1
|
Ren Y, Luo X, Tong H, Wang S, Yan J, Lin L, Chen Y. Preliminary Study on Clinical Characteristics and Pathogenesis of IQSEC2 Mutations Patients. Pharmgenomics Pers Med 2024; 17:289-318. [PMID: 38827181 PMCID: PMC11144418 DOI: 10.2147/pgpm.s455840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/18/2024] [Indexed: 06/04/2024] Open
Abstract
Background The IQ motif and Sec7 domain ArfGEF 2 (IQSEC2), an X-linked gene that encodes the BRAG1 protein, is a guanine nucleotide exchange factor for the ADP ribosylation factor (ARF) protein family in the small guanosine triphosphate (GTP) binding protein. Mutations in this gene result in disorders such as intellectual disability (ID) and epilepsy. In this study, we analyze the clinical features of two patients with IQSEC2-mutation-related disease and discuss their possible pathogenesis. Methods The two patients were diagnosed with ID and epilepsy. Genetic testing was performed using whole-exome sequencing, and the three-dimensional protein structure was analyzed. UCSC Genome Browser was used to analyze the conservation of IQSEC2 in different species. We compared IQSEC2 expression in the proband families with that in a control group, as well as the expression of the postsynaptic identity protein 95 (PSD-95), synapse-associated protein 97 (SAP97), ADP ribosylation factor 6 (ARF-6), and insulin receptor substrate 53kDa (IRSP53) genes interacting with IQSEC2. Results We identified two semi-zygote mutations located in conserved positions in different species: an unreported de novo mutation, C.3576C>A (p. Tyr1192*), and a known mutation, c.2983C>T (p. Arg995Trp). IQSEC2 mutations resulted in significant changes in the predicted three-dimensional protein structure, while its expression in the two probands was significantly lower than that in the age-matched control group, and IQSEC2 expression in proband 1 was lower than that in his family members. The expression levels of PSD-95, ARF-6, and SAP97, IRSP 53, which interact with IQSEC2, were also significantly different from those in the family members and age-matched healthy children. Conclusion The clinical phenotype resulting from IQSEC2 mutations can be explained by the significant decrease in its expression, loss of function of the mutant protein, and change in the expression of related genes. Our results provide novel insights into the molecular phenotype conferred by the IQSEC2 variants.
Collapse
Affiliation(s)
- Yun Ren
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, People’s Republic of China
| | - Xiaona Luo
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, People’s Republic of China
| | - Haiyan Tong
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, People’s Republic of China
| | - Simei Wang
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, People’s Republic of China
| | - Jinbin Yan
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, People’s Republic of China
| | - Longlong Lin
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, People’s Republic of China
| | - Yucai Chen
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Brown JC, Hell JW, Gerges NZ. BRAG about (s)lots. J Cell Biol 2023; 222:e202310023. [PMID: 37938213 PMCID: PMC10631466 DOI: 10.1083/jcb.202310023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Mutations in IQSEC2/BRAG1 cause intellectual dysfunction by impairing ARF-GEF activity and long-term depression. In this issue, Bai et al. (https://doi.org/10.1083/jcb.202307117) discover how constitutive ARF-GEF activity is regulated by a closed conformation which opens in the presence of Ca2+. Two known pathogenic mutations cause "leaky" autoinhibition with reduced synaptic dynamic range and impaired cognitive performance.
Collapse
Affiliation(s)
- Joshua C. Brown
- Division of Depression and Anxiety Disorders, Brain Stimulation Mechanisms Laboratory, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Johannes W. Hell
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Nashaat Z. Gerges
- Biopharmaceutical Sciences Department, School of Pharmacy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
3
|
Al Sammarraie SHA, Aprile D, Meloni I, Alessio N, Mari F, Manata M, Lo Rizzo C, Di Bernardo G, Peluso G, Renieri A, Galderisi U. An Example of Neuro-Glial Commitment and Differentiation of Muse Stem Cells Obtained from Patients with IQSEC2-Related Neural Disorder: A Possible New Cell-Based Disease Model. Cells 2023; 12:977. [PMID: 37048050 PMCID: PMC10093355 DOI: 10.3390/cells12070977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Although adult stem cells may be useful for studying tissue-specific diseases, they cannot be used as a general model for investigating human illnesses given their limited differentiation potential. Multilineage-differentiating stress-enduring (Muse) stem cells, a SSEA3(+) cell population isolated from mesenchymal stromal cells, fat, and skin fibroblasts, may be able to overcome that restriction. The Muse cells present in fibroblast cultures obtained from biopsies of patients' skin may be differentiated into cells of interest for analyzing diseases. We isolated Muse stem cells from patients with an intellectual disability (ID) and mutations in the IQSEC2 gene (i.e., BRAG1 gene) and induced in vitro neuroglial differentiation to study cell commitment and the differentiation of neural lineages. The neuroglial differentiation of Muse cells revealed that IQSEC2 mutations may alter the self-renewal and lineage specification of stem cells. We observed a decrease in the percentage of SOX2 (+) neural stem cells and neural progenitors (i.e., SOX2+ and NESTIN+) in cultures obtained from Muse cells with the mutated IQSEC2 gene. The alteration in the number of stem cells and progenitors produced a bias toward the astrocytes' differentiation. Our research demonstrates that Muse stem cells may represent a new cell-based disease model.
Collapse
Affiliation(s)
| | - Domenico Aprile
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy
| | - Ilaria Meloni
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy
| | - Francesca Mari
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Marianna Manata
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Caterina Lo Rizzo
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | | | - Alessandra Renieri
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
- Genome and Stem Cell Center (GENKÖK), Erciyes University, 38280 Kayseri, Turkey
| |
Collapse
|
4
|
Molecular Insights into IQSEC2 Disease. Int J Mol Sci 2023; 24:ijms24054984. [PMID: 36902414 PMCID: PMC10003148 DOI: 10.3390/ijms24054984] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Recent insights into IQSEC2 disease are summarized in this review as follows: (1) Exome sequencing of IQSEC2 patient DNA has led to the identification of numerous missense mutations that delineate at least six and possibly seven essential functional domains present in the IQSEC2 gene. (2) Experiments using IQSEC2 transgenic and knockout (KO) mouse models have recapitulated the presence of autistic-like behavior and epileptic seizures in affected animals; however, seizure severity and etiology appear to vary considerably between models. (3) Studies in IQSEC2 KO mice reveal that IQSEC2 is involved in inhibitory as well as stimulatory neurotransmission. The overall picture appears to be that mutated or absent IQSEC2 arrests neuronal development, resulting in immature neuronal networks. Subsequent maturation is aberrant, leading to increased inhibition and reduced neuronal transmission. (4) The levels of Arf6-GTP remain constitutively high in IQSEC2 knockout mice despite the absence of IQSEC2 protein, indicating impaired regulation of the Arf6 guanine nucleotide exchange cycle. (5) A new therapy that has been shown to reduce the seizure burden for the IQSEC2 A350V mutation is heat treatment. Induction of the heat shock response may be responsible for this therapeutic effect.
Collapse
|
5
|
Que F, Zhang L, Wang T, Xu M, Li W, Zang S. RHOA G17V induces T follicular helper cell specification and involves angioimmunoblastic T-cell lymphoma via upregulating the expression of PON2 through an NF-κB-dependent mechanism. Oncoimmunology 2022; 11:2134536. [PMID: 36249275 PMCID: PMC9559328 DOI: 10.1080/2162402x.2022.2134536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is a malignant hematologic tumor arising from T follicular helper (Tfh) cells. High-throughput genomic sequencing studies have shown that AITL is characterized by a novel highly recurring somatic mutation in RHOA, encoding p.Gly17Val (RHOA G17V). However, the specific role of RHOA G17V in AITL remains unknown. Here, we demonstrated that expression of Rhoa G17V in CD4+ T cells increased cell proliferation and induces Tfh cell specification associated with Pon2 upregulation through an NF-κB-dependent mechanism. Further, loss of Pon2 attenuated oncogenic function induced by genetic lesions in Rhoa. In addition, an abnormality of RHOA G17V mutation and PON2 expression is also detected in patients with AITL. Our findings suggest that PON2 associated with RHOA G17V mutation might control the direction of the molecular agents-based AITL and provide a new therapeutic target in AITL.
Collapse
Affiliation(s)
- Fenglian Que
- Department of Endocrinology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Lihong Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Taoli Wang
- Department of Pathology, Zhuzhou Central Hospital, Zhuzhou, Hunan, 412007, China
| | - Meifang Xu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Wangen Li
- Department of Endocrinology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Shengbing Zang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| |
Collapse
|
6
|
Cai C, Wu F, He J, Zhang Y, Shi N, Peng X, Ou Q, Li Z, Jiang X, Zhong J, Tan Y. Mitochondrial quality control in diabetic cardiomyopathy: from molecular mechanisms to therapeutic strategies. Int J Biol Sci 2022; 18:5276-5290. [PMID: 36147470 PMCID: PMC9461654 DOI: 10.7150/ijbs.75402] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022] Open
Abstract
In diabetic cardiomyopathy (DCM), a major diabetic complication, the myocardium is structurally and functionally altered without evidence of coronary artery disease, hypertension or valvular disease. Although numerous anti-diabetic drugs have been applied clinically, specific medicines to prevent DCM progression are unavailable, so the prognosis of DCM remains poor. Mitochondrial ATP production maintains the energetic requirements of cardiomyocytes, whereas mitochondrial dysfunction can induce or aggravate DCM by promoting oxidative stress, dysregulated calcium homeostasis, metabolic reprogramming, abnormal intracellular signaling and mitochondrial apoptosis in cardiomyocytes. In response to mitochondrial dysfunction, the mitochondrial quality control (MQC) system (including mitochondrial fission, fusion, and mitophagy) is activated to repair damaged mitochondria. Physiological mitochondrial fission fragments the network to isolate damaged mitochondria. Mitophagy then allows dysfunctional mitochondria to be engulfed by autophagosomes and degraded in lysosomes. However, abnormal MQC results in excessive mitochondrial fission, impaired mitochondrial fusion and delayed mitophagy, causing fragmented mitochondria to accumulate in cardiomyocytes. In this review, we summarize the molecular mechanisms of MQC and discuss how pathological MQC contributes to DCM development. We then present promising therapeutic approaches to improve MQC and prevent DCM progression.
Collapse
Affiliation(s)
- Chen Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jing He
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yaoyuan Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Nengxian Shi
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaojie Peng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qing Ou
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ziying Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Jiang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiankai Zhong
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528308, Guangdong, China
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Lichtman D, Bergmann E, Kavushansky A, Cohen N, Levy NS, Levy AP, Kahn I. Structural and functional brain-wide alterations in A350V Iqsec2 mutant mice displaying autistic-like behavior. Transl Psychiatry 2021; 11:181. [PMID: 33753721 PMCID: PMC7985214 DOI: 10.1038/s41398-021-01289-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
IQSEC2 is an X-linked gene that is associated with autism spectrum disorder (ASD), intellectual disability, and epilepsy. IQSEC2 is a postsynaptic density protein, localized on excitatory synapses as part of the NMDA receptor complex and is suggested to play a role in AMPA receptor trafficking and mediation of long-term depression. Here, we present brain-wide structural volumetric and functional connectivity characterization in a novel mouse model with a missense mutation in the IQ domain of IQSEC2 (A350V). Using high-resolution structural and functional MRI, we show that animals with the A350V mutation display increased whole-brain volume which was further found to be specific to the cerebral cortex and hippocampus. Moreover, using a data-driven approach we identify putative alterations in structure-function relations of the frontal, auditory, and visual networks in A350V mice. Examination of these alterations revealed an increase in functional connectivity between the anterior cingulate cortex and the dorsomedial striatum. We also show that corticostriatal functional connectivity is correlated with individual variability in social behavior only in A350V mice, as assessed using the three-chamber social preference test. Our results at the systems-level bridge the impact of previously reported changes in AMPA receptor trafficking to network-level disruption and impaired social behavior. Further, the A350V mouse model recapitulates similarly reported brain-wide changes in other ASD mouse models, with substantially different cellular-level pathologies that nonetheless result in similar brain-wide alterations, suggesting that novel therapeutic approaches in ASD that result in systems-level rescue will be relevant to IQSEC2 mutations.
Collapse
Affiliation(s)
- Daniela Lichtman
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Eyal Bergmann
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Alexandra Kavushansky
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Nadav Cohen
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Nina S Levy
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Andrew P Levy
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel.
| | - Itamar Kahn
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel.
| |
Collapse
|
8
|
Psychiatric features and variable neurodevelopment outcome in four females with IQSEC2 spectrum disorder. J Genet 2020. [DOI: 10.1007/s12041-020-01204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Ibarluzea N, de la Hoz AB, Villate O, Llano I, Ocio I, Martí I, Guitart M, Gabau E, Andrade F, Gener B, Tejada MI. Targeted Next-Generation Sequencing in Patients with Suggestive X-Linked Intellectual Disability. Genes (Basel) 2020; 11:genes11010051. [PMID: 31906484 PMCID: PMC7017351 DOI: 10.3390/genes11010051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 12/28/2022] Open
Abstract
X-linked intellectual disability (XLID) is known to contribute up to 10% of intellectual disability (ID) in males and could explain the increased ratio of affected males observed in patients with ID. Over the past decade, next-generation sequencing has clearly stimulated the gene discovery process and has become part of the diagnostic procedure. We have performed targeted next-generation sequencing of 82 XLID genes on 61 non-related male patients with suggestive non-syndromic XLID. These patients were initially referred to the molecular genetics laboratory to exclude Fragile X Syndrome. The cohort includes 47 male patients with suggestive X-linked family history of ID meaning that they had half-brothers or maternal cousins or uncles affected; and 14 male patients with ID and affected brothers whose mothers show skewed X-inactivation. Sequencing data analysis identified 17 candidate variants in 16 patients. Seven families could be re-contacted and variant segregation analysis of the respective eight candidate variants was performed: HUWE1, IQSEC2, MAOA, MED12, PHF8, SLC6A8, SLC9A6, and SYN1. Our results show the utility of targeted next-generation sequencing in unravelling the genetic origin of XLID, especially in retrospective cases. Variant segregation and additional studies like RNA sequencing and biochemical assays also helped in re-evaluating and further classifying the genetic variants found.
Collapse
Affiliation(s)
- Nekane Ibarluzea
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Spanish Consortium for Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Ana Belén de la Hoz
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Spanish Consortium for Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Olatz Villate
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Spanish Consortium for Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
- Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, 48903 Barakaldo, Spain
| | - Isabel Llano
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Spanish Consortium for Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
- Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, 48903 Barakaldo, Spain
| | - Intzane Ocio
- Department of Paediatric Neurology, Araba University Hospital, Osakidetza Basque Health Service, 01009 Gasteiz, Spain
| | - Itxaso Martí
- Department of Paediatric Neurology, Donostia University Hospital, Osakidetza Basque Health Service, 20014 Donostia, Spain
| | - Miriam Guitart
- Genetics Laboratory, Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain
| | - Elisabeth Gabau
- Genetics Laboratory, Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, 08208 Sabadell, Spain
| | - Fernando Andrade
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Spanish Consortium for Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Blanca Gener
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Spanish Consortium for Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
- Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, 48903 Barakaldo, Spain
| | - María-Isabel Tejada
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Spanish Consortium for Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
- Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, 48903 Barakaldo, Spain
- Correspondence:
| |
Collapse
|
10
|
Rogers EJ, Jada R, Schragenheim-Rozales K, Sah M, Cortes M, Florence M, Levy NS, Moss R, Walikonis RS, Palty R, Shalgi R, Lichtman D, Kavushansky A, Gerges NZ, Kahn I, Umanah GKE, Levy AP. An IQSEC2 Mutation Associated With Intellectual Disability and Autism Results in Decreased Surface AMPA Receptors. Front Mol Neurosci 2019; 12:43. [PMID: 30842726 PMCID: PMC6391579 DOI: 10.3389/fnmol.2019.00043] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/01/2019] [Indexed: 12/30/2022] Open
Abstract
We have recently described an A350V mutation in IQSEC2 associated with intellectual disability, autism and epilepsy. We sought to understand the molecular pathophysiology of this mutation with the goal of developing targets for drug intervention. We demonstrate here that the A350V mutation results in interference with the binding of apocalmodulin to the IQ domain of IQSEC2. We further demonstrate that this mutation results in constitutive activation of the guanine nucleotide exchange factor (GEF) activity of IQSEC2 resulting in increased production of the active form of Arf6. In a CRISPR generated mouse model of the A350V IQSEC2 mutation, we demonstrate that the surface expression of GluA2 AMPA receptors in mouse hippocampal tissue was significantly reduced in A350V IQSEC2 mutant mice compared to wild type IQSEC2 mice and that there is a significant reduction in basal synaptic transmission in the hippocampus of A350V IQSEC2 mice compared to wild type IQSEC2 mice. Finally, the A350V IQSEC2 mice demonstrated increased activity, abnormal social behavior and learning as compared to wild type IQSEC2 mice. These findings suggest a model of how the A350V mutation in IQSEC2 may mediate disease with implications for targets for drug therapy. These studies provide a paradigm for a personalized approach to precision therapy for a disease that heretofore has no therapy.
Collapse
Affiliation(s)
- Eli J Rogers
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Reem Jada
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | | | - Megha Sah
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Marisol Cortes
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Matthew Florence
- Department of Biopharmaceutical Sciences and Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Nina S Levy
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Rachel Moss
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Randall S Walikonis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Raz Palty
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Reut Shalgi
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Daniela Lichtman
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Alexandra Kavushansky
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Nashaat Z Gerges
- Department of Biopharmaceutical Sciences and Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Itamar Kahn
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - George K E Umanah
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Andrew P Levy
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|