1
|
Wu Q, Ye Y, Liu Y, He Y, Li X, Yang S, Xu T, Hu X, Zeng G. Mr-lac3 and Mr-lcc2 in Metarhizium robertsii Regulate Conidiation and Maturation, Enhancing Tolerance to Abiotic Stresses and Pathogenicity. J Fungi (Basel) 2025; 11:176. [PMID: 40137214 PMCID: PMC11942773 DOI: 10.3390/jof11030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
As a type of multicopper oxidase, laccases play multiple biological roles in entomopathogenic fungi, enhancing their survival, development, and pathogenicity. However, the mechanisms by which laccases operate in these fungi remain under-researched. In this study, we identified two laccase-encoding genes, Mr-lac3 and Mr-lcc2, from Metarhizium robertsii, both of which are highly expressed during conidiation. Knocking out Mr-lac3 and Mr-lcc2 resulted in a significant increase in the conidial yields of M. robertsii. Furthermore, the relative expression levels of upstream regulators associated with the conidiation pathway were markedly up-regulated in ΔMr-lac3 and ΔMr-lcc2 compared to the wild-type strain during conidiation, indicating that Mr-lac3 and Mr-lcc2 negatively regulate conidia formation. qRT-PCR analyses revealed that Mr-lac3 and Mr-lcc2 are regulated by the pigment synthesis gene cluster, including Mr-Pks1, Mr-EthD, and Mlac1, and they also provide feedback regulation to jointly control pigment synthesis. Additionally, ΔMr-lac3 and ΔMr-lcc2 significantly reduced the trehalose content in conidia and increased the sensitivity to cell wall-perturbing agents, such as Congo red and guaiacol, which led to a marked decrease in tolerance to abiotic stresses. In conclusion, the laccases Mr-lac3 and Mr-lcc2 negatively regulate conidia formation while positively regulating conidial maturation, thereby enhancing tolerance to abiotic stresses and pathogenicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guohong Zeng
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Q.W.); (Y.Y.); (Y.L.); (Y.H.); (X.L.); (S.Y.); (T.X.); (X.H.)
| |
Collapse
|
2
|
Sephton-Clark P, Nguyen T, Hoa NT, Ashton P, van Doorn HR, Ly VT, Le T, Cuomo CA. Impact of pathogen genetics on clinical phenotypes in a population of Talaromyces marneffei from Vietnam. Genetics 2023; 224:iyad100. [PMID: 37226893 PMCID: PMC10411598 DOI: 10.1093/genetics/iyad100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
Talaromycosis, a severe and invasive fungal infection caused by Talaromyces marneffei, is difficult to treat and impacts those living in endemic regions of Southeast Asia, India, and China. While 30% of infections result in mortality, our understanding of the genetic basis of pathogenesis for this fungus is limited. To address this, we apply population genomics and genome-wide association study approaches to a cohort of 336 T. marneffei isolates collected from patients who enrolled in the Itraconazole vs Amphotericin B for Talaromycosis trial in Vietnam. We find that isolates from northern and southern Vietnam form two distinct geographical clades, with isolates from southern Vietnam associated with increased disease severity. Leveraging longitudinal isolates, we identify multiple instances of disease relapse linked to unrelated strains, highlighting the potential for multistrain infections. In more frequent cases of persistent talaromycosis caused by the same strain, we identify variants arising over the course of patient infections that impact genes predicted to function in the regulation of gene expression and secondary metabolite production. By combining genetic variant data with patient metadata for all 336 isolates, we identify pathogen variants significantly associated with multiple clinical phenotypes. In addition, we identify genes and genomic regions under selection across both clades, highlighting loci undergoing rapid evolution, potentially in response to external pressures. With this combination of approaches, we identify links between pathogen genetics and patient outcomes and identify genomic regions that are altered during T. marneffei infection, providing an initial view of how pathogen genetics affects disease outcomes.
Collapse
Affiliation(s)
- Poppy Sephton-Clark
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thu Nguyen
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ngo Thi Hoa
- Oxford University Clinical Research Unit, Oxford University, Ho Chi Minh City 749000, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX37LG, UK
- Microbiology department and Biological Research Center, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 740500, Vietnam
| | - Philip Ashton
- Veterinary and Ecological Sciences, Institute of Infection, University of Liverpool, Liverpool CH647TE, UK
| | - H Rogier van Doorn
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX37LG, UK
- Oxford University Clinical Research Unit, Oxford University, Hanoi 113000, Vietnam
| | - Vo Trieu Ly
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX37LG, UK
- Department of Medicine and Pharmacy, Hospital for Tropical Diseases, Ho Chi Minh City 749000, Vietnam
| | - Thuy Le
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC 27710, USA
- Tropical Medicine Research Center for Talaromycosis, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 740500, Vietnam
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Ayodeji FD, Shava B, Iqbal HMN, Ashraf SS, Cui J, Franco M, Bilal M. Biocatalytic Versatilities and Biotechnological Prospects of Laccase for a Sustainable Industry. Catal Letters 2023; 153:1932-1956. [DOI: 10.1007/s10562-022-04134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
|
4
|
Pruksaphon K, Amsri A, Thammasit P, Nosanchuk JD, Youngchim S. Extracellular vesicles derived from Talaromyces marneffei contain immunogenic compounds and modulate THP-1 macrophage responses. Front Immunol 2023; 14:1192326. [PMID: 37457708 PMCID: PMC10339390 DOI: 10.3389/fimmu.2023.1192326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Pathogenic eukaryotes including fungi release extracellular vesicles (EVs) which are composed of a variety of bioactive components, including peptides, nucleic acids, polysaccharides, and membrane lipids. EVs contain virulence-associated molecules suggesting a crucial role of these structures in disease pathogenesis. EVs derived from the pathogenic yeast phase of Talaromyces (Penicillium) marneffei, a causative agent of systemic opportunistic mycoses "talaromycosis," were studied for their immunogenic components and immunomodulatory properties. Some important virulence factors in EVs including fungal melanin and yeast phase specific mannoprotein were determined by immunoblotting. Furthermore, fluorescence microscopy revealed that T. marneffei EVs were internalized by THP-1 human macrophages. Co-incubation of T. marneffei EVs with THP-1 human macrophages resulted in increased levels of supernatant interleukin (IL)-1β, IL-6 and IL-10. The expression of THP-1 macrophage surface CD86 was significantly increased after exposed to T. marneffei EVs. These findings support the hypothesis that fungal EVs play an important role in macrophage "classical" M1 polarization. T. marneffei EVs preparations also increased phagocytosis, suggesting that EV components stimulate THP-1 macrophages to produce effective antimicrobial compounds. In addition, T. marneffei EVs stimulated THP-1 macrophages were more effective at killing T. marneffei conidia. These results indicate that T. marneffei EVs can potently modulate macrophage functions, resulting in the activation of these innate immune cells to enhance their antimicrobial activity.
Collapse
Affiliation(s)
- Kritsada Pruksaphon
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Artid Amsri
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patcharin Thammasit
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Joshua D. Nosanchuk
- Department of Medicine (Division of Infectious Diseases) and Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Sirida Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Sephton-Clark P, Nguyen T, Hoa NT, Ashton P, van Doorn HR, Ly VT, Le T, Cuomo CA. Impact of pathogen genetics on clinical phenotypes in a population of Talaromyces marneffei from Vietnam. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534926. [PMID: 37034632 PMCID: PMC10081260 DOI: 10.1101/2023.03.30.534926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Talaromycosis, a severe and invasive fungal infection caused by Talaromyces marneffei , is difficult to treat and impacts those living in endemic regions of southeast Asia, India, and China. While 30% of infections result in mortality, our understanding of the genetic basis of pathogenesis for this fungus is limited. To address this, we apply population genomics and genome wide association study approaches to a cohort of 336 T. marneffei isolates collected from patients who enrolled in the Itraconazole versus Amphotericin B for Talaromycosis (IVAP) trial in Vietnam. We find that isolates from northern and southern Vietnam form two distinct geographical clades, with isolates from southern Vietnam associated with increased disease severity. Leveraging longitudinal isolates, we identify multiple instances of disease relapse linked to unrelated strains, highlighting the potential for multi-strain infections. In more frequent cases of persistent talaromycosis caused by the same strain, we identify variants arising over the course of patient infections that impact genes predicted to function in the regulation of gene expression and secondary metabolite production. By combining genetic variant data with patient metadata for all 336 isolates, we identify pathogen variants significantly associated with multiple clinical phenotypes. In addition, we identify genes and genomic regions under selection across both clades, highlighting loci undergoing rapid evolution, potentially in response to external pressures. With this combination of approaches, we identify links between pathogen genetics and patient outcomes and identify genomic regions that are altered during T. marneffei infection, providing an initial view of how pathogen genetics affects disease outcomes.
Collapse
Affiliation(s)
- Poppy Sephton-Clark
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA 02142
| | - Thu Nguyen
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, North Carolina, USA 27710
| | - Ngo Thi Hoa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom OX37LG
- Microbiology department and Biological Research Center, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Philip Ashton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK CH647TE
| | - H. Rogier van Doorn
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom OX37LG
- Oxford University Clinical Research Unit, Hanoi, Vietnam
| | - Vo Trieu Ly
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom OX37LG
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Thuy Le
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, North Carolina, USA 27710
- Tropical Medicine Research Center for Talaromycosis, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Christina A. Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA 02142
| |
Collapse
|
6
|
Wang F, Han R, Chen S. An Overlooked and Underrated Endemic Mycosis-Talaromycosis and the Pathogenic Fungus Talaromyces marneffei. Clin Microbiol Rev 2023; 36:e0005122. [PMID: 36648228 PMCID: PMC10035316 DOI: 10.1128/cmr.00051-22] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Talaromycosis is an invasive mycosis endemic in tropical and subtropical Asia and is caused by the pathogenic fungus Talaromyces marneffei. Approximately 17,300 cases of T. marneffei infection are diagnosed annually, and the reported mortality rate is extremely high (~1/3). Despite the devastating impact of talaromycosis on immunocompromised individuals, particularly HIV-positive persons, and the increase in reported occurrences in HIV-uninfected persons, diagnostic and therapeutic approaches for talaromycosis have received far too little attention worldwide. In 2021, scientists living in countries where talaromycosis is endemic raised a global demand for it to be recognized as a neglected tropical disease. Therefore, T. marneffei and the infectious disease induced by this fungus must be treated with concern. T. marneffei is a thermally dimorphic saprophytic fungus with a complicated mycological growth process that may produce various cell types in its life cycle, including conidia, hyphae, and yeast, all of which are associated with its pathogenicity. However, understanding of the pathogenic mechanism of T. marneffei has been limited until recently. To achieve a holistic view of T. marneffei and talaromycosis, the current knowledge about talaromycosis and research breakthroughs regarding T. marneffei growth biology are discussed in this review, along with the interaction of the fungus with environmental stimuli and the host immune response to fungal infection. Importantly, the future research directions required for understanding this serious infection and its causative pathogenic fungus are also emphasized to identify solutions that will alleviate the suffering of susceptible individuals worldwide.
Collapse
Affiliation(s)
- Fang Wang
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - RunHua Han
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shi Chen
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Department of Burn and Plastic Surgery, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
7
|
Yan H, Mo Y, Liu S, Luo X, Liu L, Zhou L, Zhang X, Chen Y, Cao K. Case report: Hemophagocytic lymphohistiocytosis in a child with primary immunodeficiency infected with Talaromyces marneffei. Front Immunol 2022; 13:1038354. [PMID: 36532052 PMCID: PMC9755863 DOI: 10.3389/fimmu.2022.1038354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening immune-mediated disease that affects patients with known genetic defects and is increasingly found among those with autoimmune diseases and persistent infections. Talaromyces marneffei (TM) is a human opportunistic fungus that commonly infects immunodeficient or immunosuppressed individuals. Few TM-associated secondary HLH cases resulting from autoimmune deficiency have been reported previously. The current case study describes a pediatric patient hospitalized with recurrent fever and lymphadenopathy. The child had abnormal blood cell classification, and microscopy revealed mature granulocytes that phagocytized fungal spores. It was speculated that the patient was infected with TM. The pathogen was detected earlier than the blood culture and confirmed by metagenomic next-generation sequencing. Whole-exome sequencing revealed that the patient had complex mutations associated with immunodeficiency. This included a mutation in exon 3 of the CD40LG gene, c.346G>A, which may be linked to hyper-IgM syndrome, a primary immunodeficiency disease with immunoglobulin conversion recombination defects that could explain the patient's increased susceptibility to serious opportunistic infections. In addition, a heterozygous frameshift variant, c.820dup (p.Asp274GlyfsTer61), was detected in exon 6 of CARD9, a key gene associated with fungal immune surveillance. After 4 days of fungal treatment, the abnormal blood cell clusters disappeared, but other infections occurred in succession for 6 months after rehabilitation. The patient was followed with the aim of providing subsequent immunotherapy. This study found that infection can trigger HLH in HIV-negative individuals, highlighting the importance of early definitive identification of the causative agent and investigation of potential immunodeficiency.
Collapse
Affiliation(s)
- Huimin Yan
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Yunjun Mo
- Medical Laboratory, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
| | - Shilin Liu
- Division of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Xiaojuan Luo
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Lianlian Liu
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Lintao Zhou
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Xiuming Zhang
- Medical Laboratory, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
| | - Yunsheng Chen
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China,*Correspondence: Ke Cao, ; Yunsheng Chen,
| | - Ke Cao
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China,*Correspondence: Ke Cao, ; Yunsheng Chen,
| |
Collapse
|
8
|
Höft MA, Duvenage L, Hoving JC. Key thermally dimorphic fungal pathogens: shaping host immunity. Open Biol 2022; 12:210219. [PMID: 35259948 PMCID: PMC8905152 DOI: 10.1098/rsob.210219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/09/2022] [Indexed: 01/09/2023] Open
Abstract
Exposure to fungal pathogens from the environment is inevitable and with the number of at-risk populations increasing, the prevalence of invasive fungal infection is on the rise. An interesting group of fungal organisms known as thermally dimorphic fungi predominantly infects immunocompromised individuals. These potential pathogens are intriguing in that they survive in the environment in one form, mycelial phase, but when entering the host, they are triggered by the change in temperature to switch to a new pathogenic form. Considering the growing prevalence of infection and the need for improved diagnostic and treatment approaches, studies identifying key components of fungal recognition and the innate immune response to these pathogens will significantly contribute to our understanding of disease progression. This review focuses on key endemic dimorphic fungal pathogens that significantly contribute to disease, including Histoplasma, Coccidioides and Talaromyces species. We briefly describe their prevalence, route of infection and clinical presentation. Importantly, we have reviewed the major fungal cell wall components of these dimorphic fungi, the host pattern recognition receptors responsible for recognition and important innate immune responses supporting adaptive immunity and fungal clearance or the failure thereof.
Collapse
Affiliation(s)
- Maxine A. Höft
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Lucian Duvenage
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - J. Claire Hoving
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
9
|
Talaromyces marneffei Infection: Virulence, Intracellular Lifestyle and Host Defense Mechanisms. J Fungi (Basel) 2022; 8:jof8020200. [PMID: 35205954 PMCID: PMC8880324 DOI: 10.3390/jof8020200] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/02/2022] Open
Abstract
Talaromycosis (Penicilliosis) is an opportunistic mycosis caused by the thermally dimorphic fungus Talaromyces (Penicillium) marneffei. Similar to other major causes of systemic mycoses, the extent of disease and outcomes are the results of complex interactions between this opportunistic human pathogen and a host’s immune response. This review will highlight the current knowledge regarding the dynamic interaction between T. marneffei and mammalian hosts, particularly highlighting important aspects of virulence factors, intracellular lifestyle and the mechanisms of immune defense as well as the strategies of the pathogen for manipulating and evading host immune cells.
Collapse
|
10
|
Liu S, Youngchim S, Zamith-Miranda D, Nosanchuk JD. Fungal Melanin and the Mammalian Immune System. J Fungi (Basel) 2021; 7:jof7040264. [PMID: 33807336 PMCID: PMC8066723 DOI: 10.3390/jof7040264] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Melanins are ubiquitous complex polymers that are commonly known in humans to cause pigmentation of our skin. Melanins are also present in bacteria, fungi, and helminths. In this review, we will describe the diverse interactions of fungal melanin with the mammalian immune system. We will particularly focus on Cryptococcus neoformans and also discuss other major melanotic pathogenic fungi. Melanin interacts with the immune system through diverse pathways, reducing the effectiveness of phagocytic cells, binding effector molecules and antifungals, and modifying complement and antibody responses.
Collapse
Affiliation(s)
- Sichen Liu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (S.L.); (D.Z.-M.)
| | - Sirida Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Daniel Zamith-Miranda
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (S.L.); (D.Z.-M.)
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Joshua D. Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (S.L.); (D.Z.-M.)
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence:
| |
Collapse
|
11
|
Yang B, Wang J, Jiang H, Lin H, Ou Z, Ullah A, Hua Y, Chen J, Lin X, Hu X, Zheng L, Wang Q. Extracellular Vesicles Derived From Talaromyces marneffei Yeasts Mediate Inflammatory Response in Macrophage Cells by Bioactive Protein Components. Front Microbiol 2021; 11:603183. [PMID: 33488545 PMCID: PMC7819977 DOI: 10.3389/fmicb.2020.603183] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) loaded with proteins, nucleic acids, membrane lipids, and other virulence factors could participate in pathogenic processes in some fungi such as Cryptococcus neoformans and Candida albicans. However, the specific characteristics of EVs derived from Talaromyces marneffei (TM) still have not been figured out yet. In the present study, it has been observed that TM-derived EVs were a heterogeneous group of nanosized membrane vesicles (30–300 nm) under nanoparticle tracking analysis and transmission electron microscopy. The DiI-labeled EVs could be taken up by RAW 264.7 macrophage cells. Incubation of EVs with macrophages would result in increased expression levels of reactive oxygen species, nitric oxide, and some inflammatory factors including interleukin-1β, interleukin-6, interleukin-10, and tumor necrosis factor. Furthermore, the expression of co-stimulatory molecules (CD80, CD86, and MHC-II) was also increased in macrophages stimulated with EVs. The level of inflammatory factors secreted by macrophages showed a significant decrease when EVs were hydrolyzed by protease, while that of DNA and RNA hydrolase treatment remained unchanged. Subsequently, some virulence factors in EVs including heat shock protein, mannoprotein 1, and peroxidase were determined by liquid chromatography–tandem mass spectrometry. Taken together, our results indicated that the TM-derived EVs could mediate inflammatory response and its protein would play a key role in regulating the function of RAW 264.7 macrophage cells.
Collapse
Affiliation(s)
- Biao Yang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongye Jiang
- Shunde Hospital, The First People's Hospital of Shunde, Southern Medical University, Foshan, China
| | - Huixian Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihao Ou
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Amir Ullah
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuneng Hua
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Juanjiang Chen
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaomin Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Characterization of a novel yeast phase-specific antigen expressed during in vitro thermal phase transition of Talaromyces marneffei. Sci Rep 2020; 10:21169. [PMID: 33273617 PMCID: PMC7713699 DOI: 10.1038/s41598-020-78178-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Talaromyces marneffei is a dimorphic fungus that has emerged as an opportunistic pathogen particularly in individuals with HIV/AIDS. Since its dimorphism has been associated with its virulence, the transition from mold to yeast-like cells might be important for fungal pathogenesis, including its survival inside of phagocytic host cells. We investigated the expression of yeast antigen of T.marneffei using a yeast-specific monoclonal antibody (MAb) 4D1 during phase transition. We found that MAb 4D1 recognizes and binds to antigenic epitopes on the surface of yeast cells. Antibody to antigenic determinant binding was associated with time of exposure, mold to yeast conversion, and mammalian temperature. We also demonstrated that MAb 4D1 binds to and recognizes conidia to yeast cells’ transition inside of a human monocyte-like THP-1 cells line. Our studies are important because we demonstrated that MAb 4D1 can be used as a tool to study T.marneffei virulence, furthering the understanding of the therapeutic potential of passive immunity in this fungal pathogenesis.
Collapse
|
13
|
Janusz G, Pawlik A, Świderska-Burek U, Polak J, Sulej J, Jarosz-Wilkołazka A, Paszczyński A. Laccase Properties, Physiological Functions, and Evolution. Int J Mol Sci 2020; 21:ijms21030966. [PMID: 32024019 PMCID: PMC7036934 DOI: 10.3390/ijms21030966] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 01/16/2023] Open
Abstract
Discovered in 1883, laccase is one of the first enzymes ever described. Now, after almost 140 years of research, it seems that this copper-containing protein with a number of unique catalytic properties is widely distributed across all kingdoms of life. Laccase belongs to the superfamily of multicopper oxidases (MCOs)—a group of enzymes comprising many proteins with different substrate specificities and diverse biological functions. The presence of cupredoxin-like domains allows all MCOs to reduce oxygen to water without producing harmful byproducts. This review describes structural characteristics and plausible evolution of laccase in different taxonomic groups. The remarkable catalytic abilities and broad substrate specificity of laccases are described in relation to other copper-containing MCOs. Through an exhaustive analysis of laccase roles in different taxa, we find that this enzyme evolved to serve an important, common, and protective function in living systems.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
- Correspondence: ; Tel.: +48-81-537-5521
| | - Anna Pawlik
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Urszula Świderska-Burek
- Department of Botany, Mycology and Ecology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Jolanta Polak
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Justyna Sulej
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Andrzej Paszczyński
- Professor Emeritus, School of Food Science, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
14
|
Tsang CC, Lau SKP, Woo PCY. Sixty Years from Segretain’s Description: What Have We Learned and Should Learn About the Basic Mycology of Talaromyces marneffei? Mycopathologia 2019; 184:721-729. [DOI: 10.1007/s11046-019-00395-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Chen Y, Huang A, Ao W, Wang Z, Yuan J, Song Q, Wei D, Ye H. Proteomic analysis of serum proteins from HIV/AIDS patients with Talaromyces marneffei infection by TMT labeling-based quantitative proteomics. Clin Proteomics 2018; 15:40. [PMID: 30598657 PMCID: PMC6302400 DOI: 10.1186/s12014-018-9219-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Talaromyces marneffei (TM) is an emerging pathogenic fungus that can cause a fatal systemic mycosis in patients infected with human immunodeficiency virus (HIV). Although global awareness regarding HIV/TM coinfection is increasing little is known about the mechanism that mediates the rapid progression to HIV/AIDS disease in coinfected individuals. The aim of this study was to analyze the serum proteome of HIV/TM coinfected patients and to identify the associated protein biomarkers for TM in patients with HIV/AIDS. METHODS We systematically used multiplexed isobaric tandem mass tag labeling combined with liquid chromatography mass spectrometry (LC-MS/MS) to screen for differentially expressed proteins in the serum samples from HIV/TM-coinfected patients. RESULTS Of a total data set that included 1099 identified proteins, approximately 86% of the identified proteins were quantified. Among them, 123 proteins were at least 1.5-fold up-or downregulated in the serum between HIV/TM-coinfected and HIV-mono-infected patients. Furthermore, our results indicate that two selected proteins (IL1RL1 and THBS1) are potential biomarkers for distinguishing HIV/TM-coinfected patients. CONCLUSIONS This is the first report to provide a global proteomic profile of serum samples from HIV/TM-coinfected patients. Our data provide insights into the proteins that are involved as host response factors during infection. These data shed new light on the molecular mechanisms that are dysregulated and contribute to the pathogenesis of HIV/TM coinfection. IL1RL1 and THBS1 are promising diagnostic markers for HIV/TM-coinfected patients although further large-scale studies are needed. Thus, quantitative proteomic analysis revealed molecular differences between the HIV/TM-coinfected and HIV-mono-infected individuals, and might provide fundamental information for further detailed investigations.
Collapse
Affiliation(s)
- Yahong Chen
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Aiqiong Huang
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Wen Ao
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Zhengwu Wang
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Jinjin Yuan
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Qing Song
- Shanxi Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, 710072 People’s Republic of China
| | - Dahai Wei
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- The First Affiliated Hospital of Jiaxing University, 1882 Zhonghuan Road, Jiaxing, 314001 People’s Republic of China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 People’s Republic of China
| | - Hanhui Ye
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| |
Collapse
|
16
|
Iverson WO, Karanth S, Wilcox A, Pham CD, Lockhart SR, Nicholson SM. Talaromycosis (Penicilliosis) in a Cynomolgus Macaque. Vet Pathol 2018; 55:591-594. [PMID: 29444633 PMCID: PMC11900905 DOI: 10.1177/0300985818758468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A sexually mature Chinese-origin female Macaca fascicularis assigned to the high-dose group in a 26-week toxicology study with an experimental immunomodulatory therapeutic antibody (a CD40 L antagonist fusion protein) was euthanized at the scheduled terminal sacrifice on study day 192. The animal was healthy at study initiation and remained clinically normal throughout the study. On study day 141, abnormal clinical pathology changes were found during a scheduled evaluation; splenomegaly was detected on study day 149 and supported by ultrasound examination. At the scheduled necropsy, there was marked splenomegaly with a nodular and discolored appearance. Cytologic examination of a splenic impression smear revealed yeast-like organisms within macrophages. Histologically, there was disseminated systemic granulomatous inflammation with 2- to 3-μm oval, intracytoplasmic yeast-like organisms in multiple organs identified as Talaromyces (Penicillium) marneffei. This organism, not previously reported as a pathogen in macaques, causes an important opportunistic infection in immunosuppressed humans in specific global geographic locations.
Collapse
Affiliation(s)
| | | | - Angela Wilcox
- 2 Charles River Laboratories, Preclinical Services, Nevada, Reno, NV, USA
| | - Cau D Pham
- 3 Division of Foodborne, Waterborne and Environmental Disease, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Disease, Mycotic Diseases Branch, Fungal Reference Unit, Atlanta, GA, USA
| | - Shawn R Lockhart
- 3 Division of Foodborne, Waterborne and Environmental Disease, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Disease, Mycotic Diseases Branch, Fungal Reference Unit, Atlanta, GA, USA
| | | |
Collapse
|
17
|
Lei HL, Li LH, Chen WS, Song WN, He Y, Hu FY, Chen XJ, Cai WP, Tang XP. Susceptibility profile of echinocandins, azoles and amphotericin B against yeast phase of Talaromyces marneffei isolated from HIV-infected patients in Guangdong, China. Eur J Clin Microbiol Infect Dis 2018. [PMID: 29536323 DOI: 10.1007/s10096-018-3222-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Talaromyces marneffei (T. marneffei) can cause talaromycosis, a fatal systemic mycosis, in patients with AIDS. With the increasing number of talaromycosis cases in Guangdong, China, we aimed to investigate the susceptibility of 189 T. marneffei clinical strains to eight antifungal agents, including three echinocandins (anidulafungin, micafungin, and caspofungin), four azoles (posaconazole, itraconazole, voriconazole, and fluconazole), and amphotericin B, with determining minimal inhibition concentrations (MIC) by Sensititre YeastOne™ YO10 assay in the yeast phase. The MICs of anidulafungin, micafungin, caspofungin, posaconazole, itraconazole, voriconazole, fluconazole, and amphotericin B were 2 to > 8 μg/ml, >8 μg/ml, 2 to > 8 μg/ml, ≤ 0.008 to 0.06 μg/ml, ≤ 0.015 to 0.03 μg/ml, ≤ 0.008 to 0.06 μg/ml, 1 to 32 μg/ml, and ≤ 0.12 to 1 μg/ml, respectively. The MICs of all echinocandins were very high, while the MICs of posaconazole, itraconazole, and voriconazole, as well as amphotericin B were comparatively low. Notably, fluconazole was found to have a higher MIC than other azoles, and exhibited particularly weak activity against some isolates with MICs over 8 μg/ml. Our data in vitro support the use of amphotericin B, itraconazole, voriconazole, and posaconazole in management of talaromycosis and suggest potential resistance to fluconazole.
Collapse
Affiliation(s)
- H-L Lei
- Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510060, People's Republic of China
| | - L-H Li
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510060, People's Republic of China
| | - W-S Chen
- Department of Clinical Laboratory, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510060, People's Republic of China
| | - W-N Song
- Department of Clinical Laboratory, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510060, People's Republic of China
| | - Y He
- Department of Medical Ultrasonics, Guangzhou First People's Hospital, Guangzhou, Guangdong Province, 510060, People's Republic of China
| | - F-Y Hu
- Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510060, People's Republic of China
| | - X-J Chen
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510060, People's Republic of China
| | - W-P Cai
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510060, People's Republic of China
| | - X-P Tang
- Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510060, People's Republic of China.
| |
Collapse
|
18
|
Williamson PR. Role of laccase in the virulence of Talaromyces marneffei: A common link between AIDS-related fungal pathogens? Virulence 2016; 7:627-9. [PMID: 27282335 DOI: 10.1080/21505594.2016.1198867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Peter R Williamson
- a Laboratory of Clinical Infectious Diseases , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|