1
|
Li Z, Zou D, Liu R, Pan J, Huang J, Ma J, Huang L, He J, Fu L, Zheng X, Wang M, Fang J, Dong H, Li M, Huang L, Dai X. A hunting ground for predatory bacteria at the Zhenbei seamount in the South China Sea. ISME COMMUNICATIONS 2025; 5:ycaf042. [PMID: 40144403 PMCID: PMC11937823 DOI: 10.1093/ismeco/ycaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025]
Abstract
Seamounts are critical marine biodiversity hot spots, while the metabolic activity of their microbial community remains largely unknown. In this study, we investigated the diversity and activity of free-living and particle-attached microorganisms in the surface, middle, and bottom layers of seawater at the Zhenbei seamount in the South China Sea using omics approaches, including 16S ribosomal RNA (rRNA)/16S rDNA ratio analysis. Over 20 phyla were detected, with Proteobacteria, Actinobacteriota, Cyanobacteria, Bacteroidota, Thaumarchaeota, and Planctomycetota being predominant. Surprisingly, Bdellovibrionota and Myxococcota, the two well-known predatory bacteria, exhibited exceptionally higher rRNA/rDNA ratios than the other phyla, with rRNA abundances being 10- or even 200-fold higher than their rDNA abundances. These metabolically active predatory bacteria are mainly uncultured species. A total of 23 Myxococcota metagenome-assembled genomes (MAGs) and 12 Bdellovibrionota MAGs were assembled. The most highly overexpressed genes frequently detected in these MAGs were those that encode flagellum and pilus proteins as well as T4-like virus tail tube protein, indicating that these predator bacteria were likely active in hunting. Our results suggest that seamounts may serve as hunting grounds for predatory bacteria, which may be involved in controlling the flows of elements and energy in the seamount microbial communities and, thus, in shaping the seamount ecosystems.
Collapse
Affiliation(s)
- Zhimeng Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119 Haibin Road, Guangzhou 511458, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing 100101, China
| | - Dayu Zou
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, China
| | - Rulong Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, No. 999 Huchenghuan Road, Shanghai 201306, China
| | - Juntong Pan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing 100101, China
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences, No. 29 Xueyuan Road, Beijing 100083, China
| | - Junkai Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119 Haibin Road, Guangzhou 511458, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing 100101, China
| | - Jun Ma
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Liting Huang
- College of Oceanography and Ecological Science, Shanghai Ocean University, No. 999 Huchenghuan Road, Shanghai 201306, China
| | - Jiani He
- College of Oceanography and Ecological Science, Shanghai Ocean University, No. 999 Huchenghuan Road, Shanghai 201306, China
| | - Lulu Fu
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Xiaowei Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing 100101, China
| | - Minxiao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jiasong Fang
- College of Oceanography and Ecological Science, Shanghai Ocean University, No. 999 Huchenghuan Road, Shanghai 201306, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences, No. 29 Xueyuan Road, Beijing 100083, China
| | - Meng Li
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, China
| | - Li Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119 Haibin Road, Guangzhou 511458, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Beijing 100049, China
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Beijing 100049, China
| |
Collapse
|
2
|
Mircea C, Rusu I, Levei EA, Cristea A, Gridan IM, Zety AV, Banciu HL. The Fungal Side of the Story: Saprotrophic- vs. Symbiotrophic-Predicted Ecological Roles of Fungal Communities in Two Meromictic Hypersaline Lakes from Romania. MICROBIAL ECOLOGY 2024; 87:130. [PMID: 39417884 PMCID: PMC11486810 DOI: 10.1007/s00248-024-02446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Over three-quarters of Earth's surface exhibits extreme environments where life thrives under harsh physicochemical conditions. While prokaryotes have often been investigated in these environments, only recent studies have revealed the remarkable adaptability of eukaryotes, in particular fungi. This study explored the mycobiota of two meromictic hypersaline lakes, Ursu and Fără Fund, in Transylvania (Romania). The intrinsic and extrinsic fungal diversity was assessed using amplicon sequencing of environmental DNA samples from sediments, water columns, surrounding soils, and an associated rivulet. The fungal communities, illustrated by the 18S rRNA gene and ITS2 region, exhibited contrasting patterns between the lakes. The ITS2 region assessed better than the 18S rRNA gene the fungal diversity. The ITS2 data showed that Ascomycota was the most abundant fungal group identified in both lakes, followed by Aphelidiomycota, Chytridiomycota, and Basidiomycota. Despite similar α-diversity levels, significant differences in fungal community structure were observed between the lakes, correlated with salinity, total organic carbon, total nitrogen, and ammonium. Taxonomic profiling revealed depth-specific variations, with Saccharomycetes prevalent in Ursu Lake's deeper layers and Lecanoromycetes prevalent in the Fără Fund Lake. The functional annotation using FungalTraits revealed diverse ecological roles within the fungal communities. Lichenized fungi were dominant in Fără Fund Lake, while saprotrophs were abundant in Ursu Lake. Additionally, wood and soil saprotrophs, along with plant pathogens, were more prevalent in the surrounding soils, rivulet, and surface water layers. A global overview of the trophic relations in each studied niche was impossible to establish due to the unconnected graphs corresponding to the trophic interactions of the analyzed fungi. Plotting the unweighted connected subgraphs at the genus level suggests that salinity made the studied niches similar for the identified taxa. This study shed light on the understudied fungal diversity, distribution, and ecological functions in hypersaline environments.
Collapse
Grants
- PN-III-P4-ID-PCE-2020-1559 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P1-1.1-PD-2021-0634 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P4-ID-PCE-2020-1559 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P4-ID-PCE-2020-1559 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P4-ID-PCE-2020-1559 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P4-ID-PCE-2020-1559 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
Collapse
Affiliation(s)
- Cristina Mircea
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
- Molecular Biology Centre, Interdisciplinary Research Institute On Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Ioana Rusu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania.
- Molecular Biology Centre, Interdisciplinary Research Institute On Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Romania.
| | - Erika Andrea Levei
- INCDO INOE 2000 Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Adorján Cristea
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Ionuț Mădălin Gridan
- Doctoral School of Integrative Biology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Adrian Vasile Zety
- Doctoral School of Integrative Biology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Horia Leonard Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
- Emil G. Racoviță Institute, Babeș-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Sun J, Zhou H, Cheng H, Chen Z, Yang J, Wang Y, Jing C. Depth-Dependent Distribution of Prokaryotes in Sediments of the Manganese Crust on Nazimov Guyots of the Magellan Seamounts. MICROBIAL ECOLOGY 2023; 86:3027-3042. [PMID: 37792089 DOI: 10.1007/s00248-023-02305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023]
Abstract
Deep ocean polymetallic nodules, rich in cobalt, nickel, and titanium which are commonly used in high-technology and biotechnology applications, are being eyed for green energy transition through deep-sea mining operations. Prokaryotic communities underneath polymetallic nodules could participate in deep-sea biogeochemical cycling, however, are not fully described. To address this gap, we collected sediment cores from Nazimov guyots, where polymetallic nodules exist, to explore the diversity and vertical distribution of prokaryotic communities. Our 16S rRNA amplicon sequencing data, quantitative PCR results, and phylogenetic beta diversity indices showed that prokaryotic diversity in the surficial layers (0-8 cm) was > 4-fold higher compared to deeper horizons (8-26 cm), while heterotrophs dominated in all sediment horizons. Proteobacteria was the most abundant taxon (32-82%) across all sediment depths, followed by Thaumarchaeota (4-37%), Firmicutes (2-18%), and Planctomycetes (1-6%). Depth was the key factor controlling prokaryotic distribution, while heavy metals (e.g., iron, copper, nickel, cobalt, zinc) can also influence significantly the downcore distribution of prokaryotic communities. Analyses of phylogenetic diversity showed that deterministic processes governing prokaryotic assembly in surficial layers, contrasting with stochastic influences in deep layers. This was further supported from the detection of a more complex prokaryotic co-occurrence network in the surficial layer which suggested more diverse prokaryotic communities existed in the surface vs. deeper sediments. This study expands current knowledge on the vertical distribution of benthic prokaryotic diversity in deep sea settings underneath polymetallic nodules, and the results reported might set a baseline for future mining decisions.
Collapse
Affiliation(s)
- Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, People's Republic of China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, People's Republic of China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, People's Republic of China
| | - Jichao Yang
- College of Marine Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, People's Republic of China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, People's Republic of China.
- Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, People's Republic of China.
| | - Chunlei Jing
- National Deepsea Center, Ministry of Natural Resources, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Abstract
Hypersaline waters and glacial ice are inhospitable environments that have low water activity and high concentrations of osmolytes. They are inhabited by diverse microbial communities, of which extremotolerant and extremophilic fungi are essential components. Some fungi are specialized in only one of these two environments and can thrive in conditions that are lethal to most other life-forms. Others are generalists, highly adaptable species that occur in both environments and tolerate a wide range of extremes. Both groups efficiently balance cellular osmotic pressure and ion concentration, stabilize cell membranes, remodel cell walls, and neutralize intracellular oxidative stress. Some species use unusual reproductive strategies. Further investigation of these adaptations with new methods and carefully designed experiments under ecologically relevant conditions will help predict the role of fungi in hypersaline and glacial environments affected by climate change, decipher their stress resistance mechanisms and exploit their biotechnological potential.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia; ,
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia; ,
| |
Collapse
|
5
|
Sobol MS, Hoshino T, Delgado V, Futagami T, Kadooka C, Inagaki F, Kiel Reese B. Genome characterization of two novel deep-sea sediment fungi, Penicillium pacificagyrus sp. nov. and Penicillium pacificasedimenti sp. nov., from South Pacific Gyre subseafloor sediments, highlights survivability. BMC Genomics 2023; 24:249. [PMID: 37165355 PMCID: PMC10173653 DOI: 10.1186/s12864-023-09320-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/18/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Marine deep subsurface sediments were once thought to be devoid of eukaryotic life, but advances in molecular technology have unlocked the presence and activity of well-known closely related terrestrial and marine fungi. Commonly detected fungi in deep marine sediment environments includes Penicillium, Aspergillus, Cladosporium, Fusarium, and Schizophyllum, which could have important implications in carbon and nitrogen cycling in this isolated environment. In order to determine the diversity and unknown metabolic capabilities of fungi in deep-sea sediments, their genomes need to be fully analyzed. In this study, two Penicillium species were isolated from South Pacific Gyre sediment enrichments during Integrated Ocean Drilling Program Expedition 329. The inner gyre has very limited productivity, organic carbon, and nutrients. RESULTS Here, we present high-quality genomes of two proposed novel Penicillium species using Illumina HiSeq and PacBio sequencing technologies. Single-copy homologues within the genomes were compared to other closely related genomes using OrthoMCL and maximum-likelihood estimation, which showed that these genomes were novel species within the genus Penicillium. We propose to name isolate SPG-F1 as Penicillium pacificasedimenti sp. nov. and SPG-F15 as Penicillium pacificagyrus sp. nov. The resulting genome sizes were 32.6 Mbp and 36.4 Mbp, respectively, and both genomes were greater than 98% complete as determined by the presence of complete single-copy orthologs. The transposable elements for each genome were 4.87% for P. pacificasedimenti and 10.68% for P. pacificagyrus. A total of 12,271 genes were predicted in the P. pacificasedimenti genome and 12,568 genes in P. pacificagyrus. Both isolates contained genes known to be involved in the degradation of recalcitrant carbon, amino acids, and lignin-derived carbon. CONCLUSIONS Our results provide the first constructed genomes of novel Penicillium isolates from deep marine sediments, which will be useful for future studies of marine subsurface fungal diversity and function. Furthermore, these genomes shed light on the potential impact fungi in marine sediments and the subseafloor could have on global carbon and nitrogen biogeochemical cycles and how they may be persisting in the most energy-limited sedimentary biosphere.
Collapse
Affiliation(s)
- Morgan S Sobol
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Baden-Württemberg, Germany
| | - Tatsuhiko Hoshino
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, 783-8502, Japan
| | - Victor Delgado
- Department of Life Sciences, TX A&M University, Corpus Christi, Texas, USA
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Chihiro Kadooka
- Department of Biotechnology and Life Science, Faculty of Biotechnology and Life Science, Sojo University, Ikeda, Nishiku, Kumamoto, 860-0082, Japan
| | - Fumio Inagaki
- Mantle Drilling Promotion Office, Institute for Marine Earth Exploration and Engineering (MarE3), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, 236- 0001, Japan
- Department of Earth Sciences, Graduate School of Science, Tohoku University, Sendai, 980-8574, Japan
| | - Brandi Kiel Reese
- Dauphin Island Sea Lab, Dauphin Island, Alabama, USA.
- Stokes School of Marine and Environmental Sciences, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
6
|
Wijayawardene NN, Dai DQ, Jayasinghe PK, Gunasekara SS, Nagano Y, Tibpromma S, Suwannarach N, Boonyuen N. Ecological and Oceanographic Perspectives in Future Marine Fungal Taxonomy. J Fungi (Basel) 2022; 8:1141. [PMID: 36354908 PMCID: PMC9696965 DOI: 10.3390/jof8111141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2023] Open
Abstract
Marine fungi are an ecological rather than a taxonomic group that has been widely researched. Significant progress has been made in documenting their phylogeny, biodiversity, ultrastructure, ecology, physiology, and capacity for degradation of lignocellulosic compounds. This review (concept paper) summarizes the current knowledge of marine fungal diversity and provides an integrated and comprehensive view of their ecological roles in the world's oceans. Novel terms for 'semi marine fungi' and 'marine fungi' are proposed based on the existence of fungi in various oceanic environments. The major maritime currents and upwelling that affect species diversity are discussed. This paper also forecasts under-explored regions with a greater diversity of marine taxa based on oceanic currents. The prospects for marine and semi-marine mycology are highlighted, notably, technological developments in culture-independent sequencing approaches for strengthening our present understanding of marine fungi's ecological roles.
Collapse
Affiliation(s)
- Nalin N. Wijayawardene
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Section of Genetics, Institute for Research and Development in Health and Social Care, No: 393/3, Lily Avenue, Off Robert Gunawardane Mawatha, Battaramulla 10120, Sri Lanka
- National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka
| | - Don-Qin Dai
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Prabath K. Jayasinghe
- National Aquatic Resources Research and Development Agency (NARA), Crow Island, Colombo 00150, Sri Lanka
| | - Sudheera S. Gunasekara
- National Aquatic Resources Research and Development Agency (NARA), Crow Island, Colombo 00150, Sri Lanka
| | - Yuriko Nagano
- Deep-Sea Biodiversity Research Group, Marine Biodiversity and Environmental Assessment Research Center, Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Saowaluck Tibpromma
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattawut Boonyuen
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
7
|
Zhu D, Sethupathy S, Gao L, Nawaz MZ, Zhang W, Jiang J, Sun J. Microbial diversity and community structure in deep-sea sediments of South Indian Ocean. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45793-45807. [PMID: 35152353 DOI: 10.1007/s11356-022-19157-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Microbial communities composed of bacteria, archaea and fungi play a pivotal role in driving the biogeochemical cycles in the marine ecosystem. Despite the vastness of the South Indian Ocean, only a few studies reported the simultaneous analysis of bacterial, archaeal and fungal diversity therein, particularly archaeal and fungal communities in deep-sea environments received less attention previously. In this study, microbial diversity, community composition and dynamics in microbial community structure in eight deep-sea sediment samples collected from different sites at varying depths of the South Indian Ocean were explored using Next-Generation Sequencing. In total, 21 bacterial phyla representing 541 OTUs were identified from the eight samples, where phylum Proteobacteria was found as the most abundant bacterial phylum in five out of eight samples. Firmicutes and Chloroflexi were the dominant phyla in the rest of the three samples. In the case of archaea, uncultured species belonging to the phyla Thaumarchaeota and Euryarchaeota were the abundant taxa in all the samples. Similarly, Ascomycota and Basidiomycota were the most abundant fungal phyla present therein. In all the eight samples studied here, about 10-58% and 19-26% OTUs in archaeal and fungal communities were mapped to unclassified taxa respectively, suggesting the lack of representation in databases. Co-occurrence network analysis further revealed that bacterial communities tend to be more dynamic than archaeal and fungal communities. This study provides interesting insights into the microbial diversity, community composition and dynamics in microbial community structure in the deep-sea sediments of the South Indian Ocean.
Collapse
Affiliation(s)
- Daochen Zhu
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Sivasamy Sethupathy
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Lu Gao
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Muhammad Zohaib Nawaz
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jianxiong Jiang
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| |
Collapse
|
8
|
Liu B, Fu R, Wu B, Liu X, Xiang M. Rock-inhabiting fungi: terminology, diversity, evolution and adaptation mechanisms. Mycology 2022; 13:1-31. [PMID: 35186410 PMCID: PMC8856086 DOI: 10.1080/21501203.2021.2002452] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rock-inhabiting fungi (RIF) constitute an ecological group associated with terrestrial rocks. This association is generally restricted to the persistent colonisation of rocks and peculiar morphological features based on melanisation and slow growth, which endow RIF with significance in eukaryotic biology, special status in ecology, and exotic potential in biotechnology. There is a need to achieve a better understanding of the hidden biodiversity, antistress biology, origin and convergent evolution of RIF, which will facilitate cultural relic preservation, exploitation of the biogeochemical cycle of rock elements and biotechnology applications. This review focuses on summarising the current knowledge of rock-inhabiting fungi, with particular reference to terminology, biodiversity and geographic distribution, origin and evolution, and stress adaptation mechanisms. We especially teased out the definition through summing up the terms related to rock-inhabting fungi, and also provided a checklist of rock-inhabiting fungal taxa recorded following updated classification schemes.
Collapse
Affiliation(s)
- Bingjie Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rong Fu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xingzhong Liu
- Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Azpiazu-Muniozguren M, Perez A, Rementeria A, Martinez-Malaxetxebarria I, Alonso R, Laorden L, Gamboa J, Bikandi J, Garaizar J, Martinez-Ballesteros I. Fungal Diversity and Composition of the Continental Solar Saltern in Añana Salt Valley (Spain). J Fungi (Basel) 2021; 7:1074. [PMID: 34947056 PMCID: PMC8703443 DOI: 10.3390/jof7121074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/19/2022] Open
Abstract
The Añana Salt Valley in Spain is an active continental solar saltern formed 220 million years ago. To date, no fungal genomic studies of continental salterns have been published, although DNA metabarcoding has recently expanded researchers' ability to study microbial community structures. Accordingly, the aim of this present study was to evaluate fungal diversity using the internal transcribed spacer (ITS) metabarcoding at different locations along the saltern (springs, ponds, and groundwater) to describe the fungal community of this saline environment. A total of 380 fungal genera were detected. The ubiquity of Saccharomyces was observed in the saltern, although other halotolerant and halophilic fungi like Wallemia, Cladosporium, and Trimmatostroma were also detected. Most of the fungi observed in the saltern were saprotrophs. The fungal distribution appeared to be influenced by surrounding conditions, such as the plant and soil contact, cereal fields, and vineyards of this agricultural region.
Collapse
Affiliation(s)
- Maia Azpiazu-Muniozguren
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.A.-M.); (A.P.); (I.M.-M.); (R.A.); (L.L.); (J.B.); (J.G.)
| | - Alba Perez
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.A.-M.); (A.P.); (I.M.-M.); (R.A.); (L.L.); (J.B.); (J.G.)
| | - Aitor Rementeria
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain;
| | - Irati Martinez-Malaxetxebarria
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.A.-M.); (A.P.); (I.M.-M.); (R.A.); (L.L.); (J.B.); (J.G.)
| | - Rodrigo Alonso
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.A.-M.); (A.P.); (I.M.-M.); (R.A.); (L.L.); (J.B.); (J.G.)
| | - Lorena Laorden
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.A.-M.); (A.P.); (I.M.-M.); (R.A.); (L.L.); (J.B.); (J.G.)
| | - Javier Gamboa
- Biogenetics, Portal de Zurbano 3, 6-B, 01013 Vitoria-Gasteiz, Spain;
| | - Joseba Bikandi
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.A.-M.); (A.P.); (I.M.-M.); (R.A.); (L.L.); (J.B.); (J.G.)
| | - Javier Garaizar
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.A.-M.); (A.P.); (I.M.-M.); (R.A.); (L.L.); (J.B.); (J.G.)
| | - Ilargi Martinez-Ballesteros
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.A.-M.); (A.P.); (I.M.-M.); (R.A.); (L.L.); (J.B.); (J.G.)
| |
Collapse
|
10
|
Ramírez GA, Mara P, Sehein T, Wegener G, Chambers CR, Joye SB, Peterson RN, Philippe A, Burgaud G, Edgcomb VP, Teske AP. Environmental factors shaping bacterial, archaeal and fungal community structure in hydrothermal sediments of Guaymas Basin, Gulf of California. PLoS One 2021; 16:e0256321. [PMID: 34495995 PMCID: PMC8425543 DOI: 10.1371/journal.pone.0256321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/03/2021] [Indexed: 01/04/2023] Open
Abstract
The flanking regions of Guaymas Basin, a young marginal rift basin located in the Gulf of California, are covered with thick sediment layers that are hydrothermally altered due to magmatic intrusions. To explore environmental controls on microbial community structure in this complex environment, we analyzed site- and depth-related patterns of microbial community composition (bacteria, archaea, and fungi) in hydrothermally influenced sediments with different thermal conditions, geochemical regimes, and extent of microbial mats. We compared communities in hot hydrothermal sediments (75-100°C at ~40 cm depth) covered by orange-pigmented Beggiatoaceae mats in the Cathedral Hill area, temperate sediments (25-30°C at ~40 cm depth) covered by yellow sulfur precipitates and filamentous sulfur oxidizers at the Aceto Balsamico location, hot sediments (>115°C at ~40 cm depth) with orange-pigmented mats surrounded by yellow and white mats at the Marker 14 location, and background, non-hydrothermal sediments (3.8°C at ~45 cm depth) overlain with ambient seawater. Whereas bacterial and archaeal communities are clearly structured by site-specific in-situ thermal gradients and geochemical conditions, fungal communities are generally structured by sediment depth. Unexpectedly, chytrid sequence biosignatures are ubiquitous in surficial sediments whereas deeper sediments contain diverse yeasts and filamentous fungi. In correlation analyses across different sites and sediment depths, fungal phylotypes correlate to each other to a much greater degree than Bacteria and Archaea do to each other or to fungi, further substantiating that site-specific in-situ thermal gradients and geochemical conditions that control bacteria and archaea do not extend to fungi.
Collapse
Affiliation(s)
- Gustavo A. Ramírez
- Department of Marine Sciences, University of North Carolina at Chapel Hill, NC, United States of America
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States of America
- * E-mail:
| | - Paraskevi Mara
- Geology and Geophysics Dept., Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Taylor Sehein
- Geology and Geophysics Dept., Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Gunter Wegener
- MARUM, Center for Marine Environmental Sciences, University Bremen, Germany
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Christopher R. Chambers
- Department of Marine Sciences, University of North Carolina at Chapel Hill, NC, United States of America
| | - Samantha B. Joye
- Department of Marine Sciences, University of Georgia, Athens, GA, United States of America
| | - Richard N. Peterson
- School of Coastal and Marine Systems Science, Coastal Carolina University, Conway, SC, United States of America
| | - Aurélie Philippe
- Univ. Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Gaëtan Burgaud
- Univ. Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Virginia P. Edgcomb
- Geology and Geophysics Dept., Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Andreas P. Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, NC, United States of America
| |
Collapse
|
11
|
Current Insight into Culture-Dependent and Culture-Independent Methods in Discovering Ascomycetous Taxa. J Fungi (Basel) 2021; 7:jof7090703. [PMID: 34575741 PMCID: PMC8467358 DOI: 10.3390/jof7090703] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
Culture techniques are vital in both traditional and modern fungal taxonomy. Establishing sexual-asexual links and synanamorphs, extracting DNA and secondary metabolites are mainly based on cultures. However, it is widely accepted that a large number of species are not sporulating in nature while others cannot be cultured. Recent ecological studies based on culture-independent methods revealed these unculturable taxa, i.e., dark taxa. Recent fungal diversity estimation studies suggested that environmental sequencing plays a vital role in discovering missing species. However, Sanger sequencing is still the main approach in determining DNA sequences in culturable species. In this paper, we summarize culture-based and culture-independent methods in the study of ascomycetous taxa. High-throughput sequencing of leaf endophytes, leaf litter fungi and fungi in aquatic environments is important to determine dark taxa. Nevertheless, currently, naming dark taxa is not recognized by the ICN, thus provisional naming of them is essential as suggested by several studies.
Collapse
|