1
|
Hofkens N, Gestels Z, Abdellati S, Gabant P, Rodriguez-Villalobos H, Martin A, Kenyon C, Manoharan-Basil SS. Protective effect of microbisporicin (NAI-107) against vancomycin resistant Enterococcus faecium infection in a Galleria mellonella model. Sci Rep 2024; 14:4786. [PMID: 38413672 PMCID: PMC10899196 DOI: 10.1038/s41598-024-55262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
Increasing antimicrobial resistance in Enterococcus faecium necessitates the search for novel treatment agents, such as bacteriocins. In this study, we conducted an in vivo assessment of five bacteriocins, namely Lacticin Z, Lacticin Q, Garvicin KS (ABC), Aureocin A53 and Microbisporicin (NAI-107), against vanB-resistant Enterococcus faecium using a Galleria mellonella model. Our in vitro experiments demonstrated the efficacy of all five bacteriocins against vanB-resistant E. faecium with only NAI-107 demonstrating in vivo efficacy. Notably, NAI-107 exhibited efficacy across a range of tested doses, with the highest efficacy observed at a concentration of 16 µg/mL. Mortality rates in the group treated with 16 µg/mL NAI-107 were lower than those observed in the linezolid-treated group. These findings strongly suggest that NAI-107 holds promise as a potential alternative therapeutic agent for treating infections caused by resistant E. faecium and warrants further investigation.
Collapse
Affiliation(s)
- Nele Hofkens
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000, Antwerp, Belgium
| | - Zina Gestels
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000, Antwerp, Belgium
| | - Saïd Abdellati
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | | | | | | | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, 7700, South Africa
| | | |
Collapse
|
2
|
Habich A, Unterweger D. Investigating Secretion Systems and Effectors on Galleria mellonella. Methods Mol Biol 2024; 2715:601-608. [PMID: 37930555 DOI: 10.1007/978-1-0716-3445-5_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Infection experiments with Galleria mellonella enable the measurement of virulence that is mediated by secretion systems and their effector proteins in vivo. G. mellonella has an innate immune system and shares similarities with the complex host environment of mammals. Unlike other invertebrate model systems, experiments can be performed at mammalian body temperature. Here, we describe the systemic infection of G. mellonella with Pseudomonas aeruginosa with and without functional secretion systems. A Kaplan-Meier curve is constructed showing the percent survival of animals over time.
Collapse
Affiliation(s)
- Antonia Habich
- Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Daniel Unterweger
- Institute for Experimental Medicine, Kiel University, Kiel, Germany.
- Max Planck Institute for Evolutionary Biology, Plön, Germany.
| |
Collapse
|
3
|
Cunha F, Burne A, Casaro S, Brown MB, Bisinotto RS, Galvao KN. Establishing Galleria mellonella as an invertebrate model for the emerging multi-host pathogen Helcococcus ovis. Virulence 2023; 14:2186377. [PMID: 36862000 PMCID: PMC10026881 DOI: 10.1080/21505594.2023.2186377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Helcococcus ovis (H. ovis) can cause disease in a broad range of animal hosts, including humans, and has been described as an emerging bacterial pathogen in bovine metritis, mastitis, and endocarditis. In this study, we developed an infection model that showed H. ovis can proliferate in the hemolymph and induce dose-dependent mortality in the invertebrate model organism Galleria mellonella (G. mellonella). We applied the model and identified H. ovis isolates with attenuated virulence originating from the uterus of a healthy post-partum dairy cow (KG38) and hypervirulent isolates (KG37, KG106) originating from the uterus of cows with metritis. Medium virulence isolates were also isolated (KG36, KG104) from the uterus of cows with metritis. A major advantage of this model is that a clear differentiation in induced mortality between H. ovis isolates was detected in just 48 h, resulting in an effective infection model able to identify virulence differences between H. ovis isolates with a short turnaround time. Histopathology showed G. mellonella employs hemocyte-mediated immune responses to H. ovis infection, which are analogous to the innate immune response in cows. In summary, G. mellonella can be used as an invertebrate infection model for the emerging multi-host pathogen Helcococcus ovis.
Collapse
Affiliation(s)
- Federico Cunha
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
- Department of Animal Sciences, University of Florida College of Agriculture and Life Sciences, Gainesville, FL, USA
| | - Alexandra Burne
- D. H. Barron Reproductive and PerinatalBiology Research Program, University of Florida, Gainesville, FL, USA
| | - Segundo Casaro
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Mary B Brown
- D. H. Barron Reproductive and PerinatalBiology Research Program, University of Florida, Gainesville, FL, USA
| | - Rafael S Bisinotto
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Klibs N Galvao
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
- Department of Infectious Diseases and Immunology, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| |
Collapse
|
4
|
Snoek L, Karampatsas K, Bijlsma MW, Henneke P, Jauneikaite E, Khan UB, Zadoks RN, Le Doare K. Meeting report: Towards better risk stratification, prevention and therapy of invasive GBS disease, ESPID research meeting May 2022. Vaccine 2023; 41:6137-6142. [PMID: 37699783 DOI: 10.1016/j.vaccine.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/14/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
The European Society of Pediatric Infectious Diseases (ESPID) hosted the third Group B Streptococcus (GBS) Research Session in Athens on 11th May 2022, providing researchers and clinicians from around the world an opportunity to share and discuss recent advances in GBS pathophysiology, molecular and genetic epidemiology and how these new insights can help in improving prevention and control of early- and late-onset GBS disease. The meeting provided a state-of-the-art overview of the existing GBS prevention strategies and their limitations, and an opportunity to share the latest research findings. The first presentation provided an overview of current GBS prevention and treatment strategies. In the second presentation, the genomic and antimicrobial resistance profiles of invasive and colonizing GBS strains were presented. The third presentation explained the association of intrapartum antibiotic prophylaxis (IAP) with the development of late-onset disease (LOD) and the interplay of host innate immunity and GBS. The fourth presentation evaluated the role of genomics in understanding horizontal GBS transmission. The fifth presentation focused on the zoonotic links for certain GBS lineages and the last presentation described the protective role of breastmilk. Talks were followed with interactive discussions and concluded with recommendations on what is needed to further GBS clinical research; these included: (i) the development of better risk stratification methods by combining GBS virulence factors, serological biomarkers and clinical risk factors; (ii) further studies on the interplay of perinatal antimicrobials, disturbances in the development of host immunity and late-onset GBS disease; (iii) routine submission of GBS isolates to reference laboratories to help in detecting potential clusters by using genomic sequencing; (iv) collaboration in animal and human GBS studies to detect and prevent the emergence of new pathogenic sequence types; and (v) harnessing the plethora of immune factors in the breastmilk to develop adjunct therapies.
Collapse
Affiliation(s)
- Linde Snoek
- Department of Neurology, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Neuroscience, Neuroinfection and Inflammation, Amsterdam, Netherlands.
| | - Konstantinos Karampatsas
- Paediatric Infectious Diseases Research Group, Institute of Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - Merijn W Bijlsma
- Amsterdam Neuroscience, Neuroinfection and Inflammation, Amsterdam, Netherlands; Department of Paediatrics, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center and Faculty of Medicine, Freiburg, Germany; Institute for Infection Prevention and Control, University Medical Center and Faculty of Medicine, Freiburg, Germany
| | - Elita Jauneikaite
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Uzma B Khan
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom; Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ruth N Zadoks
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia
| | - Kirsty Le Doare
- Paediatric Infectious Diseases Research Group, Institute of Infection and Immunity, St. George's, University of London, London, United Kingdom
| |
Collapse
|
5
|
Schindler Y, Rahav G, Nissan I, Valenci G, Ravins M, Hanski E, Ment D, Tekes-Manova D, Maor Y. Type VII secretion system and its effect on group B Streptococcus virulence in isolates obtained from newborns with early onset disease and colonized pregnant women. Front Cell Infect Microbiol 2023; 13:1168530. [PMID: 37545859 PMCID: PMC10400891 DOI: 10.3389/fcimb.2023.1168530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction GBS may cause a devastating disease in newborns. In early onset disease of the newborn the bacteria are acquired from the colonized mother during delivery. We characterized type VII secretion system (T7SS), exporting small proteins of the WXG100 superfamily, in group B Streptococci (GBS) isolates from pregnant colonized women and newborns with early onset disease (EOD) to better understand T7SS contribution to virulence in these different clinical scenarios. Methods GBS genomes [N=33, 17 EOD isolates (serotype III/ST17) and 16 colonizing isolates (12 serotype VI/ST1, one serotype VI/ST19, one serotype VI/ST6, and two serotype 3/ST19)] were analyzed for presence of T7SS genes and genes encoding WXG100 proteins. We also perform bioinformatic analysis. Galleria mellonella larvae were used to compare virulence between colonizing, EOD, and mutant EOD isolates. The EOD isolate number 118659 (III/ST17) was used for knocking out the essC gene encoding a membrane-bound ATPase, considered the driver of T7SS. Results Most GBS T7SS loci encoded core component genes: essC, membrane-embedded proteins (essA; essB), modulators of T7SS activity (esaA; esaB; esaC) and effectors: [esxA (SAG1039); esxB (SAG1030)].Bioinformatic analysis indicated that based on sequence type (ST) the clinicalGBS isolates encode at least three distinct subtypes of T7SS machinery. In all ST1isolates we identified two copies of esxA gene (encoding putative WXG100proteins), when only 23.5% of the ST17 isolates harbored the esxA gene. Five ST17isolates encoded two copies of the essC gene. Orphaned WXG100 molecule(SAG0230), distinct from T7SS locus, were found in all tested strains, except inST17 strains where the locus was found in only 23.5% of the isolates. In ST6 andST19 isolates most of the structure T7SS genes were missing. EOD isolates demonstrated enhanced virulence in G. mellonella modelcompared to colonizing isolates. The 118659DessC strain was attenuated in itskilling ability, and the larvae were more effective in eradicating 118659DessC. Conclusions We demonstrated that T7SS plays a role during infection. Knocking out the essC gene, considered the driver of T7SS, decreased the virulence of ST17 responsible for EOD, causing them to be less virulent comparable to the virulence observed in colonizing isolates.
Collapse
Affiliation(s)
- Yulia Schindler
- Microbiology Laboratory, Mayanei Hayeshua Medical Center, Bney Brak, Israel
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Rahav
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Infectious Disease Unit, Sheba Medical Center, Ramat-Gan, Israel
| | - Israel Nissan
- Infectious Disease Unit, Sheba Medical Center, Ramat-Gan, Israel
- National Public Health Laboratory, Ministry of Health (Israel), Tel-Aviv, Israel
| | - Gal Valenci
- National Public Health Laboratory, Ministry of Health (Israel), Tel-Aviv, Israel
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Dorit Tekes-Manova
- Microbiology Laboratory, Mayanei Hayeshua Medical Center, Bney Brak, Israel
| | - Yasmin Maor
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Infectious Disease Unit, Wolfson Medical Center, Holon, Israel
| |
Collapse
|
6
|
Budziaszek J, Pilarczyk-Zurek M, Dobosz E, Kozinska A, Nowicki D, Obszanska K, Szalewska-Pałasz A, Kern-Zdanowicz I, Sitkiewicz I, Koziel J. Studies of Streptococcus anginosus Virulence in Dictyostelium discoideum and Galleria mellonella Models. Infect Immun 2023; 91:e0001623. [PMID: 37097148 DOI: 10.1128/iai.00016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
For many years, Streptococcus anginosus has been considered a commensal colonizing the oral cavity, as well as the gastrointestinal and genitourinary tracts. However, recent epidemiological and clinical data designate this bacterium as an emerging opportunistic pathogen. Despite the reported pathogenicity of S. anginosus, the molecular mechanism underpinning its virulence is poorly described. Therefore, our goal was to develop and optimize efficient and simple infection models that can be applied to examine the virulence of S. anginosus and to study host-pathogen interactions. Using 23 S. anginosus isolates collected from different infections, including severe and superficial infections, as well as an attenuated strain devoid of CppA, we demonstrate for the first time that Dictyostelium discoideum is a suitable model for initial, fast, and large-scale screening of virulence. Furthermore, we found that another nonvertebrate animal model, Galleria mellonella, can be used to study the pathogenesis of S. anginosus infection, with an emphasis on the interactions between the pathogen and host innate immunity. Examining the profile of immune defense genes, including antimicrobial peptides, opsonins, regulators of nodulation, and inhibitors of proteases, by quantitative PCR (qPCR) we identified different immune response profiles depending on the S. anginosus strain. Using these models, we show that S. anginosus is resistant to the bactericidal activity of phagocytes, a phenomenon confirmed using human neutrophils. Notably, since we found that the data from these models corresponded to the clinical severity of infection, we propose their further application to studies of the virulence of S. anginosus.
Collapse
Affiliation(s)
- Joanna Budziaszek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Pilarczyk-Zurek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Kozinska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Warsaw, Poland
| | - Dariusz Nowicki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Obszanska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Warsaw, Poland
| | | | | | - Izabela Sitkiewicz
- Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
7
|
Leal JT, Primon-Barros M, de Carvalho Robaina A, Pizzutti K, Mott MP, Trentin DS, Dias CAG. Streptococcus pneumoniae serotype 19A from carriers and invasive disease: virulence gene profile and pathogenicity in a Galleria mellonella model. Eur J Clin Microbiol Infect Dis 2023; 42:399-411. [PMID: 36790530 DOI: 10.1007/s10096-023-04560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE This study aimed to evaluate and compare the presence of genes related to surface proteins between isolates of Streptococcus pneumoniae from healthy carriers (HC) and invasive pneumococcal disease (IPD) with a particular focus on serotype 19A. METHODS The presence of these genes was identified by real-time PCR. Subsequently, we employed the Galleria mellonella larval infection model to study their effect on pathogenicity in vivo. RESULTS The percentage of selected virulence genes was similar between the HC and IPD groups (p > 0.05), and the genes lytA, nanB, pavA, pcpA, phtA, phtB, phtE, rrgA, and sipA were all present in both groups. However, the virulence profile of the isolates differed individually between HC and IPD groups. The highest lethality in G. mellonella was for IPD isolates (p < 0.01), even when the virulence profile was the same as compared to the HC isolates or when the nanA, pspA, pspA-fam1, and pspC genes were not present. CONCLUSIONS The occurrence of the investigated virulence genes was similar between HC and IPD S. pneumoniae serotype 19A groups. However, the IPD isolates showed a higher lethality in the alternative G. mellonella model than the HC isolates, regardless of the virulence gene composition, indicating that other virulence factors may play a decisive role in virulence. Currently, this is the first report using the in vivo G. mellonella model to study the virulence of clinical isolates of S. pneumoniae.
Collapse
Affiliation(s)
- Josiane Trevisol Leal
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
- Laboratório de Bacteriologia & Modelos Experimentais Alternativos, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Biociências (PPGBIO), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil
| | - Muriel Primon-Barros
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
| | - Amanda de Carvalho Robaina
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
| | - Kauana Pizzutti
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
| | - Mariana Preussler Mott
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
| | - Danielle Silva Trentin
- Laboratório de Bacteriologia & Modelos Experimentais Alternativos, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Biociências (PPGBIO), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil.
| | - Cícero Armídio Gomes Dias
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
| |
Collapse
|
8
|
Yang Z, Zhang F, Li D, Wang S, Pang Z, Chen L, Li R, Shi D. Correlation Between Drug Resistance and Virulence of Candida Isolates from Patients with Candidiasis. Infect Drug Resist 2022; 15:7459-7473. [PMID: 36544991 PMCID: PMC9762413 DOI: 10.2147/idr.s387675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose This article aims to provide a theoretical basis for new or adjuvant strategies to facilitate the early diagnosis and treatment of candidiasis and to determine if drug-resistant Candida would affect virulence. Patients and Methods Our strains were collected from patients diagnosed with candidiasis in our hospital. The strains were identified by MALDI-TOF system and ITS sequencing. Antifungal sensitivity testing in vitro was performed to evaluate susceptibility of these isolates to current widely used antifungal drugs. The Galleria mellonella larvae model infected by Candida spp. was used to compare the virulence of drug-resistant and susceptible Candida spp. Results A total of 206 Candida strains were collected from clinical specimens. Candida albicans was the most common species among them, and was predominantly isolated from male patients aged over 40 years in ICU environments suffering from pulmonary and/or cerebral conditions. The accuracy rate of MALDI TOF-MS identification was 92.72% when compared with ITS sequencing as the standard method. Most Candida species, except for C. tropicalis which showed high resistance to micafungin, showed high susceptibilities to voriconazole, itraconazole, amphotericin B and micafungin but were highly resistant to terbinafine. For each specific Candida species, the G. mellonella larvae model revealed that the virulence of drug-resistant Candida isolates did not markedly differ from that of the drug-susceptible isolates, however, the virulence was dose-dependent on inoculated fungal cells in this model. Conclusion The possibility of Candida infection should not be neglected in patients at critical care hospital settings and C. albicans is the most common causative agent. MALDI-TOF MS has the advantages of rapidity and high accuracy, and should be a preferred method for identification of Candida spp. in a clinical laboratory. Voriconazole, itraconazole, amphotericin B and micafungin can still be recommended as the first line antifungals to treat candidiasis.
Collapse
Affiliation(s)
- Zhiya Yang
- The Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, Shandong, 272111, People’s Republic of China
| | - Fangfang Zhang
- Department of Dermatology, Jining Dermatosis Prevention and Treatment Hospital, Jining, Shandong, 272000, People’s Republic of China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, 20057USA
| | - Sisi Wang
- The Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, Shandong, 272111, People’s Republic of China
| | - Zhiping Pang
- The Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, Shandong, 272111, People’s Republic of China
| | - Liu Chen
- The Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, Shandong, 272111, People’s Republic of China
| | - Renzhe Li
- The Laboratory of Clinical Medicine, Jining No.1 People’s Hospital, Jining, Shandong, 272111, People’s Republic of China,Renzhe Li, Clinical Laboratory of Jining No.1 People’s Hospital, 272111, People’s Republic of China, Tel +86 13563704987, Email
| | - Dongmei Shi
- The Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, Shandong, 272111, People’s Republic of China,Department of Dermatology, Jining No.1 People’s Hospital, Jining, Shandong, 272001, People’s Republic of China,Correspondence: Dongmei Shi, The Laboratory of Medical Mycology and Dermatology Department of Jining No.1 People’s Hospital, Shandong, 272011, China, Tel +86 537-6051008, Email
| |
Collapse
|
9
|
Guevara MA, Francis JD, Lu J, Manning SD, Doster RS, Moore RE, Gaddy JA. Streptococcus agalactiae cadD Is Critical for Pathogenesis in the Invertebrate Galleria mellonella Model. ACS Infect Dis 2022; 8:2405-2412. [PMID: 36445344 PMCID: PMC10262471 DOI: 10.1021/acsinfecdis.2c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Group B Streptococcus (GBS) is a gram-positive bacterium that can cause invasive infections in immunocompromised, elderly, pregnant, or neonatal patients. The invertebrate model, Galleria mellonella, has emerged as an effective tool to study GBS-host interactions; specifically, those conserved within the innate arm of the immune system. We sought to determine the role of metal homeostasis functions in GBS infections of G. mellonella larvae and to validate this model as a tool to study GBS-host interactions. Our results indicate that wild-type GBS infects G. mellonella in a dose-dependent manner, replicates in the invertebrate host, induces larval melanization and larval killing. These results were significantly abrogated in cohorts of larvae infected with the isogenic cadD deletion mutant. Additionally, complementation restored GBS-dependent infection, bacterial burden, larval melanization, and killing to wild-type levels. Together, these results indicate that the G. mellonella model is a useful tool for studying GBS pathogenesis.
Collapse
Affiliation(s)
- Miriam A. Guevara
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, U.S.A
| | - Jamisha D. Francis
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, U.S.A
| | - Jacky Lu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, U.S.A
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 48864, U.S.A
| | - Ryan S. Doster
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232, U.S.A
| | - Rebecca E. Moore
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, U.S.A
| | - Jennifer A. Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, U.S.A
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232, U.S.A
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, Tennessee, 37212, U.S.A
| |
Collapse
|
10
|
Asai M, Li Y, Spiropoulos J, Cooley W, Everest DJ, Kendall SL, Martín C, Robertson BD, Langford PR, Newton SM. Galleria mellonella as an infection model for the virulent Mycobacterium tuberculosis H37Rv. Virulence 2022; 13:1543-1557. [PMID: 36052440 PMCID: PMC9481108 DOI: 10.1080/21505594.2022.2119657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a leading cause of infectious disease mortality. Animal infection models have contributed substantially to our understanding of TB, yet their biological and non-biological limitations are a research bottleneck. There is a need for more ethically acceptable, economical, and reproducible TB infection models capable of mimicking key aspects of disease. Here, we demonstrate and present a basic description of how Galleria mellonella (the greater wax moth, Gm) larvae can be used as a low cost, rapid, and ethically more acceptable model for TB research. This is the first study to infect Gm with the fully virulent MTB H37Rv, the most widely used strain in research. Infection of Gm with MTB resulted in a symptomatic lethal infection, the virulence of which differed from both attenuated Mycobacterium bovis BCG and auxotrophic MTB strains. The Gm-MTB model can also be used for anti-TB drug screening, although CFU enumeration from Gm is necessary for confirmation of mycobacterial load reducing activity of the tested compound. Furthermore, comparative virulence of MTB isogenic mutants can be determined in Gm. However, comparison of mutant phenotypes in Gm against conventional models must consider the limitations of innate immunity. Our findings indicate that Gm will be a practical, valuable, and advantageous additional model to be used alongside existing models to advance tuberculosis research.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, UK
| | - Yanwen Li
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, UK
| | - John Spiropoulos
- Department of Pathology, Animal and Plant Health Agency, Addlestone, UK
| | - William Cooley
- Department of Pathology, Animal and Plant Health Agency, Addlestone, UK
| | - David J Everest
- Department of Pathology, Animal and Plant Health Agency, Addlestone, UK
| | - Sharon L Kendall
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hartfield, UK
| | - Carlos Martín
- Department of Microbiology, Facultad de Medicina Universidad de Zaragoza, CIBERES, (ISCIII), Spain
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, UK
| | - Paul R Langford
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, UK
| | - Sandra M Newton
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
11
|
Smith DFQ, Casadevall A. On the relationship between Pathogenic Potential and Infective Inoculum. PLoS Pathog 2022; 18:e1010484. [PMID: 35696437 PMCID: PMC9232127 DOI: 10.1371/journal.ppat.1010484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/24/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Pathogenic Potential (PP) is a mathematical description of an individual microbe, virus, or parasite's ability to cause disease in a host, given the variables of inoculum, signs of disease, mortality, and in some instances, median survival time of the host. We investigated the relationship between pathogenic potential (PP) and infective inoculum (I) using two pathogenic fungi in the wax moth Galleria mellonella with mortality as the relevant outcome. Our analysis for C. neoformans infection revealed negative exponential relationship between PP and I. Plotting the log(I) versus the Fraction of animals with signs or symptoms (Fs) over median host survival time (T) revealed a linear relationship, with a slope that varied between the different fungi studied and a y-intercept corresponding to the inoculum that produced no signs of disease. The I vs Fs/T slope provided a measure of the pathogenicity of each microbial species, which we call the pathogenicity constant or kPath. The kPath provides a new parameter to quantitatively compare the relative virulence and pathogenicity of microbial species for a given host. In addition, we investigated the PP and Fs/T from values found in preexisting literature. Overall, the relationship between Fs/T and PP versus inoculum varied among microbial species and extrapolation to zero signs of disease allowed the calculation of the lowest pathogenic inoculum (LPI) of a microbe. Microbes tended to fall into two groups: those with positive linear relationships between PP and Fs/T vs I, and those that had a negative exponential PP vs I relationship with a positive logarithmic Fs/T vs I relationship. The microbes with linear relationships tended to be bacteria, whereas the exponential-based relationships tended to be fungi or higher order eukaryotes. Differences in the type and sign of the PP vs I and Fs/T vs I relationships for pathogenic microbes suggest fundamental differences in host-microbe interactions leading to disease.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
12
|
Ménard G, Rouillon A, Cattoir V, Donnio PY. Galleria mellonella as a Suitable Model of Bacterial Infection: Past, Present and Future. Front Cell Infect Microbiol 2022; 11:782733. [PMID: 35004350 PMCID: PMC8727906 DOI: 10.3389/fcimb.2021.782733] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
The increasing interest for Galleria mellonella larvae as an infection model is evidenced by the number of papers reporting its use, which increases exponentially since the early 2010s. This popularity was initially linked to limitation of conventional animal models due to financial, technical and ethical aspects. In comparison, alternative models (e.g. models using Caenorhabditis elegans, Drosophila melanogaster or G. mellonella) were cheap, simple to use and not limited by ethical regulation. Since then, similar results have been established with G. mellonella model comparatively to vertebrates, and it is more and more often used as a robust model per se, not only as an alternative to the murine model. This review attempts to summarize the current knowledge supporting the development of this model, both on immunological and microbiological aspects. For that, we focus on investigation of virulence and new therapies for the most important pathogenic bacteria. We also discuss points out directions for standardization, as well as recent advances and new perspectives for monitoring host-pathogen interactions.
Collapse
Affiliation(s)
- Guillaume Ménard
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| | - Astrid Rouillon
- Univ Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), UMR_S 1230, Rennes, France
| | - Vincent Cattoir
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| | - Pierre-Yves Donnio
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| |
Collapse
|
13
|
Crespo-Ortiz MDP, Burbano ME, Barreto M. Pathogenesis and in vivo interactions of human Streptococcus agalactiae isolates in the Galleria mellonella invertebrate model. Microb Pathog 2020; 147:104400. [PMID: 32736013 DOI: 10.1016/j.micpath.2020.104400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 01/06/2023]
Abstract
Group B Streptococcus (GBS) is a gram positive bacterium colonizing the gastrointestinal and urogenital tracts in humans. However under certain conditions GBS invades leading to severe infections in neonates, pregnant women, immunocompromised patients and the elderly people. The precise mechanisms involved in the transition from colonizer to pathogen remain to be elucidated, however it has been suggested that environmental determinants may regulate gene expression resulting in GBS invasion. We have assessed the potential of the moth Galleria mellonella as a model to study the in vivo virulence and GBS interactions of invasive and noninvasive human isolates from our population. Temperature, pH and bacterial competition effects were examined in the model as well as the response of Galleria hemocytes to GBS infection. GBS strains were able to effectively grow and infect G. mellonella in a dose dependent manner with a (half-lethal dose) LD50 1 × 107 CFU after 24 h. GBS infection induced larva melanization with hemocyte vacuolation and depletion. Larval killing increased with environmental conditions such as temperature (37 °C) and pH (≥5.5-7.2). Bacterial interference assays showed a remarkable antagonistic effect of Lactobacillus gasseri (cells and filtrates) on GBS infection and significantly improved Galleria survival. The protective effect of L. gasseri was observed even at ratios similar to those of GBS colonization suggesting that L. gasseri modulation by its metabolic products is relevant. Exposure to L. gasseri acidic filtrates induced growth inhibition and prevented larva killing after infection with the hypervirulent GBS clone (a multiresistant clinical ST 17 strain). We showed that mechanisms mediating these effects are mainly pH dependent, however other mechanisms may have a role depending on inocula. We also found that G. mellonella infected with invasive human GBS isolates showed differential killing curves with higher killing rates after 24 h when compared to those considered colonizers or noninvasive isolates. Overall it has been shown that G. mellonella may be a representative in vivo model for baseline GBS studies. Given the potential effects over the hypervirulent strain, our findings support the use of L. gasseri in the GBS control strategies based on Lactobacillus formulations.
Collapse
Affiliation(s)
- Maria Del Pilar Crespo-Ortiz
- Department of Microbiology, University del Valle, San Fernando Campus, Calle 4 B #36-00, Cali, 760043, Colombia.
| | - Maria Elena Burbano
- Department of Microbiology, University del Valle, San Fernando Campus, Calle 4 B #36-00, Cali, 760043, Colombia.
| | - Mauricio Barreto
- Department of Microbiology, University del Valle, San Fernando Campus, Calle 4 B #36-00, Cali, 760043, Colombia.
| |
Collapse
|
14
|
Khader R, Tharmalingam N, Mishra B, Felix L, Ausubel FM, Kelso MJ, Mylonakis E. Characterization of Five Novel Anti-MRSA Compounds Identified Using a Whole-Animal Caenorhabditis elegans/ Galleria mellonella Sequential-Screening Approach. Antibiotics (Basel) 2020; 9:antibiotics9080449. [PMID: 32726955 PMCID: PMC7459823 DOI: 10.3390/antibiotics9080449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
There is a significant need to combat the growing challenge of antibacterial drug resistance. We have previously developed a whole-animal dual-screening platform that first used the nematode Caenorhabditis elegans, to identify low-toxicity antibacterial hits in a high-throughput format. The hits were then evaluated in the wax moth caterpillar Galleria mellonella infection model to confirm efficacy and low toxicity at a whole animal level. This multi-host approach is a powerful tool for revealing compounds that show antibacterial effects and relatively low toxicity at the whole organism level. This paper reports the use of the multi-host approach to identify and validate five new anti-staphylococcal compounds: (1) 4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol(PPT), (2) (1S,2S)-2-[2-[[3-(1H-benzimidazol-2-yl)propyl]methylamino]ethyl]-6-fluoro-1,2,3,4-tetrahydro-1-(1-methylethyl)-2-naphthalenyl cyclopropanecarboxylate dihydrochloride(NNC), (3) 4,5,6,7-tetrabromobenzotriazole (TBB), (4) 3-[2-[2-chloro-4-[3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl] benzoic acid(GW4064), and (5) N-(cyclopropylmethoxy)-3,4,5-trifluoro-2-[(4-iodo-2-methylphenyl)amino] benzamide(PD198306). The compounds reduced the severity of methicillin-resistant Staphylococcus aureus (MRSA, strain MW2) infections in both C. elegans and G. mellonella and showed minimal inhibitory concentrations (MICs) in the range of 2–8 µg/mL. Compounds NNC, PPT, and TBB permeabilized MRSA-MW2 cells to SYTOX green, suggesting that they target bacterial membranes. Compound TBB showed synergistic activity with doxycycline and oxacillin against MRSA-MW2, and compounds PPT, NNC, GW4064, and PD198306 synergized with doxycycline, polymyxin-B, gentamicin, and erythromycin, respectively. The study demonstrates the utility of the multi-host approach with follow-up hit characterization for prioritizing anti-MRSA compounds for further evaluation.
Collapse
Affiliation(s)
- Rajamohammed Khader
- Infectious Diseases Division, Department of Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA; (R.K.); (N.T.); (B.M.); (L.F.)
| | - Nagendran Tharmalingam
- Infectious Diseases Division, Department of Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA; (R.K.); (N.T.); (B.M.); (L.F.)
| | - Biswajit Mishra
- Infectious Diseases Division, Department of Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA; (R.K.); (N.T.); (B.M.); (L.F.)
| | - LewisOscar Felix
- Infectious Diseases Division, Department of Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA; (R.K.); (N.T.); (B.M.); (L.F.)
| | - Frederick M. Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA;
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael J. Kelso
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia;
- Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Department of Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA; (R.K.); (N.T.); (B.M.); (L.F.)
- Correspondence: ; Tel.: +1-401-444-7856
| |
Collapse
|