1
|
Nie QY, Yang GM, Zhang P, Dong WJ, Jing D, Hou ZP, Peng YX, Yu Y, Li LH, Hong SJ. Nrf2 expression, mitochondrial fission, and neuronal apoptosis in the prefrontal cortex of methamphetamine abusers and rats. Brain Res 2024; 1837:148973. [PMID: 38685372 DOI: 10.1016/j.brainres.2024.148973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Methamphetamine (MA), a representative amphetamine-type stimulant, is one of the most abused drugs worldwide. Studies have shown that MA-induced neurotoxicity is strongly associated with oxidative stress and apoptosis. While nuclear factor E2-related factor 2 (Nrf2), an antioxidant transcription factor, is known to exert neuroprotective effects, its role in MA-induced dopaminergic neuronal apoptosis remains incompletely understood. In the present study, we explored the effects of MA on the expression levels of Nrf2, dynamin-related protein 1 (Drp1), mitofusin 1 (Mfn1), cytochrome c oxidase (Cyt-c), and cysteine aspartate-specific protease 3 (Caspase 3), as well as the correlations between Nrf2 and mitochondrial dynamics and apoptosis. Brain tissue from MA abusers was collected during autopsy procedures. An MA-dependent rat model was also established by intraperitoneal administration of MA (10 mg/kg daily) for 28 consecutive days, followed by conditioned place preference (CPP) testing. Based on immunohistochemical staining and western blot analysis, the protein expression levels of Nrf2 and Mfn1 showed a decreasing trend, while levels of Drp1, Cyt-c, and Caspase 3 showed an increasing trend in the cerebral prefrontal cortex of both MA abusers and MA-dependent rats. Notably, the expression of Nrf2 was positively associated with the expression of Mfn1, but negatively associated with the expression levels of Drp1, Cyt-c, and Caspase 3. These findings suggest that oxidative stress and mitochondrial fission contribute to neuronal apoptosis, with Nrf2 potentially playing a critical role in MA-induced neurotoxicity.
Collapse
Affiliation(s)
- Qian-Yun Nie
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education & Department of Pathology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Gen-Meng Yang
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Peng Zhang
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Provincial Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou 571199, China
| | - Wen-Juan Dong
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Di Jing
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Zhen-Ping Hou
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Yan-Xia Peng
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Yang Yu
- Department of Anatomy, School of Basic Medicine, Kunming Medical University, Kunming 650500, China
| | - Li-Hua Li
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China.
| | - Shi-Jun Hong
- School of Forensic Medicine, National Health Commission Key (NHC) Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
2
|
Oura P, Hakkarainen A, Sajantila A. Forensic neuropathology in the past decade: a scoping literature review. Forensic Sci Med Pathol 2024; 20:724-735. [PMID: 37439948 PMCID: PMC11297074 DOI: 10.1007/s12024-023-00672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
While there has been notable research activity in the field of clinical neuropathology over the recent years, forensic approaches have been less frequent. This scoping literature review explored original research on forensic neuropathology over the past decade (January 1, 2010, until February 12, 2022) using the MEDLINE database. The aims were to (1) analyze the volume of research on the topic, (2) describe meta-level attributes and sample characteristics, and (3) summarize key research themes and methods. Of 5053 initial hits, 2864 fell within the target timeframe, and 122 were included in the review. Only 3-17 articles were published per year globally. Most articles originated from the Europe (39.3%) and Asia (36.1%) and were published in forensic journals (57.4%). A median sample included 57 subjects aged between 16 and 80 years. The most common research theme was traumatic intracranial injury (24.6%), followed by anatomy (12.3%) and substance abuse (11.5%). Key methods included immunotechniques (31.1%) and macroscopic observation (21.3%). Although a number of novel findings were reported, most were of preliminary nature and will require further validation. In order to reach breakthroughs and validate novel tools for routine use, more research input is urged from researchers across the world. It would be necessary to ensure appropriate sample sizes and make use of control groups.
Collapse
Affiliation(s)
- Petteri Oura
- Department of Forensic Medicine, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki, FI-00014, Finland.
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland.
| | - Antti Hakkarainen
- Department of Forensic Medicine, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki, FI-00014, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland
| | - Antti Sajantila
- Department of Forensic Medicine, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki, FI-00014, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland
| |
Collapse
|
3
|
Liu JL, Chen LJ, Liu Y, Li JH, Zhang KK, Hsu C, Li XW, Yang JZ, Chen L, Zeng JH, Xie XL, Wang Q. The gut microbiota contributes to methamphetamine-induced reproductive toxicity in male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116457. [PMID: 38754198 DOI: 10.1016/j.ecoenv.2024.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Methamphetamine (METH) is a psychostimulant drug belonging to the amphetamine-type stimulant class, known to exert male reproductive toxicity. Recent studies suggest that METH can disrupt the gut microbiota. Furthermore, the gut-testis axis concept has gained attention due to the potential link between gut microbiome dysfunction and reproductive health. Nonetheless, the role of the gut microbiota in mediating the impact of METH on male reproductive toxicity remains unclear. In this study, we employed a mouse model exposed to escalating doses of METH to assess sperm quality, testicular pathology, and reproductive hormone levels. The fecal microbiota transplantation method was employed to investigate the effect of gut microbiota on male reproductive toxicity. Transcriptomic, metabolomic, and microbiological analyses were conducted to explore the damage mechanism to the male reproductive system caused by METH. We found that METH exposure led to hormonal disorders, decreased sperm quality, and changes in the gut microbiota and testicular metabolome in mice. Testicular RNA sequencing revealed enrichment of several Gene Ontology terms associated with reproductive processes, as well as PI3K-Akt signaling pathways. FMT conveyed similar reproductive damage from METH-treated mice to healthy recipient mice. The aforementioned findings suggest that the gut microbiota plays a substantial role in facilitating the reproductive toxicity caused by METH, thereby highlighting a prospective avenue for therapeutic intervention in the context of METH-induced infertility.
Collapse
Affiliation(s)
- Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Kai-Kai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Clare Hsu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Long Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia-Hao Zeng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, China.
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
4
|
Harder EV, Franklin JP, VanRyzin JW, Reissner KJ. Astrocyte-Neuron Interactions in Substance Use Disorders. ADVANCES IN NEUROBIOLOGY 2024; 39:165-191. [PMID: 39190075 DOI: 10.1007/978-3-031-64839-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Engagement of astrocytes within the brain's reward circuitry has been apparent for approximately 30 years, when noncontingent drug administration was observed to lead to cytological markers of reactive astrocytes. Since that time, advanced approaches in rodent behavior and astrocyte monitoring have revealed complex interactions between astrocytes with drug type, animal sex, brain region, and dose and duration of drug administration. A number of studies now collectively reveal that rodent drug self-administration followed by prolonged abstinence results in decreased features of structure and synaptic colocalization of astrocytes. In addition, stimulation of astrocytes in the nucleus accumbens with DREADD receptors or pharmacological compounds opposes drug-seeking behavior. These findings provide a clear path for ongoing investigation into astrocytes as mediators of drug action in the brain and underscore the potential therapeutic utility of astrocytes in the regulation of drug craving and relapse vulnerability.
Collapse
Affiliation(s)
- Eden V Harder
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Janay P Franklin
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan W VanRyzin
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn J Reissner
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Azizi S, Kheirandish R, Dabiri S, Lakzaee M. Adverse effects of methamphetamine on vital organs of male rats: Histopathological and immunohistochemical investigations. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:549-557. [PMID: 37051094 PMCID: PMC10083837 DOI: 10.22038/ijbms.2023.68573.15055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/22/2023] [Indexed: 04/14/2023]
Abstract
Objectives Methamphetamine (named crystal, ice, and crank), is a strong psychostimulant drug with addictive and neurotoxic properties. It is absorbed by various organs and induces tissue damage in abusers. Most METH studies have focused on the central nervous system and its effects on other organs have been neglected. Experimental investigations of animal models are used to provide significant additional information. We have studied the histopathological effects of methamphetamine in the brains, hearts, livers, testes, and kidneys of rats. Materials and Methods Methamphetamine (0.5 mg/kg) was administered subcutaneously for 21 days. Immunohistochemistry was carried out with markers including glial fibrillary acidic protein (GFAP) for reactive astrocytes, vimentin as an intermediate filament in different cells, and CD45 marker for the detection of reactive microglia in the brain. Also, some samples were taken from livers, kidneys, hearts, and testes. Results Degenerative changes and necrosis were the most common histopathological effects in the liver, kidneys, heart, testes, and brains of rats treated with methamphetamine. Immunohistochemical analyses by vimentin and GFAP markers revealed reactive microglia and astrocytes with the appearance of swollen cell bodies and also short, thickened, and irregular processes. Moreover, the number of CD45-positive cells was higher in this group. Reactive cells were more noticeable in the peduncles and subcortical white matter of the cerebellum. Conclusion Our results showed the toxic effects of methamphetamine on the vital organs and induction of neurotoxicity, cardiomyopathy, renal damage, and infertility in male rats. We could not attribute observed hepatic changes to METH and further evaluation is needed.
Collapse
Affiliation(s)
- Shahrzad Azizi
- Department of Pathobiology, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
- Corresponding author: Shahrzad Azizi. Department of Pathobiology, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran. ;
| | - Reza Kheirandish
- Department of Pathobiology, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Pathology Department, Afzalipour Kerman Medical School, Kerman, Iran
| | - Mina Lakzaee
- Department of Pathobiology, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
6
|
Wander CM, Tsujimoto THM, Ervin JF, Wang C, Maranto SM, Bhat V, Dallmeier JD, Wang SHJ, Lin FC, Scott WK, Holtzman DM, Cohen TJ. Corpora amylacea are associated with tau burden and cognitive status in Alzheimer's disease. Acta Neuropathol Commun 2022; 10:110. [PMID: 35941704 PMCID: PMC9361643 DOI: 10.1186/s40478-022-01409-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
Corpora amylacea (CA) and their murine analogs, periodic acid Schiff (PAS) granules, are age-related, carbohydrate-rich structures that serve as waste repositories for aggregated proteins, damaged cellular organelles, and other cellular debris. The structure, morphology, and suspected functions of CA in the brain imply disease relevance. Despite this, the link between CA and age-related neurodegenerative diseases, particularly Alzheimer's disease (AD), remains poorly defined. We performed a neuropathological analysis of mouse PAS granules and human CA and correlated these findings with AD progression. Increased PAS granule density was observed in symptomatic tau transgenic mice and APOE knock-in mice. Using a cohort of postmortem AD brain samples, we examined CA in cognitively normal and dementia patients across Braak stages with varying APOE status. We identified a Braak-stage dependent bimodal distribution of CA in the dentate gyrus, with CA accumulating and peaking by Braak stages II-III, then steadily declining with increasing tau burden. Refined analysis revealed an association of CA levels with both cognition and APOE status. Finally, tau was detected in whole CA present in human patient cerebrospinal fluid, highlighting CA-tau as a plausible prodromal AD biomarker. Our study connects hallmarks of the aging brain with the emergence of AD pathology and suggests that CA may act as a compensatory factor that becomes depleted with advancing tau burden.
Collapse
Affiliation(s)
- Connor M. Wander
- grid.10698.360000000122483208Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Pharmacology, University of North Carolina, Chapel Hill, NC USA
| | | | - John F. Ervin
- grid.26009.3d0000 0004 1936 7961Bryan Brain Bank, Department of Neurology, Duke University School of Medicine, Durham, NC USA
| | - Chanung Wang
- grid.4367.60000 0001 2355 7002Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
| | - Spencer M. Maranto
- grid.10698.360000000122483208Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Vanya Bhat
- grid.10698.360000000122483208Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Julian D. Dallmeier
- grid.26790.3a0000 0004 1936 8606Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL USA
| | - Shih-Hsiu Jerry Wang
- grid.26009.3d0000 0004 1936 7961Bryan Brain Bank, Department of Neurology, Duke University School of Medicine, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Department of Pathology, Duke University School of Medicine, Durham, NC USA
| | - Feng-Chang Lin
- grid.410711.20000 0001 1034 1720Department of Biostatistics, University of North Carolina, Chapel Hill, NC USA
| | - William K. Scott
- grid.26790.3a0000 0004 1936 8606Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL USA ,grid.26790.3a0000 0004 1936 8606John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL USA ,grid.26790.3a0000 0004 1936 8606Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL USA
| | - David M. Holtzman
- grid.4367.60000 0001 2355 7002Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
| | - Todd J. Cohen
- grid.10698.360000000122483208Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
7
|
Chen LJ, He JT, Pan M, Liu JL, Zhang KK, Li JH, Wang LB, Xu LL, Chen YK, Zhang QY, Li DR, Xu JT, Xie XL. Antibiotics Attenuate Methamphetamine-Induced Hepatotoxicity by Regulating Oxidative Stress and TLR4/MyD88/Traf6 Axis. Front Pharmacol 2021; 12:716703. [PMID: 34381368 PMCID: PMC8350338 DOI: 10.3389/fphar.2021.716703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Methamphetamine (METH) is a major psychostimulant drug of abuse worldwide, and its neurotoxicity has been studied extensively. In addition to neurotoxicity, METH can also induce hepatotoxicity. The underlying mechanism of intestinal microorganisms in METH-induced hepatotoxicity remains unclear. In this study, mice have received antibiotics intragastrically or PBS once each day for 1 week, followed by METH or saline. The antibiotics attenuated METH-induced hepatotoxicity as evidenced by histopathological observation and biochemical analysis; furthermore, they alleviated METH-induced oxidative stress. The effect of antibiotics on METH-induced hepatotoxicity was investigated using RNA-sequencing (RNA-seq). The RNA-seq results demonstrated that antibiotics could regulate 580 differentially expressed genes (DEGs), of which 319 were upregulated after METH treatment and then downregulated with antibiotic pretreatment and 237 were first downregulated after METH administration and then upregulated after antibiotic pretreatment, in addition to 11 upregulated and 13 downregulated ones simultaneously in METH and antibiotic-pretreated groups. RNA-seq analyses revealed that TLR4 is one of the hub genes. Western blot analysis indicated that antibiotics inhibited the increase of TLR4, MyD88 and Traf6 induced by METH. This research suggests that antibiotics may play an important role in preventing METH-induced liver injury by regulating oxidative stress and TLR4/MyD88/Traf6 axis, though further investigation is required.
Collapse
Affiliation(s)
- Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jie-Tao He
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, China
| | - Ming Pan
- Department of Anesthesiology, Dalian Municipal Central Hospital, Dalian, China
| | - Jia-Li Liu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Hao Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Bin Wang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Ling-Ling Xu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Yu-Kui Chen
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Qin-Yao Zhang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Dong-Ri Li
- Department of Forensic Evidence Science, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jing-Tao Xu
- Department of Forensic Clinical Medicine, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Abstract
Clasmatodendrosis derives from the Greek for fragment (klasma), tree (dendron), and condition (- osis). Cajal first used the term in 1913: he observed disintegration of the distal cell processes of astrocytes, along with a fragmentation or beading of proximal processes closer to the astrocyte cell body. In contemporary clinical and experimental reports, clasmatodendrosis has been observed in models of cerebral ischemia and seizures (including status epilepticus), in elderly brains, in white matter disease, in hippocampal models and cell cultures associated with amyloid plaques, in head trauma, toxic exposures, demyelinating diseases, encephalitides and infection-associated encephalopathies, and in the treatment of cancer using immune effector cells. We examine evidence to support a claim that clasmatodendrotic astrocyte cell processes overtly bead (truncate) as a morphological sign of ongoing damage premortem. In grey and white matter and often in relationship to vascular lumina, beading becomes apparent with immunohistochemical staining of glial fibrillary acidic protein when specimens are examined at reasonably high magnification, but demonstration of distal astrocytic loss of processes may require additional marker study and imaging. Proposed mechanisms for clasmatodendrotic change have examined hypoxic-ischemic, osmotic-demyelinating, and autophagic models. In these models as well as in neuropathological reports, parenchymal swelling, vessel-wall leakage, or disturbed clearance of toxins can occur in association with clasmatodendrosis. Clasmatodendrotic features may serve as a marker for gliovascular dysregulation either acutely or chronically. We review correlative evidence for blood-brain barrier (BBB) dysfunction associated with astrocytic structural change, with attention to interactions between endothelial cells, pericytes, and astrocytic endfeet.
Collapse
|
9
|
CDDO-Me Attenuates Astroglial Autophagy via Nrf2-, ERK1/2-SP1- and Src-CK2-PTEN-PI3K/AKT-Mediated Signaling Pathways in the Hippocampus of Chronic Epilepsy Rats. Antioxidants (Basel) 2021; 10:antiox10050655. [PMID: 33922531 PMCID: PMC8145743 DOI: 10.3390/antiox10050655] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Clasmatodendrosis is an autophagic astroglial death showing extensive swollen cell bodies with vacuoles and disintegrated/beaded processes. This astroglial degeneration is closely relevant to the synchronous epileptiform discharges. However, the underlying molecular mechanisms and the roles of clasmatodendrosis in spontaneous seizure activity are still unknown. The 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me; RTA 402) is one of the activators for nuclear factor-erythroid 2-related factor 2 (Nrf2) that is a redox-sensitive transcription factor. In the present study, we explored the effects of CDDO-Me on clasmatodendrosis in chronic epilepsy rats, which could prevent epilepsy-related complications. In the present study, clasmatodendritic astrocytes showed reduced Nrf2 expression and its nuclear accumulation, which were restored by CDDO-Me. CDDO-Me also abrogated heat shock protein 25 (HSP25) upregulation in clasmatodendritic astrocytes by regulating extracellular signal-related kinases 1/2 (ERK1/2)-specificity protein 1 (SP1)- and Src-casein kinase 2 (CK2)-phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-phosphatidylinositol-3-kinase (PI3K)-AKT-glycogen synthase kinase 3β (GSK3β)-bax-interacting factor 1 (Bif-1)-mediated signaling pathways in chronic epilepsy rats. In addition, CDDO-Me ameliorated spontaneous seizure duration, but not seizure frequency and behavioral seizure severity. Therefore, our findings suggest that clasmatodendrosis may affect seizure duration in chronic epilepsy rats, and that CDDO-Me may attenuate autophagic astroglial degeneration by regulating various signaling pathways.
Collapse
|
10
|
Common variants in LTBP3 gene contributed to the risk of hip osteoarthritis in Han Chinese population. Biosci Rep 2021; 40:224999. [PMID: 32452514 PMCID: PMC7284319 DOI: 10.1042/bsr20192999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic joint disease affected by environmental and genetic factors. The LTBP3 gene may be involved in the occurrence and development of OA by regulating TGF-β activity and the TGF-β signaling pathway. A total of 2780 study subjects, including 884 hip OA cases and 1896 controls, were recruited. Nine tag single-nucleotide polymorphisms (SNPs) located within the LTBP3 gene region were selected for genotyping. Genetic association analyses were performed at both the genotypic and allelic levels. GTEx data were extracted to investigate the functional consequence of significant SNPs. SNP rs10896015 was significantly associated with the risk of hip OA at both the genotypic (P=0.0019) and allelic levels (P=0.0009). The A allele of this SNP was significantly associated with a decreased risk of HOA (OR [95%CI] = 0.79 [0.69–0.91]). This SNP was also significantly associated with the clinical severity of hip OA. SNP rs10896015 could affect the gene expression of 11 genes, including LTBP3, in multiple human tissues based on GTEx data. We obtained evidence for a genetic association between the LTBP3 gene and hip OA susceptibility and clinical severity based on Chinese Han populations. Our findings replicated the association signals reported by a recent genome-wide association study and deepen the basic understanding of osteoarthritis pathology.
Collapse
|
11
|
Zhao J, Cai F, Liu P, Wei J, Chen Q. Gene Environment Interactions Between the COL9A1 Gene and Maternal Drinking of Alcohol Contribute to the Risk of Congenital Talipes Equinovarus. Genet Test Mol Biomarkers 2020; 25:48-54. [PMID: 33372835 DOI: 10.1089/gtmb.2020.0196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Previous studies have indicated that both genetic and environmental factors contribute to the risk of congenital talipes equinovarus (CTEV). The COL9A1 gene encodes one of the three alpha chains of type IX collagen, which is a key collagen component of hyaline cartilage. Our study aimed to evaluate the effect of COL9A1 gene polymorphisms on susceptibility to CTEV in the Han Chinese population. Methods: A total of 2205 unrelated subjects comprising 692 CTEV patients and 1513 healthy controls were recruited. Demographic and characteristic information was collected, including maternal smoking and maternal drinking. Genetic association analyses and gene-environment interaction analyses were conducted based on the genotypic data of 36 tag single nucleotide polymorphisms (SNPs). Results: Although there was no association between genotyped SNPs and CTEV, a gene-environment interaction signal between SNP rs6455357 and maternal drinking was identified. Furthermore, significant heterogeneity was identified for this interaction signal when stratified by maternal drinking. For subjects with never maternal drinking, the A allele of SNP rs6455357 was significantly associated with a decreased risk of CTEV. In contrast, the A allele was associated with an increased risk of CTEV in the "occasional" and "often" groups. Conclusions: Our results indicate a combined effect of genetics and environmental factors on the etiology of CTEV. This study increases our understanding of the etiology of CETV and provides useful information for genetic counseling for at-risk families for the development of prevention programs and improved management.
Collapse
Affiliation(s)
- Jianwu Zhao
- Department of Hand and Foot Microsurgery, The First Hospital of Yulin, Yulin, China
| | - Fei Cai
- Department of Hand and Foot Microsurgery, The First Hospital of Yulin, Yulin, China
| | - Peng Liu
- Department of Hand and Foot Microsurgery, The First Hospital of Yulin, Yulin, China
| | - Jianjiang Wei
- Department of Hand and Foot Microsurgery, The First Hospital of Yulin, Yulin, China
| | - Qiang Chen
- Department of Hand and Foot Microsurgery, The First Hospital of Yulin, Yulin, China
| |
Collapse
|
12
|
Cui G, Liu D, Wei R, Wu J, Liu R, Wang K. Association of rs2862851 in TGFA Gene with Peripheral TGFA Levels and the Severity of Knee Osteoarthritis in the Han Chinese Population. Genet Test Mol Biomarkers 2020; 24:771-776. [PMID: 33181041 DOI: 10.1089/gtmb.2020.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Osteoarthritis (OA) is a complex joint disorder characterized by sclerosis of subchondral bone. The knee is one of the most commonly affected joints. Given that the genetic mechanisms underlying knee OA remain elusive, our study aims were to first confirm the association of the TGFA gene alleles with the risk of knee OA and, second, to evaluate the relationship between peripheral TGFA concentrations and knee OA in an independent Han Chinese population. Materials and Methods: We performed a case-control study consisting of 392 knee OA patients and 808 unrelated healthy controls. Single-marker-based association analyses and haplotype-based analyses using 3 single nucleotide polymorphisms (SNPs) were performed to confirm the association of TGFA gene alleles with the risk of knee OA. Furthermore, we used enzyme-linked immunosorbent assay (ELISA) kits to detect the peripheral blood TGFA concentrations in patients and healthy controls and then evaluated the relationships between the TGFA alleles and genotypes with serum TGFA levels. Results: We replicated the genetic association of the rs2862851 T allele with the risk of knee OA (p = 1.68 × 10-4, OR = 1.41). Moreover, we observed that the peripheral TGFA concentrations were higher in knee OA patients than in healthy controls (p = 8.15 × 10-13). The peripheral TGFA concentrations were significantly different among the various rs2862851 genotypes for both cases (p = 4.16 × 10-16) and controls (p = 7.24 × 10-19). The individuals with the TT genotype in both cases and controls, had the highest peripheral TGFA concentrations. Moreover, with the increase in knee OA grade, peripheral TGFA concentration also increased (p = 1.36 × 10-72). Conclusion: Our study confirmed the association of the TGFA gene with the risk of knee OA and identified a positive correlation between peripheral TGFA levels and the severity of knee OA in the Han Chinese population, providing clues for understanding the etiology of knee OA.
Collapse
Affiliation(s)
- Guofeng Cui
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Orthopedics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Dan Liu
- Department of Rheumatology and Immunology, Xi'an No.5 Hospital, Xi'an, China
| | - Rong Wei
- Department of Orthopedics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Junlong Wu
- Department of Orthopedics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Ruiyu Liu
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kunzheng Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Wang B, Sun Y, Liu H, Cao Y, Lei T. Evaluation of relationship between DNA methyltransferase 3 β gene and the risk of hip osteoarthritis: A case-control study based on a Han Chinese population. Int J Rheum Dis 2020; 23:1404-1411. [PMID: 32776659 DOI: 10.1111/1756-185x.13943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
Abstract
AIM Osteoarthritis (OA) is a chronic degenerative joint disease. Early studies have indicated that genetic and environmental factors contribute to the risk of OA. However, the etiology of OA remains unknown. Our study aimed to evaluate the association of DNMT3B gene with the risk of hip OA in Han Chinese individuals. METHODS A total of 2070 subjects were recruited into the study, including 658 patients with hip OA and 1412 healthy controls. Twelve tag single nucleotide polymorphisms (SNPs) were selected and genotyped in our samples. Genetic associations between DNMT3B gene and the risk of hip OA were examined at both the single marker and haplotype levels. Cis-expression quantitative trait loci signals that achieve genome-wide significance of targeted SNPs from multiple types of human tissues were extracted from the GTEx database. RESULTS Significant signals were identified for SNP rs2424905 in 4 genetic models. The T allele was significantly associated with an increased risk of hip OA (odds ratio = 1.53; 95% CI = 1.28-1.83). The T allele was also significantly associated with higher Kellgren-Lawrence grade in the patients with hip OA (χ2 = 32.70, P = 1.37 × 10-6 ). Moreover, SNP rs2424905 was significantly associated with the gene expression level of multiple genes, including DNMT3B, C20orf203, COMMD7, EFCAB8, MAPRE1, and RP5-1085F17.3, from several types of human tissues. CONCLUSION Our results indicated that rs2424905 of DNMT3B gene contributed to the risk of hip OA and its clinical severity in a Han Chinese population. These findings suggested that rs2424905 of DNMT3B could be a promising genetic marker to assess susceptibility to hip OA in Han Chinese populations.
Collapse
Affiliation(s)
- Baohui Wang
- Department of Orthopedics of Traditional Chinese Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yindi Sun
- Department of Orthopedics of Traditional Chinese Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hongliang Liu
- Department of Trauma Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yi Cao
- Department of Orthopedics of Traditional Chinese Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Tao Lei
- Department of Orthopedics of Traditional Chinese Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
The effects of common variants in MDM2 and GNRH2 genes on the risk and survival of osteosarcoma in Han populations from Northwest China. Sci Rep 2020; 10:15939. [PMID: 32994424 PMCID: PMC7524757 DOI: 10.1038/s41598-020-72995-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/03/2020] [Indexed: 11/09/2022] Open
Abstract
Accumulating evidence has shown that both MDM2 and GNRH2 might be related to Osteosarcoma (OS) susceptibility. The study aimed to evaluate the effects of common variants in MDM2 and GNRH2 genes on the risk and survival of osteosarcoma in Han populations from Northwest China. In the study, we recruited 2292 subjects including 596 OS patients and 1696 healthy controls and genotyped 16 selected tag SNPs (6 from GNRH2 and 10 from MDM2). Genetic association analyses were performed at the genotypic and allelic levels. Survival curves were made for OS patients with different genotypes. Two SNPs, rs1690916 (MDM2, P = 0.0002) and rs3761243 (GNRH2, P = 0.0004), were identified to be significantly associated with OS risk. Moreover, SNP rs3761243 was strongly associated with pathological fracture (P = 2.61 × 10–14), metastasis (P < 2.2 × 10–16), and Enneking stage (P < 2.2 × 10–16) in the OS group. Furthermore, survival curves based on different genotypes of SNP rs3761243 were found to be significantly different (P = 0.0003), suggesting increased risk with more copies of C alleles. Our results provide supportive evidence for genetic associations of MDM2 and GNRH2 genes with susceptibility to OS, and for the positive correlation of SNP rs3761243 in GNRH2 with the survival status of OS patients in Han populations from Northwest China.
Collapse
|
15
|
Tian B, Kang X, Zhang L, Zheng J, Zhao Z. SAP30BP gene is associated with the susceptibility of rotator cuff tear: a case-control study based on Han Chinese population. J Orthop Surg Res 2020; 15:356. [PMID: 32843068 PMCID: PMC7449091 DOI: 10.1186/s13018-020-01888-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022] Open
Abstract
Background Multiple studies have indicated that genetic components contribute significantly to the risk of rotator cuff tears. Previous studies have suggested that the SAP30BP gene may play an essential role in the development of rotator cuff tears. The aim of this study was to evaluate the potential association of the SAP30BP gene with the susceptibility to rotator cuff tears in a Han Chinese population. Methods A total of 394 patients with rotator cuff tears and 998 healthy controls were included in the study. Twelve tag single nucleotide polymorphisms (SNPs) located in the region of the SAP30BP gene were selected for genotyping. Genetic association analyses were performed using χ2 tests for each SNP. Significant associations were searched in the GTEx database for their functional consequences. Results SNP rs820218 was significantly associated with rotator cuff tears (χ2 = 9.49, P = 0.0021, OR [95% CI] = 0.67 [0.52–0.87]). In addition, SNP rs820218 was found to be significantly associated with the gene expression level of SAP30BP in whole blood (NES = 0.12, P = 1.00 × 10−6). Conclusion Our study has shown that the genetic polymorphism of SAP30BP contributes to the risk of rotator cuff tears in Chinese Han people. Individuals with the A allele for SNP rs820218 were less susceptible to developing rotator cuff tears.
Collapse
Affiliation(s)
- Bin Tian
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University Health Science Center, No.555, Youyi East Road, Xi'an, Shaanxi, China
| | - Xin Kang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University Health Science Center, No.555, Youyi East Road, Xi'an, Shaanxi, China
| | - Liang Zhang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University Health Science Center, No.555, Youyi East Road, Xi'an, Shaanxi, China
| | - Jiang Zheng
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University Health Science Center, No.555, Youyi East Road, Xi'an, Shaanxi, China
| | - Zandong Zhao
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University Health Science Center, No.555, Youyi East Road, Xi'an, Shaanxi, China.
| |
Collapse
|
16
|
Li C, Wang L, Li Y, Feng Z, Wang Q, Luo W. Common Variants in the ARG1 Gene Contribute to the Risk of Dilated Cardiomyopathy in the Han Chinese Population. Genet Test Mol Biomarkers 2020; 24:584-591. [PMID: 32721242 DOI: 10.1089/gtmb.2020.0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Arginase I, encoded by the ARG1 gene, is an enzyme that catalyzes the conversion of arginine to ornithine in the urea cycle; mutations in this gene has recently been reported to be associated with dilated cardiomyopathy (DCM) in Pakistan. The present study aimed to investigate the relationship between ARG1 gene mutations and DCM in the Han Chinese population. Methods: A total of 488 DCM cases and 924 matched-healthy controls were recruited. All subjects were genotyped for 12 tag single nucleotide polymorphisms (SNPs) within the ARG1 gene. Genetic association studies, including SNP and haplotype analyses, were performed. Further analyses were conducted to examine the correlations between the associated SNPs and specific clinical characteristics. Results: Only the rs2781666 and rs2781667 loci in the ARG1 gene were found to be significantly associated with DCM compared to the healthy controls. The risk of DCM at both of these loci for T allele carriers was ∼1.42-fold higher than that for carriers of the alternative alleles. There were significant differences in end-diastolic interventricular septal diameter, end-diastolic left ventricular posterior wall diameter, left ventricular end-diastolic diameter, left ventricular end-systolic diameter, and left ventricular ejection fraction among the genotype distributions of both SNPs. Furthermore, we found that the T alleles at the rs2781666 and rs2781667 loci were significantly associated with DCM in gender subgroups and the subgroup of patients <58 years of age. The haplotype T-T (rs2781666-rs2781667) also showed a significant association with DCM. Conclusion: Our results support the hypothesis that alleles and haplotypes of the ARG1 gene are significantly involved in the etiology of DCM in the Han Chinese population, but further research is necessary to elucidate the mechanism governing this association.
Collapse
Affiliation(s)
- Chaomin Li
- Department of Cardiovascular Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liping Wang
- Department of Cardiovascular Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuanbo Li
- Department of Cardiovascular Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhang Feng
- Department of Cardiology, Xi'an Central Hospital, Xi'an, China
| | - Qiang Wang
- Department of Cardiovascular Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wei Luo
- Department of Cardiovascular Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
17
|
Li J, Wang Z, Feng D, Wang W, Feng W. Evaluation of genetic susceptibility of common variants in SOX9 in patients with congenital talipes equinovarus in the Han Chinese population. J Orthop Surg Res 2020; 15:276. [PMID: 32703248 PMCID: PMC7376870 DOI: 10.1186/s13018-020-01802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022] Open
Abstract
Background Congenital talipes equinovarus (CTEV) is a common birth defect that causes severe deformities of one or both feet. Genetics have been proven to play a key role in the risk of CTEV. Our study aimed to evaluate the genetic susceptibility of common variants in the SOX9 gene to CTEV in a Han Chinese population. Methods In this study, we recruited 2,205 study participants, including 692 CTEV patients and 1513 healthy controls. A total of seven selected single-nucleotide polymorphisms (SNPs) within the SOX9 gene were genotyped, and environmental variables, including maternal smoking and alcoholic drinking habits, were assessed. In addition, bioinformatics analyses were performed to explore the potential biological functions of the associated SNPs. Results The SNP rs73354570 was identified to be significantly associated with the risk of CTEV (OR = 1.53, P = 2.11 × 10−5), and the C allele was associated with an increased risk of CTEV. A dose-dependent pattern could be observed in genotypic analyses. The OR for individuals with AC genotypes was 1.37 (95% CI 1.09–1.71), and the OR for individuals with CC homozygotes was 1.47 (95% CI 1.18–1.82). Further analyses identified that rs73354570 is located within a region of multiple binding proteins, including CEBPB and POLR2A, which suggested that this SNP was also part of genetic motifs that are found within several cell types. Conclusion Our results provide evidence supporting the important role of the SOX9 gene in the contribution to the risk of CTEV.
Collapse
Affiliation(s)
- Jian Li
- Department of Sports Medicine, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhi Wang
- Department of Neonatology, Xi'an Children Hospital, Xi'an, Shaanxi, China
| | - Dongxu Feng
- Department of Orthopaedic Trauma, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei Wang
- Department of Sports Medicine, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weilou Feng
- Department of Orthopaedic Trauma, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
18
|
Zhi L, Feng W, Liang J, Zhong Q, Ren L, Ma J, Yao S. The Effect of Common Variants in SLC44A2 on the Contribution to the Risk of Deep Cein Thrombosis after Orthopedic Surgery. J Atheroscler Thromb 2020; 28:293-303. [PMID: 32581188 PMCID: PMC8049143 DOI: 10.5551/jat.56333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aim: Deep vein thrombosis (DVT) is a common complication of orthopedic surgery. Multiple lines of evidence indicate that genetic factors play an important role in the development of DVT following orthopedic surgery (DVTFOS). Recent evidence suggested that the solute carrier family 44 member 2 (SLC44A) gene may contribute to the risk of DVT. In this study, we aimed to investigate the associations of SLC44A2 and DVTFOS in Chinese Han individuals. Methods: In the study, 2,655 subjects, including 689 DVTFOS patients and 1,966 controls, were recruited. Eighteen SNPs were genotyped in the study. Genetic association analyses were performed at both the single marker and haplotype levels. Bioinformatics analyses were conducted to predict the functional consequences of significant SNPs. Results: SNP rs2288904 of SLC44A2 was identified as being significantly associated with DVTFOS (P = 0.0003, OR [95%CI]= 1.28[1.12–1.46]). Allelic analyses showed that the G allele of this SNP significantly elevated the risks of DVTFOS, which was replicated in the genotypic association analyses. Moreover, a two-SNP haplotype, including rs2288904, was found to be strongly correlated with the risk of DVTFOS (P = 4.15 × 10−11). Widespread effects in the expression quantitative trait loci were identified for rs2288904 in multiple tissues. Conclusion: In summary, our results provide further supportive evidence of the association of SLC44A2 with the risk of DVTFOS, which also provide clues for understanding the important roles of the SLC44A2 gene in the pathogenesis of DVTFOS and in the development of preventive strategies.
Collapse
Affiliation(s)
- Liqiang Zhi
- Department of Joint Surgery, Honghui Hospital,Xi'an Jiaotong University
| | - Weilou Feng
- Department of Traumatic Orthopedics, Honghui Hospital, Xi'an Jiaotong University
| | - Jingqi Liang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University
| | - Qing Zhong
- Department of Joint Surgery, Honghui Hospital,Xi'an Jiaotong University
| | - Liaoyuan Ren
- Department of Ultrasonography, Honghui Hospital,Xi'an Jiaotong University
| | - Jianbing Ma
- Department of Joint Surgery, Honghui Hospital,Xi'an Jiaotong University
| | - Shuxin Yao
- Department of Joint Surgery, Honghui Hospital,Xi'an Jiaotong University
| | | |
Collapse
|
19
|
Zhao Z, Zhang L, Kang X, Zheng J, Tian B. Association Between Genetic Polymorphisms of CR2 Gene and the Risk of Steroid-Induced Osteonecrosis of the Femoral Head in the Chinese Han Male Population. Genet Test Mol Biomarkers 2020; 24:460-466. [PMID: 32552036 DOI: 10.1089/gtmb.2020.0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Multiple lines of evidence have suggested that genetic factors may contribute to steroid-induced osteonecrosis of the femoral head (SONFH). Complement receptor 2 (CR2), constituting a family of regulators of complement activation, has been recently reported to be associated with osteonecrosis of the femoral head (ONFH) in Koreans. The aim of this study was to evaluate the relationships between polymorphisms of the CR2 gene and susceptibility to SONFH in the male Han Chinese population. Materials and Methods: A total of 468 SONFH patients and 1224 healthy controls were recruited for this study. Ten tag single nucleotide polymorphisms (SNPs) located within the CR2 gene were genotyped. Genetic association analyses, including SNP and haplotypic analyses, were performed for the 10 SNPs. Furthermore, bioinformatic analyses were conducted to examine the functional consequences of SNPs shown to be significantly associated with SONFH. Results: An intronic SNP, rs311306, was identified to be significantly associated with the risk of SONFH (p = 0.0008, odds ratio = 1.44). Allelic analyses showed that the C allele of this SNP significantly elevated the risk of SONFH, which was replicated in genotypic association analyses. Moreover, a 3-SNP haplotype was significantly associated with SONFH (rs311306-rs17044576-rs3767933, p = 7.49 × 10-8). Furthermore, bioinformatic analyses indicated limited functional consequences of SNP rs311306, but a complex interaction network was constructed for the protein encoded by the SLC44A2 gene and proteins encoded by the CD19, CD81, and C3 genes. Conclusion: Our findings shed new light on the link between the CR2 gene and SONFH in Han Chinese males, providing clues as to the nature of the mechanisms involved in the etiology of ONFH.
Collapse
Affiliation(s)
- Zandong Zhao
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Liang Zhang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xin Kang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jiang Zheng
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Bin Tian
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
20
|
Zhao T, Ma C, Xie B, Zhao B, Wang W, Liu J. Evaluation of Common Variants in the AKNA Gene and Susceptibility to Knee Osteoarthritis Among the Han Chinese. Genet Test Mol Biomarkers 2020; 24:425-430. [PMID: 32460535 DOI: 10.1089/gtmb.2020.0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Osteoarthritis (OA) is a complex degenerative joint disease that is associated with both genetic and environmental factors. The AKNA gene, located at 9q32, has recently been identified as being associated with knee osteoarthritis (KOA) in the Mexican population. Our aim was to investigate the relationship of common variants in this gene with the risk of KOA in a large Han Chinese population. Methods: A total of 2,500 Han Chinese subjects were recruited, consisting of 824 KOA patients and 1,676 controls. Eight tag single nucleotide polymorphisms (SNPs) located within the ANKA gene were selected for genotyping. Single marker-based association analyses were conducted using multiple modes of inheritance, including genotypic, allelic, dominant, and recessive. Haplotype-based association analyses were also performed. Plink was utilized for genetic association analyses. In addition, we examined the GTEx database to test the expression quantitative loci effects of the significant SNPs within the AKNA gene. Results: Among these eight SNPs evaluated we identified one, rs10817595, as being significantly associated with the risk of KOA. Compared to the CC genotype at this locus, the odds ratio (95% confidence interval) for KOA with the AA genotype was 1.58 (1.23-2.01)-fold greater. A linkage disequilibrium block that included this SNP was also determined to be significantly associated with the risk of KOA (χ2 = 25.08, p = 3.58 × 10-6). In general, the minor allele A of SNP rs10817595 was associated with an increased risk of KOA. Conclusion: This study is the first to present evidence for a potential link between the risk of KOA and an AKNA gene polymorphism among persons with a Han Chinese ancestry. Future functional analyses based on animal models and sequencing-based population studies are needed to elucidate the biological plausibility and genetic architecture of AKNA for KOA susceptibility.
Collapse
Affiliation(s)
- Tianyun Zhao
- Department of Orthopedics and The First Hospital of Tianshui City, Tianshui, China.,Department of Sports Medicine, The First Hospital of Tianshui City, Tianshui, China
| | - Chi Ma
- Department of Orthopedics and The First Hospital of Tianshui City, Tianshui, China
| | - Baopin Xie
- Department of Sports Medicine, The First Hospital of Tianshui City, Tianshui, China
| | - Bin Zhao
- Department of Sports Medicine, The First Hospital of Tianshui City, Tianshui, China
| | - Wei Wang
- Department of Sports Medicine, The First Hospital of Tianshui City, Tianshui, China
| | - Jibin Liu
- Department of Oncology Research, The Affiliated Oncology Hospital of Nantong University, Nantong, China
| |
Collapse
|
21
|
Lu S, Yang X, Wang C, Chen S, Lu S, Yan W, Xiong K, Liu F, Yan J. Current status and potential role of circular RNAs in neurological disorders. J Neurochem 2019; 150:237-248. [PMID: 31099046 DOI: 10.1111/jnc.14724] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/23/2019] [Accepted: 05/13/2019] [Indexed: 01/01/2023]
Abstract
Given the importance of non-coding RNAs in modulating normal brain functions and their implications in the treatment of neurological disorders, non-coding RNA-based diagnostic and therapeutic strategies have shown great clinical potential. Circular RNAs (circRNAs) have emerged as potentially important players in this field. Recent studies have indicated that circRNAs might play vital roles in Alzheimer's disease, Parkinson's disease, ischemic brain injury, and neurotoxicity. However, the mechanisms of action of circRNAs have not been fully characterized. We aimed to review recent advances in circRNA research in the brain to provide new insights on the roles of circRNAs in neurological disorders.
Collapse
Affiliation(s)
- Shanshan Lu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xue Yang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chudong Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Siqi Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shuang Lu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Weitao Yan
- Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Kun Xiong
- Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| |
Collapse
|