1
|
Gabaev I, Rowland A, Jovanovic E, Gawden-Bone CM, Crozier TWM, Teixeira-Silva A, Greenwood EJD, Gerber PP, Wit N, Nathan JA, Matheson NJ, Lehner PJ. CRISPR-Cas9 genetic screens reveal regulation of TMPRSS2 by the Elongin BC-VHL complex. Sci Rep 2025; 15:11907. [PMID: 40195420 PMCID: PMC11976923 DOI: 10.1038/s41598-025-95644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
The TMPRSS2 cell surface protease is used by a broad range of respiratory viruses to facilitate entry into target cells. Together with ACE2, TMPRSS2 represents a key factor for SARS-CoV-2 infection, as TMPRSS2 mediates cleavage of viral spike protein, enabling direct fusion of the viral envelope with the host cell membrane. Since the start of the COVID-19 pandemic, TMPRSS2 has gained attention as a therapeutic target for protease inhibitors which would inhibit SARS-CoV-2 infection, but little is known about TMPRSS2 regulation, particularly in cell types physiologically relevant for SARS-CoV-2 infection. Here, we performed an unbiased genome-wide CRISPR-Cas9 library screen, together with a library targeted at epigenetic modifiers and transcriptional regulators, to identify cellular factors that modulate cell surface expression of TMPRSS2 in human colon epithelial cells. We find that endogenous TMPRSS2 is regulated by the Elongin BC-VHL complex and HIF transcription factors. Depletion of Elongin B or treatment of cells with PHD inhibitors resulted in downregulation of TMPRSS2 and inhibition of SARS-CoV-2 infection. We show that TMPRSS2 is still utilised by SARS-CoV-2 Omicron variants for entry into colonic epithelial cells. Our study enhances our understanding of the regulation of endogenous surface TMPRSS2 in cells physiologically relevant to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ildar Gabaev
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Alexandra Rowland
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Emilija Jovanovic
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Christian M Gawden-Bone
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Thomas W M Crozier
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Ana Teixeira-Silva
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Edward J D Greenwood
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Pehuén Pereyra Gerber
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Niek Wit
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - James A Nathan
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Nicholas J Matheson
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Paul J Lehner
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
| |
Collapse
|
2
|
Barman P, Chakraborty P, Guha S, Kaja A, Bhaumik R, Bhaumik SR. TAP-MS analysis of FACT interactions and regulation by a ubiquitin ligase, San1. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195077. [PMID: 39855624 DOI: 10.1016/j.bbagrm.2025.195077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 12/20/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
An evolutionarily conserved heterodimeric FACT (Facilitates chromatin transcription) regulates transcription, DNA repair, replication and other cellular processes via its interactions with other proteins. FACT is recently found to be regulated via ubiquitylation and 26S proteasomal degradation, alteration of which is associated with aberrant transcription and genome integrity. However, there has not been a systematic study to analyze FACT interactions proteome-wide in the presence and absence of its UPS (Ubiquitin-proteasome system) regulation, which could reveal new FACT interactors with mechanistic and functional implications. Here, we have adopted a proteome-wide approach via TAP (Tandem affinity purification)-mediated pull-down of FACT and its interactors from the soluble and insoluble cellular fractions followed by MS (Mass-spectrometry) analysis. We find distinct interactors of FACT in the soluble and insoluble fractions in addition to a common set in both. While a set of all these interactors overlaps with previously known FACT partners, many are new, which are involved in different cellular processes such as transcription, DNA repair and chromatin regulation. Further, an intrinsically disordered ubiquitin ligase, San1, that ubiquitylates the Spt16 component of FACT for proteasomal degradation to regulate chromatin, transcription and genome integrity is found to influence the interactions of FACT with a set of proteins including epigenetic, transcription and DNA repair factors. Collectively, our results unveil proteome-wide FACT interactions and regulation by a ubiquitin ligase, hence shedding much light on FACT networks with functional and mechanistic implications.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Amala Kaja
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Rhea Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA.
| |
Collapse
|
3
|
Bejjani F, Ségéral E, Mosca K, Lecourieux A, Bakail M, Hamoudi M, Emiliani S. Overlapping and distinct functions of SPT6, PNUTS, and PCF11 in regulating transcription termination. Nucleic Acids Res 2025; 53:gkaf179. [PMID: 40103229 PMCID: PMC11915507 DOI: 10.1093/nar/gkaf179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
The histone chaperone and transcription elongation factor SPT6 is integral to RNA polymerase II (RNAPII) activity. SPT6 also plays a crucial role in regulating transcription termination, although the mechanisms involved are largely unknown. In an attempt to identify the pathways employed by SPT6 in this regulation, we found that, while SPT6 and its partner IWS1 interact and co-localize with RNAPII, their functions diverge significantly at gene termination sites. Depletion of SPT6, but not of IWS1, results in extensive readthrough transcription, indicating that SPT6 independently regulates transcription termination. Further analysis identified that the cleavage and polyadenylation factor PCF11 and the phosphatase regulatory protein PNUTS collaborate with SPT6 in this process. These findings suggest that SPT6 may facilitate transcription termination by recruiting PNUTS and PCF11 to RNAPII. Additionally, SPT6 and PNUTS jointly restrict promoter upstream transcripts (PROMPTs), whereas PCF11 presence is essential for their accumulation in the absence of SPT6 at hundreds of genes. Thus, SPT6, PCF11, and PNUTS have both distinct and overlapping functions in transcription termination. Our data highlight the pivotal role of SPT6 in ensuring proper transcription termination at the 5' and 3'-ends of genes.
Collapse
Affiliation(s)
- Fabienne Bejjani
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - Emmanuel Ségéral
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - Kevin Mosca
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - Adriana Lecourieux
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - May Bakail
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - Meriem Hamoudi
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - Stéphane Emiliani
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| |
Collapse
|
4
|
Jang J, Kang Y, Zofall M, Woo S, An S, Cho C, Grewal S, Lee JY, Song JJ. Abo1 ATPase facilitates the dissociation of FACT from chromatin. Nucleic Acids Res 2025; 53:gkae1229. [PMID: 39676666 DOI: 10.1093/nar/gkae1229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
The histone chaperone FAcilitates Chromatin Transcription (FACT) is a heterodimeric complex consisting of Spt16 and Pob3, crucial for preserving nucleosome integrity during transcription and DNA replication. Loss of FACT leads to cryptic transcription and heterochromatin defects. FACT was shown to interact with Abo1, an AAA + family histone chaperone involved in nucleosome dynamics. Depletion of Abo1 causes FACT to stall at transcription start sites and mimics FACT mutants, indicating a functional association between Abo1 and FACT. However, the precise role of Abo1 in FACT function remains poorly understood. Here, we reveal that Abo1 directly interacts with FACT and facilitates the dissociation of FACT from nucleosome. Specifically, the N-terminal region of Abo1 utilizes its FACT-interacting helix to bind to the N-terminal domain of Spt16. In addition, using single-molecule fluorescence imaging, we discovered that Abo1 facilitates the ATP-dependent dissociation of FACT from nucleosomes. Furthermore, we demonstrate that the interaction between Abo1 and FACT is essential for maintaining heterochromatin in fission yeast. In summary, our findings suggest that Abo1 regulates FACT turnover in an ATP-dependent manner, proposing a model of histone chaperone recycling driven by inter-chaperone interactions.
Collapse
Affiliation(s)
- Juwon Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KI for the BioCentury, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Korea
| | - Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Sangmin Woo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KI for the BioCentury, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Soyeong An
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Korea
| | - Carol Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KI for the BioCentury, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Shiv Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KI for the BioCentury, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| |
Collapse
|
5
|
Modafferi S, Esposito F, Tavella S, Gioia U, Francia S. Traffic light at DSB-transit regulation between gene transcription and DNA repair. FEBS Lett 2025; 599:177-189. [PMID: 39333024 PMCID: PMC11771567 DOI: 10.1002/1873-3468.15024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/29/2024]
Abstract
Transcription of actively expressed genes is dampened for kilobases around DNA lesions via chromatin modifications. This is believed to favour repair and prevent genome instability. Nonetheless, mounting evidence suggests that transcription may be induced by DNA breakage, resulting in the local de novo synthesis of non-coding RNAs (ncRNAs). Such transcripts have been proposed to play important functions in both DNA damage signalling and repair. Here, we review the recently identified mechanistic details of transcriptional silencing at damaged chromatin, highlighting how post-translational histone modifications can also be modulated by the local synthesis of DNA damage-induced ncRNAs. Finally, we envision that these entangled transcriptional events at DNA breakages can be targeted to modulate DNA repair, with potential implications for locus-specific therapeutic strategies.
Collapse
Affiliation(s)
- Stefania Modafferi
- Istituto di Genetica Molecolare “Luigi Luca Cavalli Sforza”– Consiglio Nazionale delle RicerchePaviaItaly
- PhD Program in Biomolecular Sciences and Biotechnology (SBB)Istituto Universitario di Studi Superiori (IUSS)PaviaItaly
| | - Francesca Esposito
- Istituto di Genetica Molecolare “Luigi Luca Cavalli Sforza”– Consiglio Nazionale delle RicerchePaviaItaly
- PhD Program in Genetics, Molecular and Cellular Biology (GMCB)University of PaviaPaviaItaly
| | - Sara Tavella
- Istituto di Genetica Molecolare “Luigi Luca Cavalli Sforza”– Consiglio Nazionale delle RicerchePaviaItaly
- IFOM‐ETS – The AIRC Institute of Molecular OncologyMilanItaly
| | - Ubaldo Gioia
- Istituto di Genetica Molecolare “Luigi Luca Cavalli Sforza”– Consiglio Nazionale delle RicerchePaviaItaly
- IFOM‐ETS – The AIRC Institute of Molecular OncologyMilanItaly
| | - Sofia Francia
- Istituto di Genetica Molecolare “Luigi Luca Cavalli Sforza”– Consiglio Nazionale delle RicerchePaviaItaly
- IFOM‐ETS – The AIRC Institute of Molecular OncologyMilanItaly
| |
Collapse
|
6
|
Beard JS, Francis LK, Forrest RC, Kalinowski A, Parks JC, Griffin WH, Tackett CL, Duina AA. Trapping of yFACT at 3' ends of genes is not a universal characteristic of yeast versions of Bryant-Li-Bhoj syndrome histone H3 mutants. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001384. [PMID: 39525290 PMCID: PMC11544422 DOI: 10.17912/micropub.biology.001384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Bryant-Li-Bhoj syndrome (BLBS) is associated with germline mutations in the genes encoding human histone H3.3. While to date 70 H3.3 mutants have been associated with BLBS, the molecular mechanisms underpinning this condition remain undefined. We recently showed that in yeast the H3-L61R BLBS mutant causes trapping of yFACT at 3' ends of genes, raising the possibility that this defect could be a contributing factor to disease across all H3-BLBS mutants. Here, we show that of nine additional yeast H3-BLBS mutants analyzed, only one causes yFACT 3' end-trapping, thus indicating that this defect is not a universal feature of H3-BLBS mutants. We also present additional phenotypic data that could provide insights into the molecular mechanisms contributing to BLBS in human patients.
Collapse
|
7
|
Byrd SE, Hoyt B, Ozersky SA, Crocker AW, Habenicht D, Nester MR, Prowse H, Turkal CE, Joseph L, Duina AA. Assessing contributions of DNA sequences at the 3' end of a yeast gene on yFACT, RNA polymerase II, and nucleosome occupancy. BMC Res Notes 2024; 17:219. [PMID: 39103906 PMCID: PMC11301940 DOI: 10.1186/s13104-024-06872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
OBJECTIVE In past work in budding yeast, we identified a nucleosomal region required for proper interactions between the histone chaperone complex yFACT and transcribed genes. Specific histone mutations within this region cause a shift in yFACT occupancy towards the 3' end of genes, a defect that we have attributed to impaired yFACT dissociation from DNA following transcription. In this work we wished to assess the contributions of DNA sequences at the 3' end of genes in promoting yFACT dissociation upon transcription termination. RESULTS We generated fourteen different alleles of the constitutively expressed yeast gene PMA1, each lacking a distinct DNA fragment across its 3' end, and assessed their effects on occupancy of the yFACT component Spt16. Whereas most of these alleles conferred no defects on Spt16 occupancy, one did cause a modest increase in Spt16 binding at the gene's 3' end. Interestingly, the same allele also caused minor retention of RNA Polymerase II (Pol II) and altered nucleosome occupancy across the same region of the gene. These results suggest that specific DNA sequences at the 3' ends of genes can play roles in promoting efficient yFACT and Pol II dissociation from genes and can also contribute to proper chromatin architecture.
Collapse
Affiliation(s)
- Samuel E Byrd
- Biology Department, Hendrix College, Conway, AR, 72032, USA
| | - Brianna Hoyt
- Biology Department, Hendrix College, Conway, AR, 72032, USA
| | | | - Alex W Crocker
- Biology Department, Hendrix College, Conway, AR, 72032, USA
| | | | - Mattie R Nester
- Biology Department, Hendrix College, Conway, AR, 72032, USA
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Heather Prowse
- Biology Department, Hendrix College, Conway, AR, 72032, USA
| | | | - Lauren Joseph
- Biology Department, Hendrix College, Conway, AR, 72032, USA
| | - Andrea A Duina
- Biology Department, Hendrix College, Conway, AR, 72032, USA.
| |
Collapse
|
8
|
Žumer K, Ochmann M, Aljahani A, Zheenbekova A, Devadas A, Maier KC, Rus P, Neef U, Oudelaar AM, Cramer P. FACT maintains chromatin architecture and thereby stimulates RNA polymerase II pausing during transcription in vivo. Mol Cell 2024; 84:2053-2069.e9. [PMID: 38810649 DOI: 10.1016/j.molcel.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/06/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
Facilitates chromatin transcription (FACT) is a histone chaperone that supports transcription through chromatin in vitro, but its functional roles in vivo remain unclear. Here, we analyze the in vivo functions of FACT with the use of multi-omics analysis after rapid FACT depletion from human cells. We show that FACT depletion destabilizes chromatin and leads to transcriptional defects, including defective promoter-proximal pausing and elongation, and increased premature termination of RNA polymerase II. Unexpectedly, our analysis revealed that promoter-proximal pausing depends not only on the negative elongation factor (NELF) but also on the +1 nucleosome, which is maintained by FACT.
Collapse
Affiliation(s)
- Kristina Žumer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Moritz Ochmann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Abrar Aljahani
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Am Fassberg 11, 37077 Göttingen, Germany
| | - Aiturgan Zheenbekova
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Arjun Devadas
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kerstin Caroline Maier
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Petra Rus
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ute Neef
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - A Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
9
|
Green RA, Khaliullin RN, Zhao Z, Ochoa SD, Hendel JM, Chow TL, Moon H, Biggs RJ, Desai A, Oegema K. Automated profiling of gene function during embryonic development. Cell 2024; 187:3141-3160.e23. [PMID: 38759650 PMCID: PMC11166207 DOI: 10.1016/j.cell.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/10/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Systematic functional profiling of the gene set that directs embryonic development is an important challenge. To tackle this challenge, we used 4D imaging of C. elegans embryogenesis to capture the effects of 500 gene knockdowns and developed an automated approach to compare developmental phenotypes. The automated approach quantifies features-including germ layer cell numbers, tissue position, and tissue shape-to generate temporal curves whose parameterization yields numerical phenotypic signatures. In conjunction with a new similarity metric that operates across phenotypic space, these signatures enabled the generation of ranked lists of genes predicted to have similar functions, accessible in the PhenoBank web portal, for ∼25% of essential development genes. The approach identified new gene and pathway relationships in cell fate specification and morphogenesis and highlighted the utilization of specialized energy generation pathways during embryogenesis. Collectively, the effort establishes the foundation for comprehensive analysis of the gene set that builds a multicellular organism.
Collapse
Affiliation(s)
- Rebecca A Green
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | - Zhiling Zhao
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Stacy D Ochoa
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | | | | | - HongKee Moon
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Ronald J Biggs
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Geisberg JV, Moqtaderi Z, Struhl K. Chromatin regulates alternative polyadenylation via the RNA polymerase II elongation rate. Proc Natl Acad Sci U S A 2024; 121:e2405827121. [PMID: 38748572 PMCID: PMC11127049 DOI: 10.1073/pnas.2405827121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
The RNA polymerase II (Pol II) elongation rate influences poly(A) site selection, with slow and fast Pol II derivatives causing upstream and downstream shifts, respectively, in poly(A) site utilization. In yeast, depletion of either of the histone chaperones FACT or Spt6 causes an upstream shift of poly(A) site use that strongly resembles the poly(A) profiles of slow Pol II mutant strains. Like slow Pol II mutant strains, FACT- and Spt6-depleted cells exhibit Pol II processivity defects, indicating that both Spt6 and FACT stimulate the Pol II elongation rate. Poly(A) profiles of some genes show atypical downstream shifts; this subset of genes overlaps well for FACT- or Spt6-depleted strains but is different from the atypical genes in Pol II speed mutant strains. In contrast, depletion of histone H3 or H4 causes a downstream shift of poly(A) sites for most genes, indicating that nucleosomes inhibit the Pol II elongation rate in vivo. Thus, chromatin-based control of the Pol II elongation rate is a potential mechanism, distinct from direct effects on the cleavage/polyadenylation machinery, to regulate alternative polyadenylation in response to genetic or environmental changes.
Collapse
Affiliation(s)
- Joseph V. Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
11
|
Barman P, Bhaumik SR. Facilitates Chromatin Transcription in Breast and Other Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1465:71-88. [PMID: 39586994 DOI: 10.1007/978-3-031-66686-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Eukaryotic genome is packaged into chromatin. Thus, transcription takes place in the context of chromatin that is an array of nucleosomes. Nucleosome poses a barrier for the gene regulatory factors to access DNA for transcription to occur. Fortunately, eukaryotic cells have evolved mechanisms of nucleosomal disassembly and reassembly for transcription through chromatin. Such nucleosomal alteration in controlling transcription is governed by a heterodimeric chromatin remodeling factor, FACT (facilitates chromatin transcription), which is evolutionarily conserved from yeast to humans. FACT facilitates chromatin disassembly at the promoter and reassembly at the open reading frame. Such chromatin regulatory functions of FACT promote transcription. Likewise, other DNA transacting processes such as DNA replication and repair are also regulated by FACT via modulation of chromatin dynamics. Intriguingly, FACT is found to be upregulated in breast and other cancers with oncogenic potential. Thus, FACT and/or its upstream regulatory pathways/factors can be employed for cancer prognosis and targeted for an effective cancer therapy. Further, FACT is found to be downregulated and/or mutated in various cancers including breast cancer. Here, we describe FACT and its involvement in breast and other cancers with prognostic and targeted therapeutic implications.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, USA.
| |
Collapse
|
12
|
Obermeyer S, Schrettenbrunner L, Stöckl R, Schwartz U, Grasser K. Different elongation factors distinctly modulate RNA polymerase II transcription in Arabidopsis. Nucleic Acids Res 2023; 51:11518-11533. [PMID: 37819035 PMCID: PMC10681736 DOI: 10.1093/nar/gkad825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/24/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Various transcript elongation factors (TEFs) including modulators of RNA polymerase II (RNAPII) activity and histone chaperones tune the efficiency of transcription in the chromatin context. TEFs are involved in establishing gene expression patterns during growth and development in Arabidopsis, while little is known about the genomic distribution of the TEFs and the way they facilitate transcription. We have mapped the genome-wide occupancy of the elongation factors SPT4-SPT5, PAF1C and FACT, relative to that of elongating RNAPII phosphorylated at residues S2/S5 within the carboxyterminal domain. The distribution of SPT4-SPT5 along transcribed regions closely resembles that of RNAPII-S2P, while the occupancy of FACT and PAF1C is rather related to that of RNAPII-S5P. Under transcriptionally challenging heat stress conditions, mutant plants lacking the corresponding TEFs are differentially impaired in transcript synthesis. Strikingly, in plants deficient in PAF1C, defects in transcription across intron/exon borders are observed that are cumulative along transcribed regions. Upstream of transcriptional start sites, the presence of FACT correlates with nucleosomal occupancy. Under stress conditions FACT is particularly required for transcriptional upregulation and to promote RNAPII transcription through +1 nucleosomes. Thus, Arabidopsis TEFs are differently distributed along transcribed regions, and are distinctly required during transcript elongation especially upon transcriptional reprogramming.
Collapse
Affiliation(s)
- Simon Obermeyer
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Lukas Schrettenbrunner
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Richard Stöckl
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Centre, Biology and Pre-Clinical Medicine, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Klaus D Grasser
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| |
Collapse
|
13
|
Robert F, Jeronimo C. Transcription-coupled nucleosome assembly. Trends Biochem Sci 2023; 48:978-992. [PMID: 37657993 DOI: 10.1016/j.tibs.2023.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023]
Abstract
Eukaryotic transcription occurs on chromatin, where RNA polymerase II encounters nucleosomes during elongation. These nucleosomes must unravel for the DNA to enter the active site. However, in most transcribed genes, nucleosomes remain intact due to transcription-coupled chromatin assembly mechanisms. These mechanisms primarily involve the local reassembly of displaced nucleosomes to prevent (epi)genomic instability and the emergence of cryptic transcription. As a fail-safe mechanism, cells can assemble nucleosomes de novo, particularly in highly transcribed genes, but this may result in the loss of epigenetic information. This review examines transcription-coupled chromatin assembly, with an emphasis on studies in yeast and recent structural studies. These studies shed light on how elongation factors and histone chaperones coordinate to enable nucleosome recycling during transcription.
Collapse
Affiliation(s)
- François Robert
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Canada; Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC H3A 1A3, Canada.
| | - Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| |
Collapse
|
14
|
Chanarat S. Transcription machinery of the minimalist: comparative genomic analysis provides insights into the (de)regulated transcription mechanism of microsporidia - fungal-relative parasites. Transcription 2023; 14:1-17. [PMID: 36757099 PMCID: PMC10353337 DOI: 10.1080/21541264.2023.2174765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Microsporidia are eukaryotic obligate intracellular parasites closely related to fungi. Co-evolving with infected hosts, microsporidia have highly reduced their genomes and lacked several biological components. As it is beneficial for intracellular parasites like microsporidia to reduce their genome size, it is therefore reasonable to assume that genes encoding multifactorial complex machinery of transcription could be a potential target to be excluded from microsporidian genomes during the reductive evolution. In such a case, an evolutionary dilemma occurs because microsporidia cannot remove all transcription-machinery-encoding genes, products of which are essential for initialthe initial steps of gene expression. Here, I propose that while genes encoding core machinery are conserved, several genes known to function in fine-tune regulation of transcription are absent. This genome compaction strategy may come at the cost of loosely regulated or less controllable transcription. Alternatively, analogous to microsporidian polar tube, the parasites may have specialized factors to regulate their RNA synthesis.
Collapse
Affiliation(s)
- Sittinan Chanarat
- Laboratory of Molecular Cell Biology, Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
15
|
Soh PXY, Khatkar MS, Williamson P. Lymphoma in Border Collies: Genome-Wide Association and Pedigree Analysis. Vet Sci 2023; 10:581. [PMID: 37756103 PMCID: PMC10536503 DOI: 10.3390/vetsci10090581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
There has been considerable interest in studying cancer in dogs and its potential as a model system for humans. One area of research has been the search for genetic risk variants in canine lymphoma, which is amongst the most common canine cancers. Previous studies have focused on a limited number of breeds, but none have included Border Collies. The aims of this study were to identify relationships between Border Collie lymphoma cases through an extensive pedigree investigation and to utilise relationship information to conduct genome-wide association study (GWAS) analyses to identify risk regions associated with lymphoma. The expanded pedigree analysis included 83,000 Border Collies, with 71 identified lymphoma cases. The analysis identified affected close relatives, and a common ancestor was identified for 54 cases. For the genomic study, a GWAS was designed to incorporate lymphoma cases, putative "carriers", and controls. A case-control GWAS was also conducted as a comparison. Both analyses showed significant SNPs in regions on chromosomes 18 and 27. Putative top candidate genes from these regions included DLA-79, WNT10B, LMBR1L, KMT2D, and CCNT1.
Collapse
Affiliation(s)
- Pamela Xing Yi Soh
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia;
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Mehar Singh Khatkar
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia;
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | - Peter Williamson
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia;
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
16
|
Okuda M, Tsunaka Y, Nishimura Y. Dynamic structures of intrinsically disordered proteins related to the general transcription factor TFIIH, nucleosomes, and histone chaperones. Biophys Rev 2022; 14:1449-1472. [PMID: 36659983 PMCID: PMC9842849 DOI: 10.1007/s12551-022-01014-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022] Open
Abstract
Advances in structural analysis by cryogenic electron microscopy (cryo-EM) and X-ray crystallography have revealed the tertiary structures of various chromatin-related proteins, including transcription factors, RNA polymerases, nucleosomes, and histone chaperones; however, the dynamic structures of intrinsically disordered regions (IDRs) in these proteins remain elusive. Recent studies using nuclear magnetic resonance (NMR), together with molecular dynamics (MD) simulations, are beginning to reveal dynamic structures of the general transcription factor TFIIH complexed with target proteins including the general transcription factor TFIIE, the tumor suppressor p53, the cell cycle protein DP1, the DNA repair factors XPC and UVSSA, and three RNA polymerases, in addition to the dynamics of histone tails in nucleosomes and histone chaperones. In complexes of TFIIH, the PH domain of the p62 subunit binds to an acidic string formed by the IDR in TFIIE, p53, XPC, UVSSA, DP1, and the RPB6 subunit of three RNA polymerases by a common interaction mode, namely extended string-like binding of the IDR on the positively charged surface of the PH domain. In the nucleosome, the dynamic conformations of the N-tails of histones H2A and H2B are correlated, while the dynamic conformations of the N-tails of H3 and H4 form a histone tail network dependent on their modifications and linker DNA. The acidic IDRs of the histone chaperones of FACT and NAP1 play important roles in regulating the accessibility to histone proteins in the nucleosome.
Collapse
Affiliation(s)
- Masahiko Okuda
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045 Japan
| | - Yasuo Tsunaka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045 Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045 Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528 Japan
| |
Collapse
|
17
|
Pablo-Kaiser A, Tucker MG, Turner GA, Dilday EG, Olmstead AG, Tackett CL, Duina AA. Dominant effects of the histone mutant H3-L61R on Spt16-gene interactions in budding yeast. Epigenetics 2022; 17:2347-2355. [PMID: 36073733 DOI: 10.1080/15592294.2022.2121073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Recent studies have unveiled an association between an L61R substitution within the human histone H3.3 protein and the presentation of neurodevelopmental disorders in two patients. In both cases, the mutation responsible for this substitution is encoded by one allele of the H3F3A gene and, if this mutation is indeed responsible for the disease phenotypes, it must act in a dominant fashion since the genomes of these patients also harbour three other alleles encoding wild-type histone H3.3. In our previous work in yeast, we have shown that most amino acid substitutions at H3-L61 cause an accumulation of the Spt16 component of the yFACT histone chaperone complex at the 3' end of transcribed genes, a defect we have attributed to impaired yFACT dissociation from chromatin following transcription. In those studies, however, the H3-L61R mutant had not been tested since it does not sustain viability when expressed as the sole source of histone H3 in cells. In the present work, we show that H3-L61R impairs proper Spt16 dissociation from genes when co-expressed with wild-type histone H3 in haploid cells as well as in diploid cells that express the mutant protein from one of four histone H3-encoding alleles. These results, combined with other studies linking loss of function mutations in human Spt16 and neurodevelopmental disorders, provide a possible molecular mechanism underlying the neurodevelopmental disorders seen in patients expressing the histone H3.3 L61R mutant.
Collapse
Affiliation(s)
- Alex Pablo-Kaiser
- Biology and Health Sciences Department, Hendrix College, Conway, Arkansas, USA
| | - McKenzie G Tucker
- Biology and Health Sciences Department, Hendrix College, Conway, Arkansas, USA
| | - Grace A Turner
- Biology and Health Sciences Department, Hendrix College, Conway, Arkansas, USA
| | - Elijah G Dilday
- Biology and Health Sciences Department, Hendrix College, Conway, Arkansas, USA
| | - Avery G Olmstead
- Biology and Health Sciences Department, Hendrix College, Conway, Arkansas, USA
| | - Caroline L Tackett
- Biology and Health Sciences Department, Hendrix College, Conway, Arkansas, USA
| | - Andrea A Duina
- Biology and Health Sciences Department, Hendrix College, Conway, Arkansas, USA
| |
Collapse
|