1
|
Schenk EL, Boland JM, Withers SG, Bulur PA, Dietz AB. Tumor Microenvironment CD14 + Cells Correlate with Poor Overall Survival in Patients with Early-Stage Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14184501. [PMID: 36139660 PMCID: PMC9496975 DOI: 10.3390/cancers14184501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Patients with early-stage lung adenocarcinoma have a high risk of recurrent or metastatic disease despite undergoing curative intent therapy. We hypothesized that increased CD14+ cells within the tumor microenvironment (TME) could stratify patient outcomes. Immunohistochemistry for CD14 was performed on 189 specimens from patients with lung adenocarcinoma who underwent curative intent surgery. Outcomes and associations with clinical and pathologic variables were determined. In vitro studies utilized a coculture system to model the lung cancer TME containing CD14+ cells. Patients with high levels of TME CD14+ cells experienced a median overall survival of 5.5 years compared with 8.3 and 10.7 years for those with moderate or low CD14 levels, respectively (p < 0.001). Increased CD14+ cell tumor infiltration was associated with a higher stage at diagnosis and more positive lymph nodes at the time of surgery. This prognostic capacity remained even for patients with early-stage disease. Using an in vitro model system, we found that CD14+ cells reduced chemotherapy-induced cancer cell death. These data suggest that CD14+ cells are a biomarker for poor prognosis in early-stage lung adenocarcinoma and may promote tumor survival. CD14+ cell integration into the lung cancer TME can occur early in the disease and may be a promising new therapeutic avenue.
Collapse
Affiliation(s)
- Erin L. Schenk
- Department of Medicine, Division of Medical Oncology, Univeristy of Colorado, Aurora, CO 80045, USA
| | - Jennifer M. Boland
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarah G. Withers
- Human Cell Therapy Laboratory, Divisions of Transfusion Medicine and Experimental Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Peggy A. Bulur
- Human Cell Therapy Laboratory, Divisions of Transfusion Medicine and Experimental Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Allan B. Dietz
- Human Cell Therapy Laboratory, Divisions of Transfusion Medicine and Experimental Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| |
Collapse
|
2
|
The Dichotomous Role of Bone Marrow Derived Cells in the Chemotherapy-Treated Tumor Microenvironment. J Clin Med 2020; 9:jcm9123912. [PMID: 33276524 PMCID: PMC7761629 DOI: 10.3390/jcm9123912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Bone marrow derived cells (BMDCs) play a wide variety of pro- and anti-tumorigenic roles in the tumor microenvironment (TME) and in the metastatic process. In response to chemotherapy, the anti-tumorigenic function of BMDCs can be enhanced due to chemotherapy-induced immunogenic cell death. However, in recent years, a growing body of evidence suggests that chemotherapy or other anti-cancer drugs can also facilitate a pro-tumorigenic function in BMDCs. This includes elevated angiogenesis, tumor cell proliferation and pro-tumorigenic immune modulation, ultimately contributing to therapy resistance. Such effects do not only contribute to the re-growth of primary tumors but can also support metastasis. Thus, the delicate balance of BMDC activities in the TME is violated following tumor perturbation, further requiring a better understanding of the complex crosstalk between tumor cells and BMDCs. In this review, we discuss the different types of BMDCs that reside in the TME and their activities in tumors following chemotherapy, with a major focus on their pro-tumorigenic role. We also cover aspects of rationally designed combination treatments that target or manipulate specific BMDC types to improve therapy outcomes.
Collapse
|
3
|
Ren W, Zhang X, Li W, Feng Q, Feng H, Tong Y, Rong H, Wang W, Zhang D, Zhang Z, Tu S. Circulating and tumor-infiltrating arginase 1-expressing cells in gastric adenocarcinoma patients were mainly immature and monocytic Myeloid-derived suppressor cells. Sci Rep 2020; 10:8056. [PMID: 32415175 PMCID: PMC7229115 DOI: 10.1038/s41598-020-64841-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/18/2020] [Indexed: 01/11/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of heterogeneous cells derived from immature myeloid cells (IMCs). MDSCs are known to play important roles in tumor immune evasion. While we know that there are a large number of circulating and tumor-infiltrating MDSCs existing in gastric cancer (GC) patients, the phenotypic characteristics and arginase 1 (ARG1) expression levels of these MDSCs remain very unclear. In our study, flow cytometric analysis of circulating MDSCs from 20 gastric adenocarcinoma (GAC) patients found that ≥80% ARG1-expressing MDSCs were mainly early-stage MDSCs (HLA-DR-CD33+CD14-CD15-MDSCs). In addition, our investigation showed that tumor-infiltrating MDSCs from 6 GAC patients consisted of >35% ARG1-expressing naïve MDSCs (HLA-DR-CD33-CD11b-CD14-CD15-MDSCs), >15% early-stage MDSCs and >40% monocytic MDSCs (HLA-DR-CD14+MDSCs). This preliminary study describes the phenotypic characteristics and ARG1 expression levels of MDSCs from GAC patients and shows that circulating and tumor-infiltrating ARG1-expressing cells were mainly immature and monocytic MDSCs, which provides information to better understand the mechanisms that allow gastric cancer cells to evade the immune system.
Collapse
Affiliation(s)
- WeiHong Ren
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China.
| | - XuRan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - WenBo Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - Qian Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - HuiJie Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - Yan Tong
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - Hao Rong
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - Wei Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - Dai Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Zhengzhou, Henan Province, China
| | - ZhenQiang Zhang
- Immunology Laboratory of Chinese Medicine, Henan University of Chinese Medicine, No.156 Jinshui East Road, Zhengzhou, Henan Province, China
| | - ShiChun Tu
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
| |
Collapse
|
4
|
He Y, Han SB, Geng YN, Yang SL, Wu YM. Quantitative analysis of proteins related to chemoresistance to paclitaxel and carboplatin in human SiHa cervical cancer cells via iTRAQ. J Gynecol Oncol 2020; 31:e28. [PMID: 31912682 PMCID: PMC7189068 DOI: 10.3802/jgo.2020.31.e28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/24/2019] [Accepted: 10/16/2019] [Indexed: 11/30/2022] Open
Abstract
Objective This study aimed to identify proteins related to paclitaxel and carboplatin chemoresistance in cervical cancer. Methods Quantitative proteomic analysis was performed on normal SiHa cells and those treated with paclitaxel and carboplatin for 14 days, with isobaric tags for relative and absolute quantitation (iTRAQ) analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to identify related processes and differentially expressed proteins. Results A total of 67 and 96 differentially expressed proteins were identified in the paclitaxel- and carboplatin- treated groups, respectively. GO and KEGG enrichment analyses identified 53 (43 upregulated and 10 downregulated) and 85 differentially expressed proteins (70 upregulated and 15 downregulated) in the paclitaxel- and carboplatin-treated groups, respectively. The cell counting kit-8 results revealed that APOA1 was overexpressed in both the paclitaxel- and carboplatin- resistant SiHa cells compared with the control cells. Immunohistochemistry showed that APOA1 was highly expressed in the paclitaxel- and carboplatin- resistant squamous cell carcinoma of the cervix. Conclusion This study is the first to use iTRAQ to identify paclitaxel- and carboplatin- resistance proteins in cervical cells. We identified several proteins previously unassociated with paclitaxel and carboplatin resistance in cervical cancer, thereby expanding our understanding of paclitaxel and carboplatin resistance mechanisms. Moreover, these findings indicate that the APOA1 protein could serve as a potential marker for monitoring and predicting paclitaxel and carboplatin resistance levels.
Collapse
Affiliation(s)
- Yue He
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Su Bin Han
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yu Ning Geng
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Shu Li Yang
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yu Mei Wu
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Monocytic Myeloid Derived Suppressor Cells in Hematological Malignancies. Int J Mol Sci 2019; 20:ijms20215459. [PMID: 31683978 PMCID: PMC6862591 DOI: 10.3390/ijms20215459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/27/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
In the era of novel agents and immunotherapies in solid and liquid tumors, there is an emerging need to understand the cross-talk between the neoplastic cells, the host immune system, and the microenvironment to mitigate proliferation, survival, migration and resistance to drugs. In the microenvironment of hematological tumors there are cells belonging to the normal bone marrow, extracellular matrix proteins, adhesion molecules, cytokines, and growth factors produced by both stromal cells and neoplastic cells themselves. In this context, myeloid suppressor cells are an emerging sub-population of regulatory myeloid cells at different stages of differentiation involved in cancer progression and chronic inflammation. In this review, monocytic myeloid derived suppressor cells and their potential clinical implications are discussed to give a comprehensive vision of their contribution to lymphoproliferative and myeloid disorders.
Collapse
|
6
|
Palumbo GA, Parrinello NL, Giallongo C, D'Amico E, Zanghì A, Puglisi F, Conticello C, Chiarenza A, Tibullo D, Raimondo FD, Romano A. Monocytic Myeloid Derived Suppressor Cells in Hematological Malignancies. Int J Mol Sci 2019. [PMID: 31683978 DOI: 10.3390/ijms20215459.pmid:31683978;pmcid:pmc6862591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
In the era of novel agents and immunotherapies in solid and liquid tumors, there is an emerging need to understand the cross-talk between the neoplastic cells, the host immune system, and the microenvironment to mitigate proliferation, survival, migration and resistance to drugs. In the microenvironment of hematological tumors there are cells belonging to the normal bone marrow, extracellular matrix proteins, adhesion molecules, cytokines, and growth factors produced by both stromal cells and neoplastic cells themselves. In this context, myeloid suppressor cells are an emerging sub-population of regulatory myeloid cells at different stages of differentiation involved in cancer progression and chronic inflammation. In this review, monocytic myeloid derived suppressor cells and their potential clinical implications are discussed to give a comprehensive vision of their contribution to lymphoproliferative and myeloid disorders.
Collapse
Affiliation(s)
- Giuseppe Alberto Palumbo
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
- Department of Clinical and Molecular Biomedicine Ingrassia, University of Catania, 95125 Catania, Italy.
| | - Nunziatina Laura Parrinello
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
- Department of Clinical and Molecular Biomedicine Ingrassia, University of Catania, 95125 Catania, Italy.
| | - Cesarina Giallongo
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
| | - Emanuele D'Amico
- Department of Clinical and Molecular Biomedicine Ingrassia, University of Catania, 95125 Catania, Italy.
| | - Aurora Zanghì
- Department of Clinical and Molecular Biomedicine Ingrassia, University of Catania, 95125 Catania, Italy.
| | - Fabrizio Puglisi
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
- Dipartimento di Chirurgia generale e specialità medico-chirurgiche, CHIRMED, University of Catania, 95125 Catania, Italy.
| | - Concetta Conticello
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
| | - Annalisa Chiarenza
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
| | - Daniele Tibullo
- BIOMETEC, Dipartimento di Scienze Biomediche e Biotecnologiche, University of Catania, 95125 Catania, Italy.
| | - Francesco Di Raimondo
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
- Dipartimento di Chirurgia generale e specialità medico-chirurgiche, CHIRMED, University of Catania, 95125 Catania, Italy.
| | - Alessandra Romano
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
- Dipartimento di Chirurgia generale e specialità medico-chirurgiche, CHIRMED, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
7
|
Brajer-Luftmann B, Nowicka A, Kaczmarek M, Wyrzykiewicz M, Yasar S, Piorunek T, Sikora J, Batura-Gabryel H. Damage-Associated Molecular Patterns and Myeloid-Derived Suppressor Cells in Bronchoalveolar Lavage Fluid in Chronic Obstructive Pulmonary Disease Patients. J Immunol Res 2019; 2019:9708769. [PMID: 31355298 PMCID: PMC6636560 DOI: 10.1155/2019/9708769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/11/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are present in the human lung microenvironment, and they may be involved in the local inflammatory process in chronic obstructive pulmonary disease (COPD). Chronic inflammation in COPD may induce immunogenic cell death of structural airway cells, causing the release of damage-associated molecular patterns (DAMPs). DAMPs may activate the innate and adaptive immune system. The relationship between MDSCs and DAMPs in COPD is poorly described in the available literature. Objectives. (1) Assessment of MDSC percentage and DAMP concentration in bronchoalveolar lavage fluid (BALF) and peripheral blood. (2) Analysis of the relationship between MDSC percentage and chosen DAMPs. Patients and Methods. 30 COPD patients were included. Using monoclonal antibodies directly conjugated with fluorochromes in flow cytometry, MDSCs were assessed in BALF and peripheral blood. The concentration of DAMPs was estimated using sandwich ELISA. Using the Bradford method, the total protein concentrations were evaluated. Results. The percentage of MDSCs among MC in BALF correlated well with the concentration of defensin and heat shock protein 27. Assessing the percentage of MDSCs among all leukocytes in BALF, we revealed a significant correlation with the concentration of defensin, hyaluronic acid, and surfactant protein A. No dependencies occurred between DAMPs and MDSCs in peripheral blood. Conclusion. MDSCs and DAMPs occur in the COPD patient lung microenvironment. Significant correlations between them found in BALF may indicate their influence on the local inflammatory process in COPD. These relationships allow better understanding of the inflammatory process in COPD.
Collapse
Affiliation(s)
- Beata Brajer-Luftmann
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznan, Poland
| | - Agata Nowicka
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Clinical Immunology, Poznan University of Medical Sciences, Rokietnicka 5D Street, 60-806 Poznan, Poland
| | - Magdalena Wyrzykiewicz
- Department of Clinical Immunology, Poznan University of Medical Sciences, Rokietnicka 5D Street, 60-806 Poznan, Poland
| | - Senan Yasar
- Department of Clinical Immunology, Poznan University of Medical Sciences, Rokietnicka 5D Street, 60-806 Poznan, Poland
| | - Tomasz Piorunek
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznan, Poland
| | - Jan Sikora
- Department of Clinical Immunology, Poznan University of Medical Sciences, Rokietnicka 5D Street, 60-806 Poznan, Poland
| | - Halina Batura-Gabryel
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznan, Poland
| |
Collapse
|
8
|
Lima DS, Lemes RPG, Matos DM. Immunosuppressive monocytes (CD14 +/HLA-DR low/-) increase in childhood precursor B-cell acute lymphoblastic leukemia after induction chemotherapy. Med Oncol 2018; 35:36. [PMID: 29429058 DOI: 10.1007/s12032-018-1092-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 01/31/2018] [Indexed: 01/12/2023]
Abstract
In tumor microenvironment, immunosuppression is a common event and results from the inhibition of activated immune cells and generation of cells with immunosuppressive capacity, as some subtypes of monocytes. The aim of this study was to evaluate the presence of immunosuppressive CD14+/HLA-DRlow/- monocytes in pediatric patients with the diagnosis of B-cell acute lymphoblastic leukemia (B-ALL) and, moreover, verify whether the chemotherapeutic treatment has any effect on these cells. Peripheral blood (PB) and bone marrow (BM) samples were collected from 15 untreated pediatric patients. The presence of CD14+/HLA-DRlow/- monocytes was evaluated at diagnosis and in the end of induction chemotherapy by flow cytometry. CD14+/HLA-DRlow/- monocytes increase was observed in 60% (9/15) of the patients at the end of the induction therapy. We were able to detect an increase in CD14+/HLA-DRlow/- monocytes values in BM and PB samples of pediatric patients with B-ALL. This increase was observed in the end of induction chemotherapy, which leads us to believe that these changes probably could have been induced by the inflammatory process engendered by the cytotoxic treatment or by drugs used in the chemotherapy treatment. This finding may be useful to guide new therapeutic approaches contemplating immunomodulatory drugs that act in the depletion of immunosuppressive monocytes.
Collapse
Affiliation(s)
- D S Lima
- Oncohematology Section, Albert Sabin Children Hospital, Ceará, Brazil
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, UFC, Ceará, Brazil
| | - R P G Lemes
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, UFC, Ceará, Brazil
| | - D M Matos
- Flow Cytometry Section, Clementino Fraga Laboratory, Ceará, Brazil.
| |
Collapse
|
9
|
Riby J, Mobley J, Zhang J, Bracci PM, Skibola CF. Serum protein profiling in diffuse large B-cell lymphoma. Proteomics Clin Appl 2016; 10:1113-1121. [PMID: 27557634 DOI: 10.1002/prca.201600074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/20/2016] [Accepted: 08/22/2016] [Indexed: 01/23/2023]
Abstract
PURPOSE The aim of this pilot study was to conduct a nontargeted exploratory proteomics profiling analysis on sera obtained from patients diagnosed with diffuse large B-cell lymphoma (DLBCL) with the goal of identifying disease-specific biomarkers. EXPERIMENTAL DESIGN Sera from 87 participants (57 chemotherapy-naïve diffuse DLBCL patients, 30 controls frequency-matched by age group and World Health Organization (WHO) BMI categories) that were part of a large San Francisco Bay Area case-control study of non-Hodgkin lymphoma were analyzed by liquid chromatography combined with tandem mass spectrometry. RESULTS Thirty-five proteins (p-adjusted <0.05) were identified as differentially abundant between the DLBCL patients at various disease stages as compared to the controls. Of these, five proteins were randomly selected for further confirmation by ELISA: adiponectin (AdipoQ), cluster of differentiation 14 (CD14), heparin sulfate proteoglycan core protein (HSPG2), extracellular matrix 1 (ECM1), and alpha-1-antichymotrypsin (ACT). These proteins were statistically significantly elevated by 68.8, 37.0, 61.6, 68.0, and 32.0%, respectively, in DLBCL patient sera as compared to controls. CONCLUSION AND CLINICAL RELEVANCE These preliminary data when combined with other cancer-related data regarding these proteins warrant continued research in clinical and large prospective studies to clarify the role for these biomarkers in DLBCL pathogenesis and/or prognosis.
Collapse
Affiliation(s)
- Jacques Riby
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Epidemiology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James Mobley
- Department of Epidemiology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianqing Zhang
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Epidemiology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA, USA
| | - Christine F Skibola
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Epidemiology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
10
|
Tomita Y, Lee MJ, Lee S, Tomita S, Chumsri S, Cruickshank S, Ordentlich P, Trepel JB. The interplay of epigenetic therapy and immunity in locally recurrent or metastatic estrogen receptor-positive breast cancer: Correlative analysis of ENCORE 301, a randomized, placebo-controlled phase II trial of exemestane with or without entinostat. Oncoimmunology 2016; 5:e1219008. [PMID: 27999738 PMCID: PMC5139687 DOI: 10.1080/2162402x.2016.1219008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 11/29/2022] Open
Abstract
Entinostat, a class I-selective histone deacetylase inhibitor, has shown promising activity in ENCORE 301, a randomized, placebo-controlled, phase II trial of exemestane with or without entinostat in women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on a nonsteroidal aromatase inhibitor. ENCORE 301 showed an 8.3-mo improvement in median overall survival among patients who received entinostat. We investigated the impact of entinostat on immune subsets with CD40, HLA-DR, and immune checkpoint receptor expression analyses in 34 patient blood samples from ENCORE 301. We found that entinostat significantly decreased granulocytic and monocytic MDSCs at cycle 1 day 15. MDSC CD40 was significantly downregulated by entinostat. A significant increase in HLA-DR expression on CD14+ monocytes by entinostat was observed. Entinostat did not impact T-cell subsets or T-cell immune checkpoint receptor expression. Our findings suggest that a significant interplay between this epigenetic regimen and host immune homeostatic mechanisms may impact therapeutic outcome.
Collapse
Affiliation(s)
- Yusuke Tomita
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Saori Tomita
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | | | | | | | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
11
|
Gustafson MP, Lin Y, Bleeker JS, Warad D, Tollefson MK, Crispen PL, Bulur PA, Harrington SM, Laborde RR, Gastineau DA, Leibovich BC, Cheville JC, Kwon ED, Dietz AB. Intratumoral CD14+ Cells and Circulating CD14+HLA-DRlo/neg Monocytes Correlate with Decreased Survival in Patients with Clear Cell Renal Cell Carcinoma. Clin Cancer Res 2015; 21:4224-33. [PMID: 25999436 DOI: 10.1158/1078-0432.ccr-15-0260] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/04/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunotherapeutic strategies to treat patients with renal cell carcinoma (RCC) offer new opportunities for disease management. Further improvements to immunotherapy will require additional understanding of the host response to RCC development. EXPERIMENTAL DESIGN Using a novel approach to understanding the immune status of cancer patients, we previously showed that patients with a certain immune profile had decreased overall survival. Here, we examine in more detail the phenotypic changes in peripheral blood and the potential consequences of these changes in RCC patients. RESULTS We found that CD14(+)HLA-DR(lo/neg) monocytes were the most predominant phenotypic change in peripheral blood of RCC patients, elevated nearly 5-fold above the average levels measured in healthy volunteers. Intratumoral and peritumoral presence of CD14 cells was an independent prognostic factor for decreased survival in a cohort of 375 RCC patients. The amount of peripheral blood CD14(+)HLA-DR(lo/neg) monocytes was found to correlate with the intensity of CD14 staining in tumors, suggesting that the measurement of these cells in blood may be a suitable surrogate for monitoring patient prognosis. The interaction of monocytes and tumor cells triggers changes in both cell types with a loss of HLA-DR expression in monocytes, increases of monocyte survival factors such as GM-CSF in tumors, and increased production of angiogenic factors, including FGF2. CONCLUSIONS Our results suggest a model of mutually beneficial interactions between tumor cells and monocytes that adversely affect patient outcome.
Collapse
Affiliation(s)
- Michael P Gustafson
- Human Cellular Therapy Laboratory, Division of Transfusion Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Yi Lin
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | | | - Deepti Warad
- Division of Pediatric Hematology/Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Paul L Crispen
- Department of Urology, University of Florida, Gainesville, Florida
| | - Peggy A Bulur
- Human Cellular Therapy Laboratory, Division of Transfusion Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Rebecca R Laborde
- Human Cellular Therapy Laboratory, Division of Transfusion Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Dennis A Gastineau
- Human Cellular Therapy Laboratory, Division of Transfusion Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota. Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Eugene D Kwon
- Department of Urology, Mayo Clinic, Rochester, Minnesota
| | - Allan B Dietz
- Human Cellular Therapy Laboratory, Division of Transfusion Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|