1
|
Wang Y, Hu Y, Zhang J, Zhou D, Zhang Y, Cao J. Eggs of Schistosoma japonicum deposited in the spleen induce apoptosis of splenic T cells in C57BL/6 mice. Parasitol Res 2025; 124:31. [PMID: 40059230 PMCID: PMC11891099 DOI: 10.1007/s00436-025-08474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/21/2025] [Indexed: 04/03/2025]
Abstract
To explore the relationship between Schistosoma japonicum egg deposition and the resultant structural damage to the spleen, mice were infected percutaneously with cercariae or eggs were surgically injected into their spleens. Terminal transferase dUTP nick-end-labeling (TUNEL) showed that cells around the S. japonicum eggs were apoptotic in vivo. Flow cytometry revealed a sharp reduction in splenic B and T cells at 8 weeks post-infection (p.i.) and a significant increase in Annexin V positive T cells. Immunochemistry showed that the remaining follicles in the spleen at 16 weeks p.i. comprised mainly B lymphocytes. Comparing T lymphocytes in the spleen and liver egg granulomas showed obvious CD3+ positive areas in the spleen, indicating that splenic egg granulomas have a different cellular composition to liver granulomas. S. japonicum eggs deposited in the spleen might induce apoptosis of splenic cells, especially T lymphocytes. When splenic lymphocytes were cultured in vitro with S. japonicum soluble egg antigen (SEA), more cells underwent apoptosis at an antigen concentration of 120 μg/ml compared to 60 μg/ml at all times p.i.. Cells from 8 weeks p.i. seemed more susceptible to SEA-induced apoptosis. Further research should be focus on the molecule(s) that induce T cells apoptosis, which might provide clues to the mechanisms of immunosuppression during S. japonicum infection and will promote vaccine research.
Collapse
Affiliation(s)
- Yanjuan Wang
- Shanghai Urban Construction Vocational College, Shanghai, 201415, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China; National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, 200025, China
| | - Yuan Hu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China; National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, 200025, China
| | - Jing Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China; National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, 200025, China
| | - Danling Zhou
- Shanghai Urban Construction Vocational College, Shanghai, 201415, China
| | - Yanjun Zhang
- Shanghai Urban Construction Vocational College, Shanghai, 201415, China
| | - Jianping Cao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China; National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.
| |
Collapse
|
2
|
Da'Dara AA, Skelly PJ. The enigmatic heptalaminate surface membrane of intravascular schistosomes. Trends Parasitol 2025; 41:177-187. [PMID: 39915200 DOI: 10.1016/j.pt.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 03/08/2025]
Abstract
Intravascular schistosomes have an unusual outer, heptalaminate (seven-layered) covering consisting of not one but two lipid bilayers. Here, we present an updated model of the molecular composition of these bilayers in Schistosoma mansoni that places most identified proteins in the outer, and not the inner, membrane. Here, enzymes would have access to their recently described (non-membrane-permeable) substrates. By contrast, nutrient transporter proteins must be in both membranes to facilitate uptake into the worm's inner tissues. Ectoenzyme activities displayed by living worms suggest the presence on their outer surface of several noncanonically extracellular proteins. The advantages of having a double-bilayered covering may relate to impeding host immunological attack and/or to the worm's ability to acquire selected host molecules onto their exterior.
Collapse
Affiliation(s)
- Akram A Da'Dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA.
| |
Collapse
|
3
|
Zhang ZY, Wang F, Zhou G. Decrease of NAD + Inhibits the Apoptosis of OLP T Cells via Inducing Mitochondrial Fission. J Inflamm Res 2025; 18:1091-1106. [PMID: 39871961 PMCID: PMC11771177 DOI: 10.2147/jir.s502273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/12/2025] [Indexed: 01/29/2025] Open
Abstract
Purpose Oral lichen planus (OLP) is a chronic, immune-mediated inflammatory disease involving T cells. Mitochondrial fission plays a crucial role in T cell fate through structural remodeling. Nicotinamide adenine dinucleotide (NAD+) regulates mitochondrial remodeling and function. This study explored the role of NAD+ in modulating mitochondrial fission and apoptosis in T cells under the OLP immune-inflammatory environment. Patients and Methods T cells and plasma were isolated from peripheral blood. Mitochondrial morphology was characterized by transmission electron microscopy and Mito-Tracker staining. OLP plasma-exposed Jurkat T cells were infected with the Drp1 shRNA virus to investigate the role of mitochondrial fission in OLP T cell apoptosis. OLP T cells and OLP plasma-exposed Jurkat T cells were treated with either β-nicotinamide mononucleotide (an NAD+ synthesis precursor) or FK866 (an NAD+ synthesis inhibitor) to assess the effect of NAD+ regulation on mitochondrial remodeling and T cell apoptosis. Results OLP T cells exhibited fragmented mitochondria with elevated dynamin-related protein 1 (Drp1) and reduced mitofusin 2 (Mfn2) expression, accompanied by decreased apoptosis. Drp1 knockdown in OLP plasma-exposed Jurkat T cells increased apoptosis and reduced proliferation. NAD+ levels were reduced in both OLP T cells and OLP plasma-treated Jurkat T cells, leading to enhanced mitochondrial fission, decreased mitochondrial membrane potential (MMP) and respiration function, and reduced apoptosis rate. β-nicotinamide mononucleotide supplementation restored NAD+ levels, suppressed mitochondrial fission, improved MMP, and promoted apoptosis in these cells. Conclusion Reduced NAD+ levels in OLP T cells enhanced mitochondrial fission and contributed to decreased apoptosis. NAD+ supplementation mitigated these effects, suggesting a potential therapeutic strategy for restoring T cell homeostasis in OLP.
Collapse
Affiliation(s)
- Zhuo-Yu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Fang Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
- Center for Cariology, Endodontics and Periodontics, Optical Valley Branch, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Gang Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
4
|
Da'dara AA, Nation CS, Skelly PJ. Metabolism of FAD, FMN and riboflavin (vitamin B2) in the human parasitic blood fluke Schistosoma mansoni. BMC Infect Dis 2024; 24:636. [PMID: 38918706 PMCID: PMC11202380 DOI: 10.1186/s12879-024-09538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Schistosomiasis is a parasitic disease caused by trematodes of the genus Schistosoma. The intravascular worms acquire the nutrients necessary for their survival from host blood. Since all animals are auxotrophic for riboflavin (vitamin B2), schistosomes too must import it to survive. Riboflavin is an essential component of the coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD); these support key functions of dozens of flavoenzymes. METHODS Here, using a combination of metabolomics, enzyme kinetics and in silico molecular analysis, we focus on the biochemistry of riboflavin and its metabolites in Schistosoma mansoni (Sm). RESULTS We show that when schistosomes are incubated in murine plasma, levels of FAD decrease over time while levels of FMN increase. We show that live schistosomes cleave exogenous FAD to generate FMN and this ability is significantly blocked when expression of the surface nucleotide pyrophosphatase/phosphodiesterase ectoenzyme SmNPP5 is suppressed using RNAi. Recombinant SmNPP5 cleaves FAD with a Km of 178 ± 5.9 µM and Kcat/Km of 324,734 ± 36,347 M- 1.S- 1. The FAD-dependent enzyme IL-4I1 drives the oxidative deamination of phenylalanine to produce phenylpyruvate and H2O2. Since schistosomes are damaged by H2O2, we determined if SmNPP5 could impede H2O2 production by blocking IL-4I1 action in vitro. We found that this was not the case; covalently bound FAD on IL-4I1 appears inaccessible to SmNPP5. We also report that live schistosomes can cleave exogenous FMN to generate riboflavin and this ability is significantly impeded when expression of a second surface ectoenzyme (alkaline phosphatase, SmAP) is suppressed. Recombinant SmAP cleaves FMN with a Km of 3.82 ± 0.58 mM and Kcat/Km of 1393 ± 347 M- 1.S- 1. CONCLUSIONS The sequential hydrolysis of FAD by tegumental ecto-enzymes SmNPP5 and SmAP can generate free vitamin B2 around the worms from where it can be conveniently imported by the recently described schistosome riboflavin transporter SmaRT. Finally, we identified in silico schistosome homologs of enzymes that are involved in intracellular vitamin B2 metabolism. These are riboflavin kinase (SmRFK) as well as FAD synthase (SmFADS); cDNAs encoding these two enzymes were cloned and sequenced. SmRFK is predicted to convert riboflavin to FMN while SmFADS could further act on FMN to regenerate FAD in order to facilitate robust vitamin B2-dependent metabolism in schistosomes.
Collapse
Affiliation(s)
- Akram A Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Catherine S Nation
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA.
| |
Collapse
|
5
|
Da'dara AA, Gondane R, Skelly PJ. The riboflavin (vitamin B2) transporter protein (SmaRT) of the human intravascular parasitic trematode Schistosoma mansoni. Heliyon 2024; 10:e28271. [PMID: 38601580 PMCID: PMC11004526 DOI: 10.1016/j.heliyon.2024.e28271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Schistosomes are intravascular parasitic worms infecting >200 million people globally. Here we examine how the worms acquire an essential nutrient - vitamin B2 (riboflavin). We demonstrate that all intravascular life stages (schistosomula, adult males and females) take up radiolabeled riboflavin. This process is impeded in the presence of excess unlabeled riboflavin and at 4 °C. We have identified a transporter homolog in worms designated SmaRT (Schistosoma mansoni riboflavin transporter) that localizes to the tegument and internal tissues of adults. CHO-S cells transfected with plasmid encoding SmaRT import significantly more radiolabeled riboflavin compared to controls. Uptake of radiolabel is impeded when SmaRT-expressing cells are incubated in an excess of unlabeled riboflavin but not by an excess of an irrelevant metabolite. Uptake is mediated in a sodium-independent manner and over a wide range of pH values (pH 5.5-9). This is the first identification of a bone fide riboflavin transporter in any platyhelminth.
Collapse
Affiliation(s)
- Akram A. Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Roshni Gondane
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Patrick J. Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| |
Collapse
|
6
|
Da’dara AA, Nation CS, Skelly PJ. Metabolism of FAD, FMN and riboflavin (vitamin B2) in the human parasitic blood fluke Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584659. [PMID: 38558993 PMCID: PMC10980065 DOI: 10.1101/2024.03.12.584659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma. The intravascular worms acquire the nutrients necessary for their survival from host blood. Since all animals are auxotrophic for riboflavin (vitamin B2), schistosomes too must import it to survive. Riboflavin is an essential component of the coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD); these support key functions of dozens of flavoenzymes. In this work we focus on the biochemistry of riboflavin and its metabolites in Schistosoma mansoni. We show that when schistosomes are incubated in murine plasma, levels of FAD decrease over time while the levels of FMN increase. We show that live schistosomes can cleave exogenous FAD to generate FMN and this ability is significantly blocked when expression of the surface ectoenzyme SmNPP5 is suppressed using RNAi. Recombinant SmNPP5 cleaves FAD with a Km of 178 ± 5.9 µM. The FAD-dependent enzyme IL-4I1 drives the oxidative deamination of phenylalanine to produce phenylpyruvate and H2O2 in the extracellular environment. Since schistosomes can be damaged by H2O2, we determined if SmNPP5 could impede H2O2 production by blocking IL-4I1 action in vitro. We found that this was not the case, suggesting that covalently bound FAD on IL-4I1 is inaccessible to SmNPP5. We also report here that live schistosomes can cleave exogenous FMN to generate riboflavin and this ability is significantly impeded when expression of a second surface ectoenzyme (alkaline phosphatase, SmAP) is suppressed. Recombinant SmAP cleaves FMN with a Km of 3.82 ± 0.58 mM. Thus, the sequential hydrolysis of FAD by tegumental ecto-enzymes SmNPP5 and SmAP can generate free vitamin B2 around the worms from where it can be conveniently imported by, we hypothesize, the recently described schistosome riboflavin transporter SmaRT. In this work we also identified in silico schistosome homologs of enzymes that are involved in intracellular vitamin B2 metabolism. These are riboflavin kinase (SmRFK) as well as FAD synthase (SmFADS); cDNAs encoding these two enzymes were cloned and sequenced. SmRFK is predicted to convert riboflavin to FMN while SmFADS could further act on FMN to regenerate FAD in order to facilitate robust vitamin B2-dependent metabolism in schistosomes.
Collapse
Affiliation(s)
- Akram A. Da’dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Catherine S. Nation
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | | |
Collapse
|
7
|
Skelly PJ, Nation CS, Da'Dara AA. Schistosoma mansoni and the purinergic halo. Trends Parasitol 2022; 38:1080-1088. [PMID: 36182536 PMCID: PMC9669209 DOI: 10.1016/j.pt.2022.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 01/13/2023]
Abstract
Intravascular schistosomes may control immune and hemostatic responses by regulating the nature and amount of selected host purinergic signaling molecules - such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and nicotinamide adenine dinucleotide (NAD) - surrounding them. Such metabolites are collectively known as the worm's 'purinergic halo'. Host-interactive, membrane-bound, tegumental ectonucleotidases, notably SmATPDase1, SmNPP5, SmAP and SmNACE, can degrade proinflammatory, prothrombotic and immunomodulatory purinergic metabolites like those listed. A common catabolic product is the anti-inflammatory metabolite adenosine that can additionally be taken in by the worms as food. We envision the tegumental ectonucleotidases as having a twofold role at the worm surface: first, they degrade potentially harmful host signaling molecules, and second, they generate vital nutrients around the worms from where these can be conveniently imported.
Collapse
Affiliation(s)
- Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA.
| | - Catherine S Nation
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Akram A Da'Dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
8
|
NAD-catabolizing ectoenzymes of Schistosoma mansoni. Biochem J 2022; 479:1165-1180. [PMID: 35593185 DOI: 10.1042/bcj20210784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Infection with schistosomes (blood flukes) can result in the debilitating disease schistosomiasis. These parasites survive in their host for many years, and we hypothesize that proteins on their tegumental surface, interacting with the host microenvironment, facilitate longevity. One such ectoenzyme - the nucleotide pyrophosphatase/phosphodiesterase SmNPP5 can cleave ADP (to prevent platelet aggregation) and NAD (likely preventing Treg apoptosis). A second tegumental ectoenzyme, the glycohydrolase SmNACE, also catabolizes NAD. Here, we undertake a comparative biochemical characterization of these parasite ectoenzymes. Both are GPI-linked and exhibit different optimal pH ranges. While SmNPP5 requires divalent cations, SmNACE does not. The Km values of the two enzymes for NAD at physiological pH differ: SmNPP5, Km=340µM±44; SmNACE, Km=49µM±4. NAD cleavage by each enzyme yields different products. SmNPP5 cleaves NAD to form nicotinamide mononucleotide (NMN) and AMP, whereas SmNACE cleaves NAD to generate nicotinamide (NAM) and adenosine diphosphate ribose (ADPR). Each enzyme can process the other's reaction product. Thus, SmNACE cleaves NMN (to yield NAM and ribose phosphate) and SmNPP5 cleaves ADPR (yielding AMP and ribose phosphate). Metabolomic analysis of plasma containing adult worms supports the idea that these cleavage pathways are active in vivo. We hypothesize that a primary function of SmNPP5 is to cleave NAD to control host immune cell function and a primary function of SmNACE is to cleave NMN to generate the vital nutrient nicotinamide (vitamin B3) for convenient uptake by the worms. Chemical inhibition of one or both ectoenzymes could upset worm metabolism and control schistosome infection.
Collapse
|
9
|
Nation CS, Da’dara AA, Elzoheiry M, Skelly PJ. Schistosomes Impede ATP-Induced T Cell Apoptosis In Vitro: The Role of Ectoenzyme SmNPP5. Pathogens 2022; 11:pathogens11020155. [PMID: 35215099 PMCID: PMC8878264 DOI: 10.3390/pathogens11020155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 02/08/2023] Open
Abstract
Schistosomes (blood flukes) can survive in the bloodstream of their hosts for many years. We hypothesize that proteins on their host-interactive surface impinge on host biochemistry to help ensure their long-term survival. Here, we focus on a surface ectoenzyme of Schistosoma mansoni, designated SmNPP5. This ~53 kDa glycoprotein is a nucleotide pyrophosphatase/phosphodiesterase that has been previously shown to: (1) cleave adenosine diphosphate (ADP) and block platelet aggregation; and (2) cleave nicotinamide adenine dinucleotide (NAD) and block NAD-induced T cell apoptosis in vitro. T cell apoptosis can additionally be driven by extracellular adenosine triphosphate (ATP). In this work, we show that adult S. mansoni parasites can inhibit this process. Further, we demonstrate that recombinant SmNPP5 alone can both cleave ATP and impede ATP-induced T cell killing. As immunomodulatory regulatory T cells (Tregs) are especially prone to the induction of these apoptotic pathways, we hypothesize that the schistosome cleavage of both NAD and ATP promotes Treg survival and this helps to create a less immunologically hostile environment for the worms in vivo.
Collapse
|
10
|
Abstract
Schistosomes are long lived, intravascular parasitic platyhelminths that infect >200 million people globally. The molecular mechanisms used by these blood flukes to dampen host immune responses are described in this review. Adult worms express a collection of host-interactive tegumental ectoenzymes that can cleave host signaling molecules such as the "alarmin" ATP (cleaved by SmATPDase1), the platelet activator ADP (SmATPDase1, SmNPP5), and can convert AMP into the anti-inflammatory mediator adenosine (SmAP). SmAP can additionally cleave the lipid immunomodulator sphingosine-1-phosphate and the proinflammatory anionic polymer, polyP. In addition, the worms release a barrage of proteins (e.g., SmCB1, SjHSP70, cyclophilin A) that can impinge on immune cell function. Parasite eggs also release their own immunoregulatory proteins (e.g., IPSE/α1, omega1, SmCKBP) as do invasive cercariae (e.g., Sm16, Sj16). Some schistosome glycans (e.g., LNFPIII, LNnT) and lipids (e.g., Lyso-PS, LPC), produced by several life stages, likewise affect immune cell responses. The parasites not only produce eicosanoids (e.g., PGE2, PGD2-that can be anti-inflammatory) but can also induce host cells to release these metabolites. Finally, the worms release extracellular vesicles (EVs) containing microRNAs, and these too have been shown to skew host cell metabolism. Thus, schistosomes employ an array of biomolecules-protein, lipid, glycan, nucleic acid, and more, to bend host biochemistry to their liking. Many of the listed molecules have been individually shown capable of inducing aspects of the polarized Th2 response seen following infection (with the generation of regulatory T cells (Tregs), regulatory B cells (Bregs) and anti-inflammatory, alternatively activated (M2) macrophages). Precisely how host cells integrate the impact of these myriad parasite products following natural infection is not known. Several of the schistosome immunomodulators described here are in development as novel therapeutics against autoimmune, inflammatory, and other, nonparasitic, diseases.
Collapse
Affiliation(s)
- Sreemoyee Acharya
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Akram A. Da’dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Patrick J. Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Yu HH, Ma XT, Ma X, Chen M, Chu YH, Wu LJ, Wang W, Qin C, Tian DS. Remote Limb Ischemic Postconditioning Protects Against Ischemic Stroke by Promoting Regulatory T Cells Thriving. J Am Heart Assoc 2021; 10:e023077. [PMID: 34726065 PMCID: PMC8751947 DOI: 10.1161/jaha.121.023077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Remote limb ischemic postconditioning (RLIPoC) has been demonstrated to protect against ischemic stroke. However, the underlying mechanisms of RLIPoC mediating cross-organ protection remain to be fully elucidated. Methods and Results Ischemic stroke was induced by middle cerebral artery occlusion for 60 minutes. RLIPoC was performed with 3 cycles of 10-minute ischemia followed by 10-minute reperfusion of the bilateral femoral arteries immediately after middle cerebral artery reperfusion. The percentage of regulatory T cells (Tregs) in the spleen, blood, and brain was detected using flow cytometry, and the number of Tregs in the ischemic hemisphere was counted using transgenic mice with an enhanced green fluorescent protein-tagged Foxp3. Furthermore, the metabolic status was monitored dynamically using a multispectral optical imaging system. The Tregs were conditionally depleted in the depletion of Treg transgenic mice after the injection of the diphtheria toxin. The inflammatory response and neuronal apoptosis were investigated using immunofluorescent staining. Infarct volume and neurological deficits were evaluated using magnetic resonance imaging and the modified neurological severity score, respectively. The results showed that RLIPoC substantially reduced infarct volume, improved neurological function, and significantly increased Tregs in the spleen, blood, and ischemic hemisphere after middle cerebral artery occlusion. RLIPoC was followed by subsequent alteration in metabolites, such as flavin adenine dinucleotide and nicotinamide adenine dinucleotide hydrate, both in RLIPoC-conducted local tissues and circulating blood. Furthermore, nicotinamide adenine dinucleotide hydrate can mimic RLIPoC in increasing Tregs. Conversely, the depletion of Tregs using depletion of Treg mice compromised the neuroprotective effects conferred by RLIPoC. Conclusions RLIPoC protects against ischemic brain injury, at least in part by activating and maintaining the Tregs through the nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide hydrate pathway.
Collapse
Affiliation(s)
- Hai-Han Yu
- Department of Neurology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xiao-Tong Ma
- Department of Neurology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Department of Neurology Shandong Provincial Hospital Shandong First Medical University Jinan China
| | - Xue Ma
- Department of Neurology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Man Chen
- Department of Neurology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yun-Hui Chu
- Department of Neurology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Long-Jun Wu
- Department of Neurology Mayo Clinic Rochester MN
| | - Wei Wang
- Department of Neurology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Chuan Qin
- Department of Neurology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Dai-Shi Tian
- Department of Neurology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
12
|
Da’dara AA, Elzoheiry M, El-Beshbishi SN, Skelly PJ. Vitamin B6 Acquisition and Metabolism in Schistosoma mansoni. Front Immunol 2021; 11:622162. [PMID: 33613557 PMCID: PMC7891054 DOI: 10.3389/fimmu.2020.622162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/17/2020] [Indexed: 11/13/2022] Open
Abstract
Schistosomes are parasitic platyhelminths that currently infect >200 million people globally. The adult worms can live within the vasculature of their hosts for many years where they acquire all nutrients necessary for their survival and growth. In this work we focus on how Schistosoma mansoni parasites acquire and metabolize vitamin B6, whose active form is pyridoxal phosphate (PLP). We show here that live intravascular stage parasites (schistosomula and adult males and females) can cleave exogenous PLP to liberate pyridoxal. Of the three characterized nucleotide-metabolizing ectoenzymes expressed at the schistosome surface (SmAP, SmNPP5, and SmATPDase1), only SmAP hydrolyzes PLP. Heat-inactivated recombinant SmAP can no longer cleave PLP. Further, parasites whose SmAP gene has been suppressed by RNAi are significantly impaired in their ability to cleave PLP compared to controls. When schistosomes are incubated in murine plasma, they alter its metabolomic profile-the levels of both pyridoxal and phosphate increase over time, a finding consistent with the action of host-exposed SmAP acting on PLP. We hypothesize that SmAP-mediated dephosphorylation of PLP generates a pool of pyridoxal around the worms that can be conveniently taken in by the parasites to participate in essential, vitamin B6-driven metabolism. In addition, since host PLP-dependent enzymes play active roles in inflammatory processes, parasite-mediated cleavage of this metabolite may serve to limit parasite-damaging inflammation. In this work we also identified schistosome homologs of enzymes that are involved in intracellular vitamin B6 metabolism. These are pyridoxal kinase (SmPK) as well as pyridoxal phosphate phosphatase (SmPLP-Ph) and pyridox(am)ine 5'-phosphate oxidase (SmPNPO) and cDNAs encoding these three enzymes were cloned and sequenced. The three genes encoding these enzymes all display high relative expression in schistosomula and adult worms suggestive of robust vitamin B6 metabolism in the intravascular life stages.
Collapse
Affiliation(s)
- Akram A. Da’dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | - Manal Elzoheiry
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Samar N. El-Beshbishi
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Patrick J. Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| |
Collapse
|