50019, Italy
| | - Silvia Paciotti
- Laboratory of Clinical Neurochemistry, Department of Medicine, Section of Neurology, University of Perugia, Perugia 06123, Italy.,Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia 06123, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Sesto Fiorentino 50019, Italy
| | - Paolo Eusebi
- Laboratory of Clinical Neurochemistry, Department of Medicine, Section of Neurology, University of Perugia, Perugia 06123, Italy
| | - Leonardo Biscetti
- Laboratory of Clinical Neurochemistry, Department of Medicine, Section of Neurology, University of Perugia, Perugia 06123, Italy
| | - Davide Chiasserini
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Perugia 06123, Italy
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Paola Turano
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino 50019, Italy
| | - Charlotte Teunissen
- Department of Clinical Chemistry, Neurochemistry Lab and Biobank, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Sesto Fiorentino 50019, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino 50019, Italy
| | - Lucilla Parnetti
- Laboratory of Clinical Neurochemistry, Department of Medicine, Section of Neurology, University of Perugia, Perugia 06123, Italy
| |
Collapse
|
31
|
Hashemiaghdam A, Mroczek M. Microglia heterogeneity and neurodegeneration: The emerging paradigm of the role of immunity in Alzheimer's disease. J Neuroimmunol 2020; 341:577185. [PMID: 32045774 DOI: 10.1016/j.jneuroim.2020.577185] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia type affecting nearly 44 million people worldwide. Recent findings point to microglia as a significant contributor to neural development, neuroinflammation, and degeneration. Dysregulated immunoactivity in AD has been broadly studied, and current research on animal models enabled us to identify a new cluster of microglia (disease-associated microglia) alongside previously detected glial populations (e.g., plaque-associated microglia, dark microglia, Human Alzheimer's microglia) associated with neuroinflammation and with macrophagic activity. These distinct populations of glia show a spatial distribution within plaques with unique imaging features and distinct gene expression profile. Novel genetic approaches using single-nuclei RNA sequencing (sn-RNA seq) allowed researchers to identify gene expression profiles from fixed human samples. Recent studies, exposing transcriptomic clusters of disease-related cells and analyzing sequenced RNA from sorted myeloid cells, seem to confirm the hypothesis of the central role of glia in the pathogenesis of Alzheimer's disease. These discoveries may shed light on the effects of microglial activation and differences in gene expression profiles, furthering research towards the development of a cell-specific therapy. In this review, we examine recent studies that guide us towards recognizing the role of diverse populations of glial cells and their possible heterogeneous functional states in the pathogenesis of AD in humans.
Collapse
Affiliation(s)
| | - Magdalena Mroczek
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
32
|
Fossel M. A unified model of dementias and age-related neurodegeneration. Alzheimers Dement 2020; 16:365-383. [PMID: 31943780 DOI: 10.1002/alz.12012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/09/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
33
|
Webers A, Heneka MT, Gleeson PA. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer's disease. Immunol Cell Biol 2019; 98:28-41. [PMID: 31654430 DOI: 10.1111/imcb.12301] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/20/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is characterized by amyloid beta (Aβ) accumulation, tau pathology and neuroinflammation. Recently, there has been considerable interest in the role of neuroinflammation in directly contributing to the progression of AD. Studies in mice and humans have identified a role for microglial cells, the resident innate immune cells of the central nervous system, in AD. Activated microglia are a key hallmark of the disease and the secretion of proinflammatory cytokines by microglia may result in a positive feedback loop between neurons and microglia, resulting in ongoing low-grade inflammation. Traditionally, the pathways of Aβ production and neuroinflammation have been considered independently; however, recent studies suggest that these processes may converge to promote the pathology associated with AD. Here we review the importance of inflammation and microglia in AD development and effects of inflammatory responses on cellular pathways of neurons, including Aβ generation.
Collapse
Affiliation(s)
- Alessandra Webers
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.,Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Paul A Gleeson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
34
|
Wells C, Brennan SE, Keon M, Saksena NK. Prionoid Proteins in the Pathogenesis of Neurodegenerative Diseases. Front Mol Neurosci 2019; 12:271. [PMID: 31780895 PMCID: PMC6861308 DOI: 10.3389/fnmol.2019.00271] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
There is a growing body of evidence that prionoid protein behaviors are a core element of neurodegenerative diseases (NDs) that afflict humans. Common elements in pathogenesis, pathological effects and protein-level behaviors exist between Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). These extend beyond the affected neurons to glial cells and processes. This results in a complicated system of disease progression, which often takes advantage of protective processes to promote the propagation of pathological protein aggregates. This review article provides a current snapshot of knowledge on these proteins and their intrinsic role in the pathogenesis and disease progression seen across NDs.
Collapse
|