1
|
Choi S, Lee JM, Kim KES, Park JH, Kim LH, Park J, Jeon Y, Jhun BW, Kim SY, Hong JJ, Shin SJ. Protein-energy restriction-induced lipid metabolism disruption causes stable-to-progressive disease shift in Mycobacterium avium-infected female mice. EBioMedicine 2024; 105:105198. [PMID: 38889480 PMCID: PMC11237864 DOI: 10.1016/j.ebiom.2024.105198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Disease susceptibility and progression of Mycobacterium avium complex pulmonary disease (MAC-PD) is associated with multiple factors, including low body mass index (BMI). However, the specific impact of low BMI on MAC-PD progression remains poorly understood. This study aims to examine the progression of MAC-PD in the context of low BMI, utilising a disease-resistant mouse model. METHODS We employed a MAC infection-resistant female A/J mouse model to compare the progression of MAC-PD under two dietary conditions: one group was fed a standard protein diet, representing protein-energy unrestricted conditions, and the other was fed a low protein diet (LPD), representing protein-energy restriction. FINDINGS Our results reveal that protein-energy restriction significantly exacerbates MAC-PD progression by disrupting lipid metabolism. Mice fed an LPD showed elevated fatty acid levels and related gene expressions in lung tissues, similar to findings of increased fatty acids in the serum of patients who exhibited the MAC-PD progression. These mice also exhibited increased CD36 expression and lipid accumulation in macrophages upon MAC infection. In vitro experiments emphasised the crucial role of CD36-mediated palmitic acid uptake in bacterial proliferation. Importantly, in vivo studies demonstrated that administering anti-CD36 antibody to LPD-fed A/J mice reduced macrophage lipid accumulation and impeded bacterial growth, resulting in remarkable slowing disease progression. INTERPRETATION Our findings indicate that the metabolic status of host immune cells critically influences MAC-PD progression. This study highlights the potential of adequate nutrient intake in preventing MAC-PD progression, suggesting that targeting CD36-mediated pathways might be a host-directed therapeutic strategy to managing MAC infection. FUNDING This research was funded by the National Research Foundation of Korea, the Korea Research Institute of Bioscience and Biotechnology, and the Korea National Institute of Health.
Collapse
Affiliation(s)
- Sangwon Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ju Mi Lee
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Keu Eun San Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ji-Hae Park
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Lee-Han Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jiyun Park
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yaerin Jeon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, South Korea; KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
2
|
Miki M, Miki K, Akiba E, Kagawa H, Oshitani Y, Matsuki T, Tsujino K, Kitada S, Maekura R, Kida H. The diagnostic impact of fractional exhaled nitric oxide for asthmatic cough in nontuberculous mycobacterial pulmonary disease. BMC Pulm Med 2024; 24:210. [PMID: 38684989 PMCID: PMC11059766 DOI: 10.1186/s12890-024-03028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Measurement of exhaled nitric oxide (FeNO) is a potentially useful diagnostic test for asthma. However, no study has explored the relationship between FeNO and respiratory symptoms of nontuberculous mycobacterial pulmonary disease (NTM-PD) complicated with asthma. The objective of this study was to assess the utility of measuring FeNO levels in patients with NTM-PD complicated by asthma. METHODS In this single-center retrospective cohort study, 140 NTM-PD patients with FeNO measured were enrolled. We selected NTM-PD patients who complicated with asthma as the NTM+BA group, defined using the following criteria: NTM patients with symptoms consistent with asthma, and NTM patients with symptomatic improvement after diagnostic therapy with ICS ± a long-acting beta 2-agonist (LABA). We then calculated a diagnostic cutoff point to distinguish between the NTM+BA groups and the NTM groups (all others). High-resolution computed tomography (HRCT) images were evaluated using the CT scoring system and their association with FeNO was examined. RESULTS A total of 89 patients were included in the study. (31 in the NTM+BA group and 58 in the NTM group). Compared with the NTM group, the NTM+BA group had higher rates of allergic disease (51.6% vs. 22.4%; p=0.0085) and higher FeNO values (median, 23 [interquartile range {IQR}, 15.0-43.0] ppb vs. median, 17 [IQR, 11.8-23.0] ppb; p=0.015). With diagnostic asthma care using mainly ICS/LABA with reference to the FeNO, most patients (91.0%, 20/22) in the NTM-preceding subgroup in the NTM+BA group demonstrated a prompt improvement of their symptoms and AFB culture findings did not worsen (Culture positive rate (%): Pre-treatment: 59.1% vs. Post-treatment: 40.9%, p=0.3660) at 6 months after starting diagnostic therapy. The optimal diagnostic cutoff point of FeNO to distinguish between the two groups was calculated as 21.5 ppb by the ROC curve (sensitivity 75%, specificity 71.93%, p<0.0001; area under the curve: 0.7989). No significant correlation was observed between FeNO and the severity of CT images in the patients. CONCLUSIONS A certain number of patients with NTM-PD showed exacerbated respiratory symptoms due to asthmatic complications. Elevated FeNO levels suggest asthma complications, even in patients with NTM.
Collapse
Affiliation(s)
- Mari Miki
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Osaka, Japan.
- Department of Internal Medicine, Tokushima Prefecture Naruto Hospital, 32 Kotani, Kurosaki, Muya-cho, Naruto-shi, Tokushima, 772-8503, Japan.
| | - Keisuke Miki
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Osaka, Japan
| | - Eri Akiba
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Osaka, Japan
| | | | | | - Takanori Matsuki
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Osaka, Japan
| | - Kazuyuki Tsujino
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Osaka, Japan
| | | | - Ryoji Maekura
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Osaka, Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Osaka, Japan
| |
Collapse
|
3
|
Kim T, Choi H, Lee H, Han K, Park DW, Park TS, Moon JY, Kim TH, Sohn JW, Yoon HJ, Kim SH. Impact of Allergic Disease on the Risk of Mycobacterial Disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2830-2838.e4. [PMID: 37178766 DOI: 10.1016/j.jaip.2023.04.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND The association between allergic diseases and the risk of mycobacterial disease is unclear. OBJECTIVE To evaluate the association between allergic diseases and mycobacterial diseases. METHODS This was a population-based cohort study of 3,838,680 individuals, without prior mycobacterial disease, who participated in the 2009 National Health Screening Exam. We evaluated the incidence of mycobacterial disease (tuberculosis or nontuberculous mycobacterial infection) in participants with allergic disease (asthma, allergic rhinitis, or atopic dermatitis) and those without allergic disease. We followed the cohort up until the date of mycobacterial disease diagnosis, follow-up loss, death, or December 2018. RESULTS During a median follow-up of 8.3 (interquartile range, 8.1-8.6) years, 0.6% of participants developed mycobacterial disease. The incidence of mycobacterial disease was significantly higher in those with allergic diseases than in those without allergic diseases (1.0 vs 0.7/1000 person-years; P < .001), with an adjusted hazard ratio of 1.13 (95% CI, 1.10-1.17). Asthma (adjusted hazard ratio, 1.37; 95% CI, 1.29-1.45) and allergic rhinitis (adjusted hazard ratio, 1.07; 95% CI, 1.04-1.11) increased the hazard of mycobacterial disease, whereas atopic dermatitis did not. The association between allergic diseases and hazard of mycobacterial disease was more prominent in older (age ≥ 65 years, P for interaction = .012) and obese (body mass index ≥ 25 kg/m2, P for interaction < .001) participants. CONCLUSION Allergic diseases including asthma and allergic rhinitis were associated with an increased risk of mycobacterial disease, whereas atopic dermatitis was not.
Collapse
Affiliation(s)
- Taehee Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Hayoung Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Hyun Lee
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Dong Won Park
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Tai Sun Park
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Ji-Yong Moon
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Tae-Hyung Kim
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Jang Won Sohn
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Ho Joo Yoon
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Sang-Heon Kim
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Lee JM, Park J, Reed SG, Coler RN, Hong JJ, Kim LH, Lee W, Kwon KW, Shin SJ. Vaccination inducing durable and robust antigen-specific Th1/Th17 immune responses contributes to prophylactic protection against Mycobacterium avium infection but is ineffective as an adjunct to antibiotic treatment in chronic disease. Virulence 2022; 13:808-832. [PMID: 35499090 PMCID: PMC9067471 DOI: 10.1080/21505594.2022.2068489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium avium complex (MAC) causing pulmonary disease in humanshas emerged worldwide. Thus, effective strategies simultaneously aiming to prevent MAC infection and accelerate therapeutic efficacy are required. To this end, subunit vaccine-induced protection against a well-defined virulent Mycobacterium avium (Mav) isolate was assessed as a preventative and therapeutic modality in murine models. Mav-derived culture filtrate antigen (CFA) was used as a vaccine antigen with glucopyranosyl lipid A stable emulsion (GLA-SE) or GLA-SE plus cyclic-di-GMP (GLA-SE/CDG), and we compared the immunogenicities, protective efficacies and immune correlates. Interestingly, CFA+GLA-SE/CDG immunization induced greater CFA-specific Th1/Th17 responses in both the lung and spleen than among the tested groups. Consequently, protective efficacy was optimally achieved with CFA+GLA-SE/CDG by significantly reducing bacterial loads along with long-lasting maintenance of antigen-specific Th1/Th17 cytokine-producing multifunctional T cell responses and relevant cytokine productions. Thus, we employed this subunit vaccine as an adjunct to antibiotic treatment. However, this vaccine was ineffective in further reducing bacterial loads. Collectively, our study demonstrates that strong Mav CFA-specific Th1/Th17 responses are critical for preventative protection against Mav infection but may be ineffective or even detrimental in an established and progressive chronic disease, indicating that different approaches to combating Mav infection are necessary according to vaccination purposes.
Collapse
Affiliation(s)
- Ju Mi Lee
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiyun Park
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Rhea N Coler
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Lee-Han Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|