1
|
Liu C, Shao J, Ma X, Tang Y, Li J, Li H, Chi X, Liu Z. A novel two-component system contributing the catabolism of c-di-GMP influences virulence in Aeromonas veronii. Front Microbiol 2025; 16:1527317. [PMID: 39980697 PMCID: PMC11841396 DOI: 10.3389/fmicb.2025.1527317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Response regulators from diverse two-component systems often function as diguanylate cyclases or phosphodiesterases, thereby enabling precise regulation of intracellular c-di-GMP levels to control bacterial virulence and motility. However, the regulatory mechanisms of c-di-GMP require further elucidation. Methods This study confirmed that ArrS and ArrR form a two-component system via structural analysis, two-hybrid, and phosphodiesterase activity detection. To evaluate the impact of ArrS/ArrR on intracellular c-di-GMP levels, biofilm detection, motility detection, fluorescence reporter plasmids, and LC-MS/MS analysis were employed. One-hybrid, EMSA, and RT-qPCR were used to demonstrate the function of ArgR on arrSR promoter. The roles of ArrS/ArrR in Aeromonas veronii were investigated using RT-qPCR, murine model, and proteomics. Results ArrS and ArrR constituted a two-component system in Aeromonas veronii and were transcriptionally repressed by ArgR. ArrR exhibited phosphodiesterase activity, which is inhibited through phosphorylation mediated by ArrS. In Aeromonas veronii, ArrS/ArrR significantly altered the intracellular c-di-GMP levels. In a murine model, ΔarrS exhibited increased pathogenicity, leading to elevated TNF-α and IFN-γ levels in serum, and severer toxicity to spleen and kidney. These effects might be elucidated by the upregulated inflammation-associated proteins in ΔarrS. Moreover, the exonuclease RecB was also up-regulated in ΔarrS. Discussion We elucidated the regulatory mechanism of ArrS/ArrR on intracellular c-di-GMP levels and its impact on the virulence in Aeromonas veronii, and discussed the intricate relationship between c-di-GMP metabolism and arginine metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhu Liu
- School of Life and Health Sciences, Hainan University, Haikou, China
| |
Collapse
|
2
|
Jurado-Martín I, Tomás-Cortázar J, Hou Y, Sainz-Mejías M, Mysior MM, Sadonès O, Huebner J, Romero-Saavedra F, Simpson JC, Baugh JA, McClean S. Proteomic approach to identify host cell attachment proteins provides protective Pseudomonas aeruginosa vaccine antigen FtsZ. NPJ Vaccines 2024; 9:204. [PMID: 39468053 PMCID: PMC11519640 DOI: 10.1038/s41541-024-00994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that causes severe nosocomial infections in susceptible individuals due to the emergence of multidrug-resistant strains. There are no approved vaccines against P. aeruginosa infections nor candidates in active clinical development, highlighting the need for novel candidates and strategies. Using a cell-blot proteomic approach, we reproducibly identified 49 proteins involved in interactions with human lung epithelial cells across four P. aeruginosa strains. Among these were cell division protein FtsZ and outer membrane protein OpmH. Escherichia coli BL21 cells overexpressing recombinant FtsZ or rOpmH showed a 66- and 15-fold increased ability to attach to 16HBE14o- cells, further supporting their involvement in host cell attachment. Both antigens led to proliferation of NK and CD8+ cytotoxic T cells, significant increases in the production of IFN-γ, IL-17A, TNF and IL-4 in immunised mice and elicited strong antigen-specific serological IgG1 and IgG2c responses. Immunisation with FtsZ significantly reduced bacterial burden in the lungs by 1.9-log CFU and dissemination to spleen by 1.8-log CFU. The protective antigen candidate, FtsZ, would not have been identified by traditional approaches relying on either virulence mechanisms or sequence-based predictions, opening new avenues in the development of an anti-P. aeruginosa vaccine.
Collapse
Affiliation(s)
- Irene Jurado-Martín
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Julen Tomás-Cortázar
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Yueran Hou
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Maite Sainz-Mejías
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Margaritha M Mysior
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Océane Sadonès
- Division of Pediatric Infectious Disease, Hauner Children's Hospital, LMU, Munich, Germany
| | - Johannes Huebner
- Division of Pediatric Infectious Disease, Hauner Children's Hospital, LMU, Munich, Germany
| | - Felipe Romero-Saavedra
- Division of Pediatric Infectious Disease, Hauner Children's Hospital, LMU, Munich, Germany
| | - Jeremy C Simpson
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - John A Baugh
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Wang L, Zeng Q, Hu J, Bao Z, Wang M. Proteome analysis of outer membrane vesicles from Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease. J Invertebr Pathol 2024; 204:108082. [PMID: 38447863 DOI: 10.1016/j.jip.2024.108082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
A specific strain of Vibrio parahaemolyticus (VpAHPND) causes acute hepatopancreatic necrosis disease (AHPND), leading to significant losses in shrimp aquaculture. Outer membrane vesicles (OMVs) are naturally secreted by Gram-negative bacteria, and their significant roles in host-pathogen interactions and pathogenicity have been recognized. In the present study, OMVs were isolated from VpAHPND by differential-ultracentrifugation and used for proteomics analysis. In the Nano-HPLC-MS/MS analysis, totally 645 proteins were determined, including virulence factors, immunogenic proteins, outer membrane protein, bacterial secretory proteins, ribosomal proteins, protease, and iron regulation proteins. Furthermore, GO and KEGG annotations indicated that proteins identified in VpAHPND-OMVs are involved in metabolism, regulation of multiple biological processes, genetic information processes, immunity and more. Meanwhile, toxin proteins PirAvp and PirBvp, associated with VpAHPND pathogenicity, were also identified in the proteome of VpAHPND-OMVs. Our objective is to identify the protein composition of OMVs released by VpAHPND, analyzing the potential for cytotoxicity and immunomodulatory activity of these granule hosts. This study is crucial for understanding the roles played by bacterial-derived vesicles in the disease process, given that these vesicles carry relevant activities inherent to the bacteria that produce them.
Collapse
Affiliation(s)
- Lihan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; Hebei Xinhai Aquatic Biotechnology Co., Ltd, Cangzhou 061101, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; Hebei Xinhai Aquatic Biotechnology Co., Ltd, Cangzhou 061101, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China.
| |
Collapse
|
4
|
Zhou Y, Cheng Y, Ma T, Wang J, Li S, Wang J, Han L, Hou X, Ma X, Jiang S, Li P, Lv J, Han B, Da R. Transcriptomic and phenotype analysis revealed the role of rpoS in stress resistance and virulence of a novel ST3355 ESBL-producing hypervirulent Klebsiella pneumoniae isolate. Front Cell Infect Microbiol 2023; 13:1259472. [PMID: 37937207 PMCID: PMC10627032 DOI: 10.3389/fcimb.2023.1259472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/29/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction An extended-spectrum beta-lactamase (ESBL)-hypervirulent Klebsiella pneumoniae (HvKP) strain HKE9 was isolated from the blood in an outpatient. Methods The effect of the global regulatory factor RpoS on antimicrobial resistance, pathogenicity, and environmental adaptability was elucidated. Results HKE9 is a novel ST3355 (K20/O2a) hypervirulent strain with a positive string test and resistant to cephems except cefotetan. It has a genome size of 5.6M, including two plasmids. CTX-M-15 was found in plasmid 2, and only ompk37 was found in the chromosome. HKE9 could produce bacterial siderophores, and genes of enterobactin, yersiniabactin, aerobactin, and salmochelin have been retrieved in the genome. As a global regulatory factor, knockout of rpoS did not change antimicrobial resistance or hemolytic phenotype while increasing the virulence to Galleria mellonella larvae and showing higher viscosity. Moreover, rpoS knockout can increase bacterial competitiveness and cell adhesion ability. Interestingly, HKE9-M-rpoS decreased resistance to acidic pH, high osmotic pressure, heat shock, and ultraviolet and became sensitive to disinfectants (H2O2, alcohol, and sodium hypochlorite). Although there were 13 Type 6 secretion system (T6SS) core genes divided into two segments with tle1 between segments in the chromosome, transcriptomic analysis showed that rpoS negatively regulated T4SS located on plasmid 2, type 1, and type 3 fimbriae and positively regulate genes responsible for acidic response, hyperosmotic pressure, heat shock, oxidative stress, alcohol and hypochlorous acid metabolism, and quorum sensing. Discussion Here, this novel ST3355 ESBL-HvKP strain HKE9 may spread via various clonal types. The important regulation effect of rpoS is the enhanced tolerance and resistance to environmental stress and disinfectants, which may be at the cost of reducing virulence and regulated by T4SS.
Collapse
Affiliation(s)
- Yi Zhou
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Yue Cheng
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Tianyou Ma
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Jun Wang
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
- Department of Microbiology Laboratory, Tongchuan Center for Disease Control and Prevention, Tongchuan, Shaanxi, China
| | - Shaoru Li
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Jingdan Wang
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Lei Han
- School of Basic Medicine, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Xinyao Hou
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Xinxin Ma
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Sijin Jiang
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Pu Li
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Jia Lv
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Bei Han
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Rong Da
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
5
|
Xu Q, Guo M, Yu F. β-Barrel Assembly Machinery (BAM) Complex as Novel Antibacterial Drug Target. Molecules 2023; 28:molecules28093758. [PMID: 37175168 PMCID: PMC10180388 DOI: 10.3390/molecules28093758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 05/15/2023] Open
Abstract
The outer membrane of Gram-negative bacteria is closely related to the pathogenicity and drug resistance of bacteria. Outer membrane proteins (OMPs) are a class of proteins with important biological functions on the outer membrane. The β-barrel assembly machinery (BAM) complex plays a key role in OMP biogenesis, which ensures that the OMP is inserted into the outer membrane in a correct folding manner and performs nutrient uptake, antibiotic resistance, cell adhesion, cell signaling, and maintenance of membrane stability and other functions. The BAM complex is highly conserved among Gram-negative bacteria. The abnormality of the BAM complex will lead to the obstruction of OMP folding, affect the function of the outer membrane, and eventually lead to bacterial death. In view of the important role of the BAM complex in OMP biogenesis, the BAM complex has become an attractive target for the development of new antibacterial drugs against Gram-negative bacteria. Here, we summarize the structure and function of the BAM complex and review the latest research progress of antibacterial drugs targeting BAM in order to provide a new perspective for the development of antibiotics.
Collapse
Affiliation(s)
- Qian Xu
- Laboratory of Molecular Pathology, Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Min Guo
- Allergy Clinic, Zibo Central Hospital, Zibo 255000, China
| | - Feiyuan Yu
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
6
|
Tutelyan AV, Shlykova DS, Voskanyan SL, Gaponov AM, Pisarev VM. Molecular Epidemiology of Hypervirulent K. pneumoniae and Problems of Health-Care Associated Infections. Bull Exp Biol Med 2022; 172:507-522. [PMID: 35352244 PMCID: PMC8964242 DOI: 10.1007/s10517-022-05424-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 12/25/2022]
Abstract
The review describes virulence factors of hypervirulent K. pneumoniae (hvKp) including genes determining its virulence and discusses their role in the development of health-care associated infections. The contribution of individual virulence factors and their combination to the development of the hypervirulence and the prospects of using these factors as biomarkers and therapeutic targets are described. Virulence factors of hvKp and "classical" K. pneumoniae strains (cKp) with no hypervirulence genes were compared. The mechanisms of biofilm formation by hvKp and high incidence of its antibiotic resistance are of particular importance for in health care institutions. Therefore, the development of methods for hvKp identification allowing early prevention of severe hvKp infection and novel approaches to abrogate its spreading are new challenges for epidemiology, infection diseases, and critical care medicine. New technologies including bacteriological and molecular studies make it possible to develop innovative strategies to diagnose and treat infection caused by hvKp. These include monitoring of both genetic biomarkers of hvKp and resistance plasmid that carry of virulence genes and antibiotic resistance genes, creation of immunological agents for the prevention and therapy of hvKp (vaccines, monoclonal antibodies) as well as personalized hvKp-specific phage therapies and pharmaceuticals enhancing the effect of antibiotics. A variety of approaches can reliably prepare our medicine for a new challenge: spreading of life-threatening health-care associated infections caused by antibiotic-resistant hvKp strains.
Collapse
Affiliation(s)
- A V Tutelyan
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia
| | - D S Shlykova
- Federal Research Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Sh L Voskanyan
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia
| | - A M Gaponov
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia
- Federal Research Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - V M Pisarev
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia.
- Federal Research Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia.
| |
Collapse
|
7
|
From Klebsiella pneumoniae Colonization to Dissemination: An Overview of Studies Implementing Murine Models. Microorganisms 2021; 9:microorganisms9061282. [PMID: 34204632 PMCID: PMC8231111 DOI: 10.3390/microorganisms9061282] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative pathogen responsible for community-acquired and nosocomial infections. The strains of this species belong to the opportunistic group, which is comprised of the multidrug-resistant strains, or the hypervirulent group, depending on their accessory genome, which determines bacterial pathogenicity and the host immune response. The aim of this survey is to present an overview of the murine models mimicking K. pneumoniae infectious processes (i.e., gastrointestinal colonization, urinary, pulmonary, and systemic infections), and the bacterial functions deployed to colonize and disseminate into the host. These in vivo approaches are pivotal to develop new therapeutics to limit K. pneumoniae infections via a modulation of the immune responses and/or microbiota.
Collapse
|
8
|
The KbvR Regulator Contributes to Capsule Production, Outer Membrane Protein Biosynthesis, Antiphagocytosis, and Virulence in Klebsiella pneumoniae. Infect Immun 2021; 89:IAI.00016-21. [PMID: 33593891 DOI: 10.1128/iai.00016-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 01/27/2021] [Indexed: 01/17/2023] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen that mostly affects patients with weakened immune systems, but a few serotypes (especially K1 and K2) are highly invasive and result in systemic infection in healthy persons. The ability to evade and survive the components of the innate immune system is critical in infection. To investigate the role and mechanism of transcription regulator KP1_RS12260 (KbvR) in virulence and defense against the innate immune response, kbvR deletion mutant and complement strains were constructed. The in vivo animal infection assay and in vitro antiphagocytosis assay demonstrate K. pneumoniae KbvR is an important regulator that contributes to virulence and the defense against phagocytosis of macrophages. The transcriptome analysis and phenotype experiments demonstrated that deletion of kbvR decreased production of capsular polysaccharide (CPS) and biosynthesis of partly outer membrane proteins (OMPs). The findings suggest that KbvR is a global regulator that confers pathoadaptive phenotypes, which provide several implications for improving our understanding of the pathogenesis of K. pneumoniae.
Collapse
|
9
|
Diederichs KA, Buchanan SK, Botos I. Building Better Barrels - β-barrel Biogenesis and Insertion in Bacteria and Mitochondria. J Mol Biol 2021; 433:166894. [PMID: 33639212 PMCID: PMC8292188 DOI: 10.1016/j.jmb.2021.166894] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/20/2023]
Abstract
β-barrel proteins are folded and inserted into outer membranes by multi-subunit protein complexes that are conserved across different types of outer membranes. In Gram-negative bacteria this complex is the barrel-assembly machinery (BAM), in mitochondria it is the sorting and assembly machinery (SAM) complex, and in chloroplasts it is the outer envelope protein Oep80. Mitochondrial β-barrel precursor proteins are translocated from the cytoplasm to the intermembrane space by the translocase of the outer membrane (TOM) complex, and stabilized by molecular chaperones before interaction with the assembly machinery. Outer membrane bacterial BamA interacts with four periplasmic accessory proteins, whereas mitochondrial Sam50 interacts with two cytoplasmic accessory proteins. Despite these major architectural differences between BAM and SAM complexes, their core proteins, BamA and Sam50, seem to function the same way. Based on the new SAM complex structures, we propose that the mitochondrial β-barrel folding mechanism follows the budding model with barrel-switching aiding in the release of new barrels. We also built a new molecular model for Tom22 interacting with Sam37 to identify regions that could mediate TOM-SAM supercomplex formation.
Collapse
Affiliation(s)
- Kathryn A Diederichs
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Hu Y, Anes J, Devineau S, Fanning S. Klebsiella pneumoniae: Prevalence, Reservoirs, Antimicrobial Resistance, Pathogenicity, and Infection: A Hitherto Unrecognized Zoonotic Bacterium. Foodborne Pathog Dis 2020; 18:63-84. [PMID: 33124929 DOI: 10.1089/fpd.2020.2847] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Klebsiella pneumoniae is considered an opportunistic pathogen, constituting an ongoing health concern for immunocompromised patients, the elderly, and neonates. Reports on the isolation of K. pneumoniae from other sources are increasing, many of which express multidrug-resistant (MDR) phenotypes. Three phylogroups were identified based on nucleotide differences. Niche environments, including plants, animals, and humans appear to be colonized by different phylogroups, among which KpI (K. pneumoniae) is commonly associated with human infection. Infections with K. pneumoniae can be transmitted through contaminated food or water and can be associated with community-acquired infections or between persons and animals involved in hospital-acquired infections. Increasing reports are describing detections along the food chain, suggesting the possibility exists that this could be a hitherto unexplored reservoir for this opportunistic bacterial pathogen. Expression of MDR phenotypes elaborated by these bacteria is due to the nature of various plasmids carrying antimicrobial resistance (AMR)-encoding genes, and is a challenge to animal, environmental, and human health alike. Raman spectroscopy has the potential to provide for the rapid identification and screening of antimicrobial susceptibility of Klebsiella isolates. Moreover, hypervirulent isolates linked with extraintestinal infections express phenotypes that may support their niche adaptation. In this review, the prevalence, reservoirs, AMR, Raman spectroscopy detection, and pathogenicity of K. pneumoniae are summarized and various extraintestinal infection pathways are further narrated to extend our understanding of its adaptation and survival ability in reservoirs, and associated disease risks.
Collapse
Affiliation(s)
- Yujie Hu
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - João Anes
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland
| | | | - Séamus Fanning
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China.,Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
11
|
Wang G, Zhao G, Chao X, Xie L, Wang H. The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176278. [PMID: 32872324 PMCID: PMC7503635 DOI: 10.3390/ijerph17176278] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Klebsiella pneumoniae is an important gram-negative opportunistic pathogen that causes a variety of infectious diseases, including urinary tract infections, bacteremia, pneumonia, and liver abscesses. With the emergence of multidrug-resistant (MDR) and hypervirulent K. pneumoniae (hvKP) strains, the rapid spread of these clinical strains in geography is particularly worrying. However, the detailed mechanisms of virulence and antibiotic resistance in K. pneumoniae are still not very clear. Therefore, studying and elucidating the pathogenic mechanisms and drug resistance mechanism of K. pneumoniae infection are important parts of current medical research. In this paper, we systematically summarized the virulence, biofilm, and antibiotic tolerance mechanisms of K. pneumoniae, and explored the application of whole genome sequencing and global proteomics, which will provide new clues for clinical treatment of K. pneumoniae.
Collapse
Affiliation(s)
| | | | | | - Longxiang Xie
- Correspondence: (L.X.); (H.W.); Tel.: +86-0371-22892960 (L.X.)
| | - Hongju Wang
- Correspondence: (L.X.); (H.W.); Tel.: +86-0371-22892960 (L.X.)
| |
Collapse
|
12
|
Identification of hypervirulent Klebsiella pneumoniae isolates using the string test in combination with Galleria mellonella infectivity. Eur J Clin Microbiol Infect Dis 2020; 39:1673-1679. [PMID: 32318968 DOI: 10.1007/s10096-020-03890-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/31/2020] [Indexed: 10/23/2022]
Abstract
Distinguishing between hypervirulent Klebsiella pneumoniae (hvKp) and classical Klebsiella pneumoniae (cKp) is a challenge to clinical laboratories. The aim of this study was to determine the practicability of combining the G. mellonella killing assay with a string test to differentiate hvKp from cKp. One hundred and three clinical K. pneumoniae isolates were collected. PCR amplification and wzi sequencing were used to determine the capsular serotype. Virulence genes allS, iro, iuc, and rmpA2, used frequently to identify hvKp, were detected by PCR. The virulence of K. pneumoniae isolates was evaluated using the following assays in parallel: molecular markers detection, G. mellonella killing assay alone, G. mellonella killing assay combined with the string test, and mouse infection. The results showed that the sensitivity, specificity, positive predictive value, and negative predictive value of combining the G. mellonella killing assay with a string test were 95.56%, 94.83%, 93.48%, and 96.49%, respectively, compared with mouse infection used as a positive reference. These values were significantly greater than those obtained using the G. mellonella killing assay only. The sensitivity, specificity, positive predictive value, and negative predictive value of allS, iro, iuc, and rmpA2 were greater than 77.78%, but less than combining the G. mellonella killing assay and string test. G. mellonella killing assay used in conjugation with the string test is a relatively simple and accurate method to assess K. pneumoniae virulence and differentiate between hvKp and cKp.
Collapse
|
13
|
Hsieh PF, Lu YR, Lin TL, Lai LY, Wang JT. Klebsiella pneumoniae Type VI Secretion System Contributes to Bacterial Competition, Cell Invasion, Type-1 Fimbriae Expression, and In Vivo Colonization. J Infect Dis 2019; 219:637-647. [PMID: 30202982 PMCID: PMC6350951 DOI: 10.1093/infdis/jiy534] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/03/2018] [Indexed: 01/25/2023] Open
Abstract
Background We previously isolated a Klebsiella pneumoniae strain, NTUH-K2044, from a community-acquired pyogenic liver abscess (PLA) patient. Analysis of the NTUH-K2044 genome revealed that this strain harbors 2 putative type VI secretion system (T6SS)-encoding gene clusters. Methods The distribution of T6SS genes in the PLA and intestinal-colonizing K pneumoniae clinical isolates was examined. icmF1-, icmF2-, icmF1/icmF2-, and hcp-deficient K pneumoniae strains were constructed using an unmarked deletion method. The roles of T6SSs in antibacterial activity, type-1 fimbriae expression, cell adhesion, and invasion and intestinal colonization were determined. Results The prevalence of T6SSs is higher in the PLA strains than in the intestinal-colonizing strains (37 of 42 vs 54 of 130). Deletion of icmF1/icmF2 and hcp genes significantly reduced interbacterial and intrabacterial killing. Strain deleted for icmF1 and icmF2 exhibited decreased transcriptional expression of type-1 fimbriae and reduced adherence to and invasion of human colorectal epithelial cells and was attenuated for in vivo competition to enable colonization of the host gut. Finally, Hcp expression in K pneumoniae was silenced by the histone-like nucleoid structuring protein via direct binding. Conclusions These results provide new insights into T6SS-mediated bacterial competition and attachment in K pneumoniae and could facilitate the prevention of K pneumoniae infection.
Collapse
Affiliation(s)
- Pei-Fang Hsieh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei
| | - Yi-Rou Lu
- Department of Microbiology, National Taiwan University College of Medicine, Taipei
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei
| | - Li-Yin Lai
- Department of Microbiology, National Taiwan University College of Medicine, Taipei
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei.,Department of Internal Medicine, National Taiwan University Hospital, Taipei
| |
Collapse
|
14
|
Wu R, Stephenson R, Gichaba A, Noinaj N. The big BAM theory: An open and closed case? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183062. [PMID: 31520605 DOI: 10.1016/j.bbamem.2019.183062] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022]
Abstract
The β-barrel assembly machinery (BAM) is responsible for the biogenesis of outer membrane proteins (OMPs) into the outer membranes of Gram-negative bacteria. These OMPs have a membrane-embedded domain consisting of a β-barrel fold which can vary from 8 to 36 β-strands, with each serving a diverse role in the cell such as nutrient uptake and virulence. BAM was first identified nearly two decades ago, but only recently has the molecular structure of the full complex been reported. Together with many years of functional characterization, we have a significantly clearer depiction of BAM's structure, the intra-complex interactions, conformational changes that BAM may undergo during OMP biogenesis, and the role chaperones may play. But still, despite advances over the past two decades, the mechanism for BAM-mediated OMP biogenesis remains elusive. Over the years, several theories have been proposed that have varying degrees of support from the literature, but none has of yet been conclusive enough to be widely accepted as the sole mechanism. We will present a brief history of BAM, the recent work on the structures of BAM, and a critical analysis of the current theories for how it may function.
Collapse
Affiliation(s)
- Runrun Wu
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Robert Stephenson
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Abigail Gichaba
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
15
|
Ares MA, Sansabas A, Rodríguez-Valverde D, Siqueiros-Cendón T, Rascón-Cruz Q, Rosales-Reyes R, Jarillo-Quijada MD, Alcántar-Curiel MD, Cedillo ML, Torres J, Girón JA, De la Cruz MA. The Interaction of Klebsiella pneumoniae With Lipid Rafts-Associated Cholesterol Increases Macrophage-Mediated Phagocytosis Due to Down Regulation of the Capsule Polysaccharide. Front Cell Infect Microbiol 2019; 9:255. [PMID: 31380298 PMCID: PMC6650577 DOI: 10.3389/fcimb.2019.00255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022] Open
Abstract
Klebsiella pneumoniae successfully colonizes host tissues by recognizing and interacting with cholesterol present on membrane-associated lipid rafts. In this study, we evaluated the role of cholesterol in the expression of capsule polysaccharide genes of K. pneumoniae and its implication in resistance to phagocytosis. Our data revealed that exogenous cholesterol added to K. pneumoniae increases macrophage-mediated phagocytosis. To explain this event, the expression of capsular galF, wzi, and manC genes was determined in the presence of cholesterol. Down-regulation of these capsular genes occurred leading to increased susceptibility to phagocytosis by macrophages. In contrast, depletion of cholesterol from macrophage membranes led to enhanced expression of galF, wzi, and manC genes and to capsule production resulting in resistance to macrophage-mediated phagocytosis. Cholesterol-mediated repression of capsular genes was dependent on the RcsA and H-NS global regulators. Finally, cholesterol also down-regulated the expression of genes responsible for LPS core oligosaccharides production and OMPs. Our results suggest that cholesterol plays an important role for the host by reducing the anti-phagocytic properties of the K. pneumoniae capsule facilitating bacterial engulfment by macrophages during the bacteria-eukaryotic cell interaction mediated by lipid rafts.
Collapse
Affiliation(s)
- Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Alejandro Sansabas
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Diana Rodríguez-Valverde
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | | | - Quintín Rascón-Cruz
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ma Dolores Jarillo-Quijada
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María D Alcántar-Curiel
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María L Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
16
|
Ricci DP, Silhavy TJ. Outer Membrane Protein Insertion by the β-barrel Assembly Machine. EcoSal Plus 2019; 8:10.1128/ecosalplus.ESP-0035-2018. [PMID: 30869065 PMCID: PMC6419762 DOI: 10.1128/ecosalplus.esp-0035-2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Like all outer membrane (OM) constituents, integral OM β-barrel proteins in Gram-negative bacteria are synthesized in the cytoplasm and trafficked to the OM, where they are locally assembled into the growing OM by the ubiquitous β-barrel assembly machine (Bam). While the identities and structures of all essential and accessory Bam components have been determined, the basic mechanism of Bam-assisted OM protein integration remains elusive. Here we review mechanistic analyses of OM β-barrel protein folding and Bam dynamics and summarize recent insights that inform a general model for OM protein recognition and assembly by the Bam complex.
Collapse
Affiliation(s)
- Dante P Ricci
- Department of Early Research, Achaogen, Inc., South San Francisco, CA 94080
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
17
|
Klein K, Sonnabend MS, Frank L, Leibiger K, Franz-Wachtel M, Macek B, Trunk T, Leo JC, Autenrieth IB, Schütz M, Bohn E. Deprivation of the Periplasmic Chaperone SurA Reduces Virulence and Restores Antibiotic Susceptibility of Multidrug-Resistant Pseudomonas aeruginosa. Front Microbiol 2019; 10:100. [PMID: 30846971 PMCID: PMC6394205 DOI: 10.3389/fmicb.2019.00100] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/17/2019] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is one of the main causative agents of nosocomial infections and the spread of multidrug-resistant strains is rising. Therefore, novel strategies for therapy are urgently required. The outer membrane composition of Gram-negative pathogens and especially of Pa restricts the efficacy of antibiotic entry into the cell and determines virulence. For efficient outer membrane protein biogenesis, the β-barrel assembly machinery (BAM) complex in the outer membrane and periplasmic chaperones like Skp and SurA are crucial. Previous studies indicated that the importance of individual proteins involved in outer membrane protein biogenesis may vary between different Gram-negative species. In addition, since multidrug-resistant Pa strains pose a serious global threat, the interference with both virulence and antibiotic resistance by disturbing outer membrane protein biogenesis might be a new strategy to cope with this challenge. Therefore, deletion mutants of the non-essential BAM complex components bamB and bamC, of the skp homolog hlpA as well as a conditional mutant of surA were investigated. The most profound effects for both traits were associated with reduced levels of SurA, characterized by increased membrane permeability, enhanced sensitivity to antibiotic treatment and attenuation of virulence in a Galleria mellonella infection model. Strikingly, the depletion of SurA in a multidrug-resistant clinical bloodstream isolate re-sensitized the strain to antibiotic treatment. From our data we conclude that SurA of Pa serves as a promising target for developing a drug that shows antiinfective activity and re-sensitizes multidrug-resistant strains to antibiotics.
Collapse
Affiliation(s)
- Kristina Klein
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universität Tübingen, Tübingen, Germany
| | - Michael S. Sonnabend
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universität Tübingen, Tübingen, Germany
| | - Lisa Frank
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universität Tübingen, Tübingen, Germany
| | - Karolin Leibiger
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universität Tübingen, Tübingen, Germany
| | | | - Boris Macek
- Proteome Center Tübingen, Universität Tübingen, Tübingen, Germany
| | - Thomas Trunk
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack C. Leo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ingo B. Autenrieth
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universität Tübingen, Tübingen, Germany
| | - Monika Schütz
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universität Tübingen, Tübingen, Germany
| | - Erwin Bohn
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Torres VVL, Heinz E, Stubenrauch CJ, Wilksch JJ, Cao H, Yang J, Clements A, Dunstan RA, Alcock F, Webb CT, Dougan G, Strugnell RA, Hay ID, Lithgow T. An investigation into the Omp85 protein BamK in hypervirulent Klebsiella pneumoniae, and its role in outer membrane biogenesis. Mol Microbiol 2018; 109:584-599. [PMID: 29873128 DOI: 10.1111/mmi.13990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2018] [Indexed: 12/29/2022]
Abstract
Members of the Omp85 protein superfamily have important roles in Gram-negative bacteria, with the archetypal protein BamA being ubiquitous given its essential function in the assembly of outer membrane proteins. In some bacterial lineages, additional members of the family exist and, in most of these cases, the function of the protein is unknown. We detected one of these Omp85 proteins in the pathogen Klebsiella pneumoniae B5055, and refer to the protein as BamK. Here, we show that bamK is a conserved element in the core genome of Klebsiella, and its expression rescues a loss-of-function ∆bamA mutant. We developed an E. coli model system to measure and compare the specific activity of BamA and BamK in the assembly reaction for the critical substrate LptD, and find that BamK is as efficient as BamA in assembling the native LptDE complex. Comparative structural analysis revealed that the major distinction between BamK and BamA is in the external facing surface of the protein, and we discuss how such changes may contribute to a mechanism for resistance against infection by bacteriophage.
Collapse
Affiliation(s)
- Von Vergel L Torres
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800, Australia
| | - Eva Heinz
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800, Australia.,Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Christopher J Stubenrauch
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800, Australia
| | - Jonathan J Wilksch
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800, Australia.,Department of Microbiology & Immunology, University of Melbourne, Parkville, 3052, Australia
| | - Hanwei Cao
- Department of Microbiology & Immunology, University of Melbourne, Parkville, 3052, Australia
| | - Ji Yang
- Department of Microbiology & Immunology, University of Melbourne, Parkville, 3052, Australia
| | - Abigail Clements
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800, Australia.,MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Rhys A Dunstan
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800, Australia.,Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Felicity Alcock
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800, Australia.,Department of Biochemistry, Oxford University, Oxford, UK
| | - Chaille T Webb
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800, Australia
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Richard A Strugnell
- Department of Microbiology & Immunology, University of Melbourne, Parkville, 3052, Australia
| | - Iain D Hay
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800, Australia
| | - Trevor Lithgow
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800, Australia
| |
Collapse
|
19
|
Houston S, Lithgow KV, Osbak KK, Kenyon CR, Cameron CE. Functional insights from proteome-wide structural modeling of Treponema pallidum subspecies pallidum, the causative agent of syphilis. BMC STRUCTURAL BIOLOGY 2018; 18:7. [PMID: 29769048 PMCID: PMC5956850 DOI: 10.1186/s12900-018-0086-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/27/2018] [Indexed: 12/21/2022]
Abstract
Background Syphilis continues to be a major global health threat with 11 million new infections each year, and a global burden of 36 million cases. The causative agent of syphilis, Treponema pallidum subspecies pallidum, is a highly virulent bacterium, however the molecular mechanisms underlying T. pallidum pathogenesis remain to be definitively identified. This is due to the fact that T. pallidum is currently uncultivatable, inherently fragile and thus difficult to work with, and phylogenetically distinct with no conventional virulence factor homologs found in other pathogens. In fact, approximately 30% of its predicted protein-coding genes have no known orthologs or assigned functions. Here we employed a structural bioinformatics approach using Phyre2-based tertiary structure modeling to improve our understanding of T. pallidum protein function on a proteome-wide scale. Results Phyre2-based tertiary structure modeling generated high-confidence predictions for 80% of the T. pallidum proteome (780/978 predicted proteins). Tertiary structure modeling also inferred the same function as primary structure-based annotations from genome sequencing pipelines for 525/605 proteins (87%), which represents 54% (525/978) of all T. pallidum proteins. Of the 175 T. pallidum proteins modeled with high confidence that were not assigned functions in the previously annotated published proteome, 167 (95%) were able to be assigned predicted functions. Twenty-one of the 175 hypothetical proteins modeled with high confidence were also predicted to exhibit significant structural similarity with proteins experimentally confirmed to be required for virulence in other pathogens. Conclusions Phyre2-based structural modeling is a powerful bioinformatics tool that has provided insight into the potential structure and function of the majority of T. pallidum proteins and helped validate the primary structure-based annotation of more than 50% of all T. pallidum proteins with high confidence. This work represents the first T. pallidum proteome-wide structural modeling study and is one of few studies to apply this approach for the functional annotation of a whole proteome. Electronic supplementary material The online version of this article (10.1186/s12900-018-0086-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Karen Vivien Lithgow
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | | | - Chris Richard Kenyon
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium.,Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
20
|
Lima WC, Pillonel T, Bertelli C, Ifrid E, Greub G, Cosson P. Genome sequencing and functional characterization of the non-pathogenic Klebsiella pneumoniae KpGe bacteria. Microbes Infect 2018; 20:293-301. [PMID: 29753816 DOI: 10.1016/j.micinf.2018.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 01/26/2023]
Abstract
Klebsiella pneumoniae is an extensively studied human pathogen responsible for a wide variety of infections. Dictyostelium discoideum is a model host organism employed to study many facets of the complex interactions between phagocytic cells and bacteria. Historically, a non-pathogenic strain of K. pneumoniae has been used to feed Dictyostelium amoebae, and more recently to study cellular mechanisms involved in bacterial recognition, ingestion and killing. Here we provide the full genome sequence and functional characterization of this non-pathogenic KpGe strain.
Collapse
Affiliation(s)
- Wanessa C Lima
- Cell Physiology and Metabolism Dpt, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland.
| | - Trestan Pillonel
- Institute of Microbiology, University of Lausanne and University Hospital Center, 48 rue du Bugnon, CH-1011, Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, University of Lausanne and University Hospital Center, 48 rue du Bugnon, CH-1011, Lausanne, Switzerland
| | - Estelle Ifrid
- Cell Physiology and Metabolism Dpt, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, 48 rue du Bugnon, CH-1011, Lausanne, Switzerland
| | - Pierre Cosson
- Cell Physiology and Metabolism Dpt, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| |
Collapse
|
21
|
Guzmán Ramos PJ, Fernández Pérez C, Ayllón Santiago T, Baquero Artigao MR, Ortiz‐Díez G. Incidence of and associated factors for bacterial colonization of intravenous catheters removed from dogs in response to clinical complications. J Vet Intern Med 2018; 32:1084-1091. [PMID: 29602241 PMCID: PMC5980313 DOI: 10.1111/jvim.15118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 12/21/2017] [Accepted: 02/14/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Infection rate associated with intravenous (IV) catheter placement is emerging as an important issue in small animal veterinary medicine, mostly because of the economic costs associated with these infections. Identification of possible associated factors may provide useful information for the surveillance and prevention of such infections. OBJECTIVES To determine the incidence of positive bacterial cultures obtained from IV catheters used in dogs hospitalized for at least 48 hours and removed because of clinical complication. To identify the bacteria involved and factors associated with bacterial colonization. ANIMALS One-hundred eighty-two dogs that underwent IV catheterization from January 2015 to July 2015 at the Veterinary Teaching Hospital of Alfonso X el Sabio University of Madrid were enrolled in the study. RESULTS The bacterial colonization rate of all IV catheters removed in response to clinical complications was 39.6%, the cumulative proportion of catheters that remained in place at 24, 48, and 72 hours after placement was 89.5, 78, and 59.4%, respectively. Multivariable Cox proportional hazards regression indicated significant associations for staff who performed catheterization (junior, P = .002; student, P = .034) and use of steroidal anti-inflammatory drugs (P = .036). The most frequently isolated bacterium was Acinetobacter spp. (21.7%). CONCLUSIONS AND CLINICAL IMPORTANCE The bacterial colonization incidence related to IV catheter placement was slightly higher than the incidence described in other veterinary studies. Associated factors not previously described in veterinary medicine were found. The most frequently isolated organism was Acinetobacter spp., indicating its importance as an emerging pathogen in catheter colonization.
Collapse
Affiliation(s)
- Pedro Jose Guzmán Ramos
- Hospital Clínico Veterinario de la Universidad Alfonso X el Sabio, Universidad Alfonso X el SabioMadridSpain
| | - Cristina Fernández Pérez
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Hospital Universitario Clínico San Carlos (Servicio de Medicina Preventiva), Universidad Complutense de MadridMadridSpain
| | - Tania Ayllón Santiago
- Instituto Nacional de Infectología Evandro Chagas, Núcleo Operacional Centinela de Mosquitos Vetores FiocruzRío de JaneiroBrazil
- Departamento de Microbiología de la Universidad Alfonso X el SabioMadridSpain
| | | | - Gustavo Ortiz‐Díez
- Hospital Clínico Veterinario de la Universidad Alfonso X el Sabio, Universidad Alfonso X el SabioMadridSpain
| |
Collapse
|
22
|
A preliminary study on the proinflammatory mechanisms of Treponema pallidum outer membrane protein Tp92 in human macrophages and HMEC-1 cells. Microb Pathog 2017; 110:176-183. [DOI: 10.1016/j.micpath.2017.06.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023]
|
23
|
Xu B, Zhang P, Li W, Liu R, Tang J, Fan H. hsdS, Belonging to the Type I Restriction-Modification System, Contributes to the Streptococcus suis Serotype 2 Survival Ability in Phagocytes. Front Microbiol 2017; 8:1524. [PMID: 28848531 PMCID: PMC5552720 DOI: 10.3389/fmicb.2017.01524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic agent in swine and humans. Anti-phagocytosis and survival in phagocytic cells and whole blood is essential for bacteria to be pathogenic. In this study, the host specificity determinant specificity subunit (coded by hsdS) of the Type I Restriction-Modification system and two peptidoglycan-binding proteins (coded by lysM and lysM′, respectively), which were simultaneously found to be subjected to transcript-level influence by hsdS, were identified to facilitate the anti-phagocytosis of SS2 to a microglia cell line BV2. Furthermore, they significantly enhanced its survival in BV2, whole blood, and a peroxidation environment (H2O2) (p < 0.05), yet not in the acidic condition based on statistical analysis of the characteristic differences between gene mutants and wild-type SS2. In contrast, another specificity subunit, coded by hsdS′, that belonged to the same Type I Restriction-Modification system, only significantly reduced the survival ability of SS2 in the acidic condition when in the form of a gene-deleted mutant (p < 0.05), but it did not significantly influence the survival ability in other conditions mentioned above or have enhanced anti-phagocytosis action when compared with wild-type SS2. In addition, the mutation of hsdS significantly enhanced the secretion of nitric oxide and TNF-α by BV2 with SS2 incubation (p < 0.05). The SS2 was tested, and it failed to stimulate BV2 to produce IFN-γ. These results demonstrated that hsdS contributed to bacterial anti-phagocytosis and survival in adverse host environments through positively impacting the transcription of two peptidoglycan-binding protein genes, enhancing resistance to reactive oxygen species, and reducing the secretion of TNF-α and nitric oxide by phagocytes. These findings revealed new mechanisms of SS2 pathogenesis.
Collapse
Affiliation(s)
- Bin Xu
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Ping Zhang
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China.,Poultry Institute, Chinese Academy of Agricultural SciencesYangzhou, China
| | - Weiyi Li
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Rui Liu
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Jinsheng Tang
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| |
Collapse
|
24
|
Ieva R. Interfering with outer membrane biogenesis to fight Gram-negative bacterial pathogens. Virulence 2017; 8:1049-1052. [PMID: 28277902 DOI: 10.1080/21505594.2017.1296617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Raffaele Ieva
- a Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM) , Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS , Toulouse , France
| |
Collapse
|
25
|
Iadanza MG, Higgins AJ, Schiffrin B, Calabrese AN, Brockwell DJ, Ashcroft AE, Radford SE, Ranson NA. Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM. Nat Commun 2016; 7:12865. [PMID: 27686148 PMCID: PMC5056442 DOI: 10.1038/ncomms12865] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/04/2016] [Indexed: 02/06/2023] Open
Abstract
The β-barrel assembly machinery (BAM) is a ∼203 kDa complex of five proteins (BamA-E), which is essential for viability in E. coli. BAM promotes the folding and insertion of β-barrel proteins into the outer membrane via a poorly understood mechanism. Several current models suggest that BAM functions through a 'lateral gating' motion of the β-barrel of BamA. Here we present a cryo-EM structure of the BamABCDE complex, at 4.9 Å resolution. The structure is in a laterally open conformation showing that gating is independent of BamB binding. We describe conformational changes throughout the complex and interactions between BamA, B, D and E, and the detergent micelle that suggest communication between BAM and the lipid bilayer. Finally, using an enhanced reconstitution protocol and functional assays, we show that for the outer membrane protein OmpT, efficient folding in vitro requires lateral gating in BAM.
Collapse
Affiliation(s)
- Matthew G. Iadanza
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Mount Preston Street, Leeds LS2 9JT, UK
| | - Anna J. Higgins
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Mount Preston Street, Leeds LS2 9JT, UK
| | - Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Mount Preston Street, Leeds LS2 9JT, UK
| | - Antonio N. Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Mount Preston Street, Leeds LS2 9JT, UK
| | - David J. Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Mount Preston Street, Leeds LS2 9JT, UK
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Mount Preston Street, Leeds LS2 9JT, UK
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Mount Preston Street, Leeds LS2 9JT, UK
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Mount Preston Street, Leeds LS2 9JT, UK
| |
Collapse
|
26
|
Becker K, Sander P. Mycobacterium tuberculosis lipoproteins in virulence and immunity - fighting with a double-edged sword. FEBS Lett 2016; 590:3800-3819. [PMID: 27350117 DOI: 10.1002/1873-3468.12273] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/06/2016] [Accepted: 06/26/2016] [Indexed: 02/06/2023]
Abstract
Bacterial lipoproteins are secreted membrane-anchored proteins characterized by a lipobox motif. This lipobox motif directs post-translational modifications at the conserved cysteine through the consecutive action of three enzymes: Lgt, LspA and Lnt, which results in di- or triacylated forms. Lipoproteins are abundant in all bacteria including Mycobacterium tuberculosis and often involved in virulence and immunoregulatory processes. On the one hand, disruption of the biosynthesis pathway of lipoproteins leads to attenuation of M. tuberculosis in vivo, and mycobacteria deficient for certain lipoproteins have been assessed as attenuated live vaccine candidates. On the other hand, several mycobacterial lipoproteins form immunodominant antigens which promote an immune response. Some of these have been explored in DNA or subunit vaccination approaches against tuberculosis. The immune recognition of specific lipoproteins, however, might also benefit long-term survival of M. tuberculosis through immune modulation, while others induce protective responses. Exploiting lipoproteins as vaccines is thus a complex matter which requires deliberative investigation. The dual role of lipoproteins in the immunity to and pathogenicity of mycobacteria is discussed here.
Collapse
Affiliation(s)
- Katja Becker
- Institute of Medical Microbiology, University of Zurich, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Switzerland
| |
Collapse
|
27
|
Krachler AM. BamB and outer membrane biogenesis - The Achilles' heel for targeting Klebsiella infections? Virulence 2016; 7:508-11. [PMID: 27129024 DOI: 10.1080/21505594.2016.1184388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Anne Marie Krachler
- a Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham , UK
| |
Collapse
|