1
|
Cardillo L, de Martinis C, Sgroi G, Pucciarelli A, Picazio G, Viscardi M, Marati L, Ottaiano M, Pellicanò R, D’Alessio N, Veneziano V, Fusco G. Evaluation of Risk Factors Influencing Tick-Borne Infections in Livestock Through Molecular Analyses. Microorganisms 2025; 13:139. [PMID: 39858907 PMCID: PMC11767430 DOI: 10.3390/microorganisms13010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Climate changes and human-related activities are identified as major factors responsible for the increasing distribution and abundance of vectors worldwide and, consequently, of vector-borne diseases (VBDs). Farmed animals, during grazing or in establishments with the absence of biosecurity measures, can easily be exposed to wildlife showing high-risk of contagion of several infectious diseases, including VBDs. Furthermore, livestock represents an interface between wildlife and humans, and thus, promoting the transmission pathway of VBDs. Little is known about the presence and prevalence of VBDs in livestock in Southern Italy; therefore, the present study evaluated the circulation of zoonotic VBDs in livestock and potential risk of exposure. A total of 621 whole blood samples belonging to cattle and buffaloes (n = 345) and small ruminants (n = 276) were examined by molecular examinations for the detection of tick-borne pathogens (TBPs). High prevalence (66.3%) for at least one agent was observed. Moreover, the risk of exposure related to environmental features was assessed, as follows: presence of humid areas, high-density of animals, and sample collection during May. These results show a high circulation of TBPs among livestock and underline the need for surveillance in high-risk habitats for public health.
Collapse
Affiliation(s)
- Lorena Cardillo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Animal Health, 80055 Portici, Italy; (L.C.); (G.S.); (A.P.); (G.P.); (M.V.); (L.M.); (N.D.); (G.F.)
| | - Claudio de Martinis
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Animal Health, 80055 Portici, Italy; (L.C.); (G.S.); (A.P.); (G.P.); (M.V.); (L.M.); (N.D.); (G.F.)
| | - Giovanni Sgroi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Animal Health, 80055 Portici, Italy; (L.C.); (G.S.); (A.P.); (G.P.); (M.V.); (L.M.); (N.D.); (G.F.)
| | - Alessia Pucciarelli
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Animal Health, 80055 Portici, Italy; (L.C.); (G.S.); (A.P.); (G.P.); (M.V.); (L.M.); (N.D.); (G.F.)
| | - Gerardo Picazio
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Animal Health, 80055 Portici, Italy; (L.C.); (G.S.); (A.P.); (G.P.); (M.V.); (L.M.); (N.D.); (G.F.)
| | - Maurizio Viscardi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Animal Health, 80055 Portici, Italy; (L.C.); (G.S.); (A.P.); (G.P.); (M.V.); (L.M.); (N.D.); (G.F.)
| | - Luisa Marati
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Animal Health, 80055 Portici, Italy; (L.C.); (G.S.); (A.P.); (G.P.); (M.V.); (L.M.); (N.D.); (G.F.)
| | - Maria Ottaiano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Epidemiology and Biostatistics Regional Observatory (OREB), 80055 Naples, Italy; (M.O.); (R.P.)
| | - Roberta Pellicanò
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Epidemiology and Biostatistics Regional Observatory (OREB), 80055 Naples, Italy; (M.O.); (R.P.)
| | - Nicola D’Alessio
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Animal Health, 80055 Portici, Italy; (L.C.); (G.S.); (A.P.); (G.P.); (M.V.); (L.M.); (N.D.); (G.F.)
| | - Vincenzo Veneziano
- Department of Veterinary Medicine and Animal Productions, Università degli Studi di Napoli Federico II, 80138 Naples, Italy;
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Department of Animal Health, 80055 Portici, Italy; (L.C.); (G.S.); (A.P.); (G.P.); (M.V.); (L.M.); (N.D.); (G.F.)
| |
Collapse
|
2
|
Ansah-Owusu J, Addo SO, Tawiah-Mensah CNL, Obuam PK, Malm ROT, Yartey KN, Yanney JN, Torto FA, Accorlor SK, Dadzie SK. Tick-borne pathogens of zoonotic and veterinary importance in cattle ticks in Ghana. Parasitol Res 2023; 123:44. [PMID: 38095712 DOI: 10.1007/s00436-023-08071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023]
Abstract
Ticks are important vectors involved in the transmission of pathogens of zoonotic and veterinary importance. In this study, ticks were collected from cattle in Navrongo, Kintampo, and Kumasi and screened for pathogen DNA using PCR and Sanger sequencing. A total of 454 ticks were collected, morphologically identified and confirmed using primers that target the 660-bp segment of the mitochondrial COI gene. The predominant tick species was Amblyomma variegatum (70.26%). DNA was extracted from 85 tick pools and screened for the presence of Rickettsia DNA based on the 639 bp of the outer membrane protein A (ompA) gene, Ehrlichia/Anaplasma DNA based on the 345 bp fragment of the 16SrRNA gene and Babesia/ Theileria DNA based on the 560 bp fragment of the ssrRNA gene. From the 85 tick pools, the DNA of pathogens detected were Rickettsia africae (36.47%), Rickettsia aeschlimannii (16.47%), Ehrlichia canis (2.35%), Babesia occultans (1.18%), Theileria velifera (1.18%) and a symbiont Candidatus Midichloria mitochondrii (8.24%). This study reports the first molecular detection of Candidatus Cryptoplasma californiense (1.18%) in Ghana. Coinfections were recorded in 8.24% of the tick pools. The findings of this study highlight the importance of tick species in Ghana and the need to adopt effective control measures to prevent pathogen spread.
Collapse
Affiliation(s)
- Jane Ansah-Owusu
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Seth Offei Addo
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.
| | | | - Patrick Kwasi Obuam
- Kwame Nkrumah University of Science and Technology, School of Public Health, Kumasi, Ghana
| | - Richard Odoi-Teye Malm
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Kevin Nii Yartey
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Jennifer Nyamekye Yanney
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Francisca Adai Torto
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Stephen Kwabena Accorlor
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Samuel K Dadzie
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
3
|
Sgroi G, Iatta R, Lovreglio P, Stufano A, Laidoudi Y, Mendoza-Roldan JA, Bezerra-Santos MA, Veneziano V, Di Gennaro F, Saracino A, Chironna M, Bandi C, Otranto D. Detection of Endosymbiont Candidatus Midichloria mitochondrii and Tickborne Pathogens in Humans Exposed to Tick Bites, Italy. Emerg Infect Dis 2022; 28:1824-1832. [PMID: 35997363 PMCID: PMC9423927 DOI: 10.3201/eid2809.220329] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
During 2021, we collected blood and serum samples from 135 persons exposed to tick bites in southern Italy. We serologically and molecularly screened for zoonotic tickborne pathogens and only molecularly screened for Candidatus Midichloria mitochondrii. Overall, 62 (45.9%) persons tested positive for tickborne pathogens. Coxiella burnetii was detected most frequently (27.4%), along with Rickettsia spp. (21.5%) and Borrelia spp. (10.4%). We detected Candidatus M. mitochondrii DNA in 46 (34.1%) participants who had statistically significant associations to tickborne pathogens (p<0.0001). Phylogenetic analysis of Candidatus M. mitochondrii sequences revealed 5 clades and 8 human sequence types that correlated with vertebrates, Ixodes spp. ticks, and countries in Europe. These data demonstrated a high circulation of tickborne pathogens and Candidatus M. mitochondrii DNA in persons participating in outdoor activities in southern Italy. Our study shows how coordinated surveillance among patients, clinicians, and veterinarians could inform a One Health approach for monitoring and controlling the circulation of tickborne pathogens.
Collapse
|
4
|
Sgroi G, Iatta R, Lia RP, Napoli E, Buono F, Bezerra-Santos MA, Veneziano V, Otranto D. Tick exposure and risk of tick-borne pathogens infection in hunters and hunting dogs: a citizen science approach. Transbound Emerg Dis 2021; 69:e386-e393. [PMID: 34487635 PMCID: PMC9546254 DOI: 10.1111/tbed.14314] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/29/2022]
Abstract
Citizen science may be described as a research involving communities and individuals, other than scientists. Following this approach, along with the evidence of a high prevalence of Rickettsia spp. in Dermacentor marginatus from wild boars in hunting areas of southern Italy, this study aimed to assess the occurrence of tick‐borne pathogens (TBPs) in ticks collected from hunters and their hunting dogs. From October 2020 to May 2021, ticks were collected from wild boar hunters (n = 347) and their dogs (n = 422) in regions of southern Italy (i.e., Apulia, Basilicata, Calabria, Campania and Sicily). All ticks were morphologically identified, classified according to gender, feeding status, host, geographic origin, and molecularly screened for zoonotic bacteria. Adult ticks (n = 411) were collected from hunters (i.e., n = 29; 8.4%; mean of 1.6 ticks for person) and dogs (i.e., n = 200; 47.4%; mean of 1.8 ticks for animal) and identified at species level as D. marginatus (n = 240, 58.4%), Rhipicephalus sanguineus sensu lato (n = 135, 32.8%), Rhipicephalus turanicus (n = 27, 6.6%) and Ixodes ricinus (n = 9, 2.2%). Overall, 45 ticks (i.e., 10.9%, 95% CI: 8.3‐14.3) tested positive for at least one tick‐borne agent, being Rickettsia slovaca the most frequent species (n = 37, 9.0%), followed by Rickettsia raoultii, Rickettsia aeschlimannii, Rickettsia monacensis, Coxiella burnetii, Borrelia lusitaniae and Candidatus Midichloria mitochondrii (n = 2, 0.5% each). Data herein presented demonstrate a relevant risk of exposure to TBPs for hunters and hunting dogs during the hunting activities. Therefore, the role of hunters to monitor the circulation of ticks in rural areas may be considered an effective example of the citizen science approach, supporting the cooperation toward private and public health stakeholders.
Collapse
Affiliation(s)
- Giovanni Sgroi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Apulia, Italy
| | - Roberta Iatta
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Apulia, Italy
| | - Riccardo Paolo Lia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Apulia, Italy
| | - Ettore Napoli
- Department of Veterinary Sciences, University of Messina, Messina, Sicily, Italy
| | - Francesco Buono
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | | | - Vincenzo Veneziano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Osservatorio Faunistico Venatorio-Campania region, Naples, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Apulia, Italy.,Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
5
|
Stavru F, Riemer J, Jex A, Sassera D. When bacteria meet mitochondria: The strange case of the tick symbiont Midichloria mitochondrii †. Cell Microbiol 2021; 22:e13189. [PMID: 32185904 DOI: 10.1111/cmi.13189] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/28/2022]
Abstract
Mitochondria are key eukaryotic organelles that perform several essential functions. Not surprisingly, many intracellular bacteria directly or indirectly target mitochondria, interfering with innate immunity, energy production or apoptosis, to make the host cell a more hospitable niche for bacterial replication. The alphaproteobacterium Midichloria mitochondrii has taken mitochondrial targeting to another level by physically colonising mitochondria, as shown by transmission electron micrographs of bacteria residing in the mitochondrial intermembrane space. This unique localization provokes a number of questions around the mechanisms allowing, and reasons driving intramitochondrial tropism. We suggest possible scenarios that could lead to this peculiar localization and hypothesize potential costs and benefits of mitochondrial colonisation for the bacterium and its host.
Collapse
Affiliation(s)
- Fabrizia Stavru
- Unité de Biologie Evolutive de la Cellule Microbienne, Institut Pasteur, Paris, France.,CNRS ERL6002, Paris, France
| | - Jan Riemer
- Department for Chemistry, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Aaron Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Arrais RC, Paula RC, Martins TF, Nieri-Bastos FA, Marcili A, Labruna MB. Survey of ticks and tick-borne agents in maned wolves (Chrysocyon brachyurus) from a natural landscape in Brazil. Ticks Tick Borne Dis 2020; 12:101639. [PMID: 33360385 DOI: 10.1016/j.ttbdis.2020.101639] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/31/2020] [Accepted: 12/07/2020] [Indexed: 11/25/2022]
Abstract
This study evaluated ticks and tick-borne agents in 104 captures of the maned wolf Chrysocyon brachyurus (50 different individuals and 54 recaptures) in the Serra da Canastra National Park (SCNP), a Cerrado preserved area in southeastern Brazil, from 2005 to 2012. From the 104 capture events, a total of 1,206 ticks were collected on 94 occasions (90.4 %), and identified into five species: Amblyomma tigrinum (77.3 % of all collected ticks), Amblyomma sculptum (16.6 %), Amblyomma ovale (0.1 %), Amblyomma brasiliense (0.1 %), Rhipicephalus microplus (0.1 %), and Amblyomma spp. larvae (5.8 %). Molecular analyses of A. tigrinum adult ticks revealed the presence of 'Candidatus Rickettsia andeanae', Rickettsia parkeri sensu stricto, two different haplotypes of 'Ca. Midichloria sp.', and a Hepatozoon canis haplotype. Molecular analyses of maned wolf blood samples revealed two distinct haplotypes of Hepatozoon spp., one identical to the H. canis genotype that was detected in the A. tigrinum ticks, and a Hepatozoon americanum-like haplotype. None tick or blood samples yielded amplicons through PCR assays targeting the genera Ehrlichia, Anaplasma, Babesia, Rangelia, Cytauxzoon, and Theileria. Maned wolf serum samples were tested by immunofluorescence assay against antigens of five Rickettsia species (R. parkeri, R. rickettsii, R. amblyommatis, R. rhipicephali, and R. bellii) and Ehrlichia canis. Among 78 serum samples (45 captures plus 33 recaptures), 74 (95 %) were reactive to at least one Rickettsia species, with R. parkeri eliciting the highest endpoint titers. Some maned wolves that were recaptured during the study were shown to seroconvert to R. parkeri. Serum-reactiveness to E. canis was detected in 36 % (16/45) maned wolves. During the study, general clinical signs of tick-borne diseases were not found in any of the captured animals, indicating that they were under a good health status in the SCNP, despite of been exposed to ticks (mostly A. tigrinum) and some tick-borne agents (Rickettsia, Hepatozoon, Ehrlichia). The results of the present study might represent baseline data for the conservation of the maned wolf in its natural habitat, which should be used to interpret further studies about ticks and tick-borne diseases in maned wolves within human-modified landscapes.
Collapse
Affiliation(s)
- Ricardo C Arrais
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rogério C Paula
- Centro Nacional de Pesquisa e Conservação de Mamíferos Carnívoros, Instituto Chico Mendes de Conservação da Biodiversidade, Ministério do Meio Ambiente, Atibaia, SP, Brazil
| | - Thiago F Martins
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil; Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, Secretaria de Estado da Saúde de São Paulo, São Paulo, SP, Brazil
| | - Fernanda A Nieri-Bastos
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Arlei Marcili
- Programa de Pós-graduação em Medicina e Bem-Estar Animal e Saúde Única, Universidade Santo Amaro, R. Prof. Enéas de Siqueira Neto, 340 - Jardim das Imbuias, São Paulo, SP, 04829-300, Brazil
| | - Marcelo B Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Khoo JJ, Husin NA, Lim FS, Oslan SNH, Mohd Azami SNI, To SW, Abd Majid MA, Lee HY, Loong SK, Khor CS, AbuBakar S. Molecular detection of pathogens from ectoparasites recovered from peri-domestic animals, and the first description of a Candidatus Midichloria sp. from Haemaphysalis wellingtoni from rural communities in Malaysia. Parasitol Int 2020; 80:102202. [PMID: 33038482 DOI: 10.1016/j.parint.2020.102202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022]
Abstract
Rural communities in Malaysia have been shown to be exposed to Coxiella, Borrelia and rickettsial infections in previous seroprevalence studies. Further research is necessary to identify the actual causative agents and the potential vectors of these infections. The arthropods parasitizing peri-domestic animals in these communities may serve as the vector in transmitting arthropod-borne and zoonotic agents to the humans. Molecular screening of bacterial and zoonotic pathogens from ticks and fleas collected from dogs, cats and chickens from six rural communities in Malaysia was undertaken. These communities were made up of mainly the indigenous people of Malaysia, known as the Orang Asli, as well as settlers in oil palm plantations. The presence of Coxiella burnetii, Borrelia, and rickettsial agents, including Rickettsia and Anaplasma, was investigated by performing polymerase chain reaction (PCR) and DNA sequencing. Candidatus Rickettsia senegalensis was detected in one out of eight pools of Ctenocephalides felis fleas. A relapsing fever group Borrelia sp. was identified from one of seven Haemaphysalis hystricis ticks tested. The results from the PCR screening for Anaplasma unexpectedly revealed the presence of Candidatus Midichloria sp., a potential tick endosymbiont, in two out of fourteen Haemaphysalis wellingtoni ticks tested. C. burnetii was not detected in any of the samples tested. The findings here provide evidence for the presence of potentially novel strains of rickettsial and borrelial agents in which their impact on public health risks among the rural communities in Malaysia merit further investigation. The detection of a potential endosymbiont of ticks also suggest that the presence of tick endosymbionts in the region is not fully explored.
Collapse
Affiliation(s)
- Jing Jing Khoo
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Nurul Aini Husin
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fang Shiang Lim
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siti Nur Hazwani Oslan
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| | - Siti Nurul Izzah Mohd Azami
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Soon Wei To
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603 Kuala Lumpur, Malaysia; Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohamad Azlan Abd Majid
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hai Yen Lee
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chee Sieng Khor
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|