1
|
He YL, Liu JY, Almgrami RT, Fan YZ, Zhang Y. Cancer immunotherapy of Wilms tumor: a narrative review. Future Oncol 2024; 20:2293-2302. [PMID: 39235074 PMCID: PMC11508995 DOI: 10.1080/14796694.2024.2386929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Wilms tumor (WT) is the most common malignant tumor of the urinary system in children. Though the traditional treatment of surgery plus radiotherapy and chemotherapy achieves exciting clinical efficacy, in relapsed and refractory cases, the long-term overall survival rates are poor. Besides, chemotherapy and radiation have serious long-term toxic side effects on children. Cancer immunotherapy is a new tumor therapy that works by activating the body's immune system to allow immune cells to kill tumor cells more efficiently. Currently, cancer immunotherapy has been tested in clinical trials or basic studies in WT. This article reviews the current status of clinical trials and basic research of cancer immunotherapy in WT to promote the application of cancer immunotherapy in WT patients.
Collapse
Affiliation(s)
- Yu Lin He
- Second Ward of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin Yan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rahma Taher Almgrami
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Zhong Fan
- Second Ward of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Hijazi A, Galon J. Principles of risk assessment in colon cancer: immunity is key. Oncoimmunology 2024; 13:2347441. [PMID: 38694625 PMCID: PMC11062361 DOI: 10.1080/2162402x.2024.2347441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/16/2024] [Indexed: 05/04/2024] Open
Abstract
In clinical practice, the administration of adjuvant chemotherapy (ACT) following tumor surgical resection raises a critical dilemma for stage II colon cancer (CC) patients. The prognostic features used to identify high-risk CC patients rely on the pathological assessment of tumor cells. Currently, these factors are considered for stratifying patients who may benefit from ACT at early CC stages. However, the extent to which these factors predict clinical outcomes (i.e. recurrence, survival) remains highly controversial, also uncertainty persists regarding patients' response to treatment, necessitating further investigation. Therefore, an imperious need is to explore novel biomarkers that can reliably stratify patients at risk, to optimize adjuvant treatment decisions. Recently, we evaluated the prognostic and predictive value of Immunoscore (IS), an immune digital-pathology assay, in stage II CC patients. IS emerged as the sole significant parameter for predicting disease-free survival (DFS) in high-risk patients. Moreover, IS effectively stratified patients who would benefit most from ACT based on their risk of recurrence, thus predicting their outcomes. Notably, our findings revealed that digital IS outperformed the visual quantitative assessment of the immune response conducted by expert pathologists. The latest edition of the WHO classification for digestive tumor has introduced the evaluation of the immune response, as assessed by IS, as desirable and essential diagnostic criterion. This supports the revision of current cancer guidelines and strongly recommends the implementation of IS into clinical practice as a patient stratification tool, to guide CC treatment decisions. This approach may provide appropriate personalized therapeutic decisions that could critically impact early-stage CC patient care.
Collapse
Affiliation(s)
- Assia Hijazi
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- Veracyte, Marseille, France
| |
Collapse
|
3
|
Hijazi A, Bifulco C, Baldin P, Galon J. Digital Pathology for Better Clinical Practice. Cancers (Basel) 2024; 16:1686. [PMID: 38730638 PMCID: PMC11083211 DOI: 10.3390/cancers16091686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
(1) Background: Digital pathology (DP) is transforming the landscape of clinical practice, offering a revolutionary approach to traditional pathology analysis and diagnosis. (2) Methods: This innovative technology involves the digitization of traditional glass slides which enables pathologists to access, analyze, and share high-resolution whole-slide images (WSI) of tissue specimens in a digital format. By integrating cutting-edge imaging technology with advanced software, DP promises to enhance clinical practice in numerous ways. DP not only improves quality assurance and standardization but also allows remote collaboration among experts for a more accurate diagnosis. Artificial intelligence (AI) in pathology significantly improves cancer diagnosis, classification, and prognosis by automating various tasks. It also enhances the spatial analysis of tumor microenvironment (TME) and enables the discovery of new biomarkers, advancing their translation for therapeutic applications. (3) Results: The AI-driven immune assays, Immunoscore (IS) and Immunoscore-Immune Checkpoint (IS-IC), have emerged as powerful tools for improving cancer diagnosis, prognosis, and treatment selection by assessing the tumor immune contexture in cancer patients. Digital IS quantitative assessment performed on hematoxylin-eosin (H&E) and CD3+/CD8+ stained slides from colon cancer patients has proven to be more reproducible, concordant, and reliable than expert pathologists' evaluation of immune response. Outperforming traditional staging systems, IS demonstrated robust potential to enhance treatment efficiency in clinical practice, ultimately advancing cancer patient care. Certainly, addressing the challenges DP has encountered is essential to ensure its successful integration into clinical guidelines and its implementation into clinical use. (4) Conclusion: The ongoing progress in DP holds the potential to revolutionize pathology practices, emphasizing the need to incorporate powerful AI technologies, including IS, into clinical settings to enhance personalized cancer therapy.
Collapse
Affiliation(s)
- Assia Hijazi
- The French National Institute of Health & Medical Research (INSERM), Laboratory of Integrative Cancer Immunology, F-75006 Paris, France;
- Equipe Labellisée Ligue Contre le Cancer, F-75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, F-75006 Paris, France
| | - Carlo Bifulco
- Providence Genomics, Portland, OR 02912, USA;
- Earle A Chiles Research Institute, Portland, OR 97213, USA
| | - Pamela Baldin
- Department of Pathology, Cliniques Universitaires Saint Luc, UCLouvain, 1200 Brussels, Belgium;
| | - Jérôme Galon
- The French National Institute of Health & Medical Research (INSERM), Laboratory of Integrative Cancer Immunology, F-75006 Paris, France;
- Equipe Labellisée Ligue Contre le Cancer, F-75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, F-75006 Paris, France
- Veracyte, 13009 Marseille, France
| |
Collapse
|
4
|
Wu H, Lin J, Ling N, Zhang Y, He Y, Qiu L, Tan W. Functional Nucleic Acid-Based Immunomodulation for T Cell-Mediated Cancer Therapy. ACS NANO 2024; 18:119-135. [PMID: 38117770 DOI: 10.1021/acsnano.3c09861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
T cell-mediated immunity plays a pivotal role in cancer immunotherapy. The anticancer actions of T cells are coordinated by a sequence of biological processes, including the capture and presentation of antigens by antigen-presenting cells (APCs), the activation of T cells by APCs, and the subsequent killing of cancer cells by activated T cells. However, cancer cells have various means to evade immune responses. Meanwhile, these vulnerabilities provide potential targets for cancer treatments. Functional nucleic acids (FNAs) make up a class of synthetic nucleic acids with specific biological functions. With their diverse functionality, good biocompatibility, and high programmability, FNAs have attracted widespread interest in cancer immunotherapy. This Review focuses on recent research progress in employing FNAs as molecular tools for T cell-mediated cancer immunotherapy, including corresponding challenges and prospects.
Collapse
Affiliation(s)
- Hui Wu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jie Lin
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Neng Ling
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yutong Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yao He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Hijazi A, Antoniotti C, Cremolini C, Galon J. Light on life: immunoscore immune-checkpoint, a predictor of immunotherapy response. Oncoimmunology 2023; 12:2243169. [PMID: 37554310 PMCID: PMC10405746 DOI: 10.1080/2162402x.2023.2243169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
In the last decade, a plethora of immunotherapeutic strategies have been designed to modulate the tumor immune microenvironment. In particular, immune checkpoint (IC) blockade therapies present the most promising advances made in cancer treatment in recent years. In non-small cell lung cancer (NSCLC), biomarkers predicting response to IC treatments are currently lacking. We have recently identified Immunoscore-IC, a powerful biomarker that predicts the efficiency of immune-checkpoint inhibitors (ICIs) in NSCLC patients. Immunoscore-IC is an in vitro diagnostic assay that quantifies densities of PD-L1+, CD8+ cells, and distances between CD8+ and PD-L1+ cells in the tumor microenvironment. Immunoscore-IC can classify responder vs non-responder NSCLC patients for ICIs therapy and is revealed as a promising predictive marker of response to anti-PD-1/PD-L1 immunotherapy in these patients. Immunoscore-IC has also shown a significant predictive value, superior to the currently used PD-L1 marker. In colorectal cancer (CRC), the addition of atezolizumab to first-line FOLFOXIRI plus bevacizumab improved progression-free survival (PFS) in patients with previously untreated metastatic CRC. In the AtezoTRIBE trial, Immunoscore-IC emerged as the first biomarker with robust predictive value in stratifying pMMR metastatic CRC patients who critically benefit from checkpoint inhibitors. Thus, Immunoscore-IC could be a universal biomarker to predict response to PD-1/PD-L1 checkpoint inhibitor immunotherapy across multiple cancer indications. Therefore, cancer patient stratification (by Immunoscore-IC), based on the presence of T lymphocytes and PD-L1 potentially provides support for clinicians to guide them through combination cancer treatment decisions.
Collapse
Affiliation(s)
- Assia Hijazi
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Carlotta Antoniotti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- Veracyte, Marseille, France
| |
Collapse
|
6
|
Jiang Z, Wu C, Zhao Y, Zhan Q, Wang K, Li Y. Global research trends in immunotherapy for head and neck neoplasms: A scientometric study. Heliyon 2023; 9:e15309. [PMID: 37113789 PMCID: PMC10126860 DOI: 10.1016/j.heliyon.2023.e15309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
In recent decades, the traditional treatment of head and neck neoplasms has reached a bottleneck with limited improvement in overall survival. Nevertheless, the emerging field of immunotherapy has shown promise. Literature on research into immunotherapy for head and neck neoplasms was retrieved from WoSCC. Citespace was used as a scientometric analysis tool for text mining and visualization of the scientific literature. This analysis included 1915 documents. Recently, the annual number of publications and citations has been growing rapidly. 'Oncology' was the most popular research area. The most dominant institution and country were the University of Pittsburgh and the USA. Ferris RL was not only the most prolific but also the most cited author, demonstrating a strong influence and reputation. Of the ten core journals identified in this field, Cancer Research ranked first. 'Regulatory T cell', 'PD-1' and 'biomarker' were regarded as current hotspots, while 'recurrent' and 'nivolumab' were considered as trending keywords. The most cited reference was Ferris RL (2016). Notably, the front trends and future directions in the field may lie in the clinical practice of combination therapy of immunotherapy plus other therapies, the mechanism of impaired immune surveillance, and the improvement in resistance to immunotherapeutic agents. It is firmly believed that the present scientometric analysis has provided both a macroscopic and microscopic overview of research into immunotherapy for head and neck neoplasms, which will assist researchers and oncologists to better understand this discipline and thus promote further development and policies in this field.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi Li
- Corresponding author. Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, No.14, The 3rd section of Renminnan Avenue, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
7
|
Eldershaw SA, Pearce H, Inman CF, Piper KP, Abbotts B, Stephens C, Nicol S, Croft W, Powell R, Begum J, Taylor G, Nunnick J, Walsh D, Sirovica M, Saddique S, Nagra S, Ferguson P, Moss P, Malladi R. DNA and modified vaccinia Ankara prime-boost vaccination generates strong CD8 + T cell responses against minor histocompatibility antigen HA-1. Br J Haematol 2021; 195:433-446. [PMID: 34046897 DOI: 10.1111/bjh.17495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/27/2021] [Indexed: 11/29/2022]
Abstract
Allogeneic immune responses underlie the graft-versus-leukaemia effect of stem cell transplantation, but disease relapse occurs in many patients. Minor histocompatibility antigen (mHAg) peptides mediate alloreactive T cell responses and induce graft-versus-leukaemia responses when expressed on patient haematopoietic tissue. We vaccinated nine HA-1-negative donors against HA-1 with a 'prime-boost' protocol of either two or three DNA 'priming' vaccinations prior to 'boost' with modified vaccinia Ankara (MVA). HA-1-specific CD8+ T cell responses were observed in seven donors with magnitude up to 1·5% of total CD8+ T cell repertoire. HA-1-specific responses peaked two weeks post-MVA challenge and were measurable in most donors after 12 months. HA-1-specific T cells demonstrated strong cytotoxic activity and lysed target cells with endogenous HA-1 protein expression. The pattern of T cell receptor (TCR) usage by HA-1-specific T cells revealed strong conservation of T cell receptor beta variable 7-9 (TRBV7-9) usage between donors. These findings describe one of the strongest primary peptide-specific CD8+ T cell responses yet recorded to a DNA-MVA prime-boost regimen and this may reflect the strong immunogenicity of mHAg peptides. Prime-boost vaccination in donors or patients may prove of substantial benefit in boosting graft-versus-leukaemia responses.
Collapse
MESH Headings
- Adult
- Aged
- Allografts
- Antigens, Neoplasm/immunology
- Cytotoxicity, Immunologic
- Epitopes/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Graft vs Leukemia Effect/immunology
- HLA-A2 Antigen/immunology
- Hematopoietic Stem Cell Transplantation
- Humans
- Immunogenicity, Vaccine
- Immunologic Memory
- Male
- Middle Aged
- Minor Histocompatibility Antigens/immunology
- Oligopeptides/immunology
- Peptides/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccination
- Vaccines, Attenuated
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
- Vaccinia virus/immunology
- Viral Vaccines/immunology
- Viral Vaccines/therapeutic use
Collapse
Affiliation(s)
- Suzy A Eldershaw
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Charlotte F Inman
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Karen P Piper
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Ben Abbotts
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Christine Stephens
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Samantha Nicol
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Wayne Croft
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Richard Powell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Jusnara Begum
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Graham Taylor
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
| | - Jane Nunnick
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Donna Walsh
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Mirjana Sirovica
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Shamyla Saddique
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Sandeep Nagra
- Department of Haematology, Birmingham Health Partners, Queen Elizabeth Hospital, Birmingham, UK
| | - Paul Ferguson
- Department of Haematology, Birmingham Health Partners, Queen Elizabeth Hospital, Birmingham, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
- Department of Haematology, Birmingham Health Partners, Queen Elizabeth Hospital, Birmingham, UK
| | - Ram Malladi
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham, UK
- Department of Haematology, Birmingham Health Partners, Queen Elizabeth Hospital, Birmingham, UK
| |
Collapse
|
8
|
Sartorius R, Trovato M, Manco R, D'Apice L, De Berardinis P. Exploiting viral sensing mediated by Toll-like receptors to design innovative vaccines. NPJ Vaccines 2021; 6:127. [PMID: 34711839 PMCID: PMC8553822 DOI: 10.1038/s41541-021-00391-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) are transmembrane proteins belonging to the family of pattern-recognition receptors. They function as sensors of invading pathogens through recognition of pathogen-associated molecular patterns. After their engagement by microbial ligands, TLRs trigger downstream signaling pathways that culminate into transcriptional upregulation of genes involved in immune defense. Here we provide an updated overview on members of the TLR family and we focus on their role in antiviral response. Understanding of innate sensing and signaling of viruses triggered by these receptors would provide useful knowledge to prompt the development of vaccines able to elicit effective and long-lasting immune responses. We describe the mechanisms developed by viral pathogens to escape from immune surveillance mediated by TLRs and finally discuss how TLR/virus interplay might be exploited to guide the design of innovative vaccine platforms.
Collapse
Affiliation(s)
- Rossella Sartorius
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy.
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy
| | - Roberta Manco
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy
| | - Luciana D'Apice
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy.
| | | |
Collapse
|
9
|
Synthetic multiepitope neoantigen DNA vaccine for personalized cancer immunotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102443. [PMID: 34303839 DOI: 10.1016/j.nano.2021.102443] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/02/2021] [Accepted: 07/04/2021] [Indexed: 12/15/2022]
Abstract
Neoantigen-based personalized vaccination has emerged as a viable method for tumor immunotherapy. Here we set up a DNA-based neoantigen vaccine platform with comprehensive identification of individual somatic mutations using whole-exome sequencing (WES) and RNA-seq, bioinformatic prediction of neo-epitopes, dendritic cell (DC)-based efficacy prevalidation of vaccine candidates, optimization of the DNA vaccine and its nanocarrier and adjuvant, and preparation of a liposome-encapsulated multiepitope DNA vaccine. The DNA vaccine was efficiently uptaken by DCs and induced effective immune response against mouse melanoma cells, leading to significant inhibition of melanoma tumor growth and reduction of lung metastasis in a mouse model. Numerous intratumoral infiltrated CD8+ T-cells with specific in vitro killing ability towards melanoma cells were identified. Our study offers evidence that a multiepitope neoantigen DNA vaccine in a nanocarrier can be exploited for personalized tumor immunotherapy and as a reliable prevalidation approach for rapid enrichment of effective neoantigens.
Collapse
|
10
|
Recent advances on microneedle arrays-mediated technology in cancer diagnosis and therapy. Drug Deliv Transl Res 2020; 11:788-816. [PMID: 32740799 DOI: 10.1007/s13346-020-00819-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Regarding the increasing prevalence of cancer throughout the globe, the development of novel alternatives for conventional therapies is inevitable to circumvent limitations such as low efficacy, complications, and high cost. Recently, microneedle arrays (MNs) have been introduced as a novel, minimally invasive, and low-cost approach. MNs can delivery both small molecule and macromolecular drugs or even nanoparticles (NPs) to the tumor tissue in a safe and controlled manner. Relying on the recent promising outcomes of MNs in transdermal delivery of anticancer agents, this review is aimed to summarize constituent materials, fabrication methods, advantages, and limitations of different types of MNs used in cancer therapy applications. This review paper also presents the potential use of MNs in transdermal delivery of NPs for effective chemotherapy, gene therapy, immunotherapy, photodynamic, and photothermal therapy. Additionally, MNs are currently explored as routine point-of-care health monitoring devices for transdermal detection of cancer biomarkers or physiologically relevant analytes which will be addressed in this paper. Despite the promising potential of MNs for cancer therapy and diagnosis, several limitations have impeded their therapeutic efficacy and real-time applicability that are addressed in this paper.
Collapse
|
11
|
Jain S, Kumar S. Cancer immunotherapy: dawn of the death of cancer? Int Rev Immunol 2020; 39:1-18. [PMID: 32530336 DOI: 10.1080/08830185.2020.1775827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023]
Abstract
Cancer is one of the proficient evaders of the immune system which claims millions of lives every year. Developing therapeutics against cancer is extremely challenging as cancer involves aberrations in self, most of which are not detected by the immune system. Conventional therapeutics like chemotherapy, radiotherapy are not only toxic but they significantly lower the quality of life. Immunotherapy, which gained momentum in the 20th century, is emerging as one of the alternatives to the conventional therapies and is relatively less harmful but more costly. This review explores the modern advances in an array of such therapies and try to compare them along with a limited analysis of concerns associated with them.
Collapse
Affiliation(s)
- Sidhant Jain
- Department of Zoology, University of Delhi, Delhi, India
| | - Sahil Kumar
- Department of Pharmacology, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| |
Collapse
|
12
|
Ponomarenko DM, Gabai VL, Sufianov AA, Kolesnikov SI, Shneider AM. Response of a chemo-resistant triple-negative breast cancer patient to a combination of p62-encoding plasmid, Elenagen, and CMF chemotherapy. Oncotarget 2020; 11:294-299. [PMID: 32076489 PMCID: PMC6980632 DOI: 10.18632/oncotarget.27323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 10/19/2019] [Indexed: 12/22/2022] Open
Abstract
Triple-negative breast cancers are often characterized by aggressive behavior and short clinical course once they become chemotherapy-resistant. We describe below a patient who has shown a response to combination of chemotherapy with Elenagen, a plasmid encoding p62. Elenagen was tested in a previous phase I/II study in patients with refractory solid tumors and shown to be safe. Also, plasmid ability to halt tumor progression and restore sensitivity to chemotherapy was found. Preclinical data supports effects on tumor grade and change the tumor’s microenvironment in spontaneous canine breast cancers. We describe here a 48-year old female with triple-negative and BRCA1/2-negative breast cancer who had a primary resistance to chemotherapy and negative dynamics despite the use of multiple lines of treatments. Elenagen was applied intramuscularly at a dose of 1 mg weekly in combination with standard chemotherapy scheme CMF (cyclophosphamide, methotrexate, fluorouracil). In this patient we observed partial tumor regression (by 33%) and 19 weeks of progression-free survival. This first observed objective response to a combination of Elenagen with chemotherapy demonstrates that even in heavily pretreated chemo-resistant triple-negative tumor, the addition of Elenagen to a chemotherapy regimen can cause an objective response and increase in progression-free survival. Such a regimen is worthy of further study in a larger number of patients.
Collapse
Affiliation(s)
- Dmitry M Ponomarenko
- Irkutsk State Medical Academy of Postgraduate Education, Irkutsk Regional Cancer Dispensary, Irkutsk, Russian Federation
| | - Vladimir L Gabai
- CureLab Oncology, Inc, Dedham, MA, USA.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Albert A Sufianov
- Federal Center of Neurosurgery, Tyumen, Russian Federation.,Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Sergey I Kolesnikov
- Russian Academy of Sciences, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation.,Research Center of Family Health and Reproduct ion Problems, Irkutsk, Russian Federation
| | - Alexander M Shneider
- CureLab Oncology, Inc, Dedham, MA, USA.,Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Department of Molecular Biology, Ariel University, Ariel, Israel
| |
Collapse
|
13
|
Dadar M, Chakraborty S, Dhama K, Prasad M, Khandia R, Hassan S, Munjal A, Tiwari R, Karthik K, Kumar D, Iqbal HMN, Chaicumpa W. Advances in Designing and Developing Vaccines, Drugs and Therapeutic Approaches to Counter Human Papilloma Virus. Front Immunol 2018; 9:2478. [PMID: 30483247 PMCID: PMC6240620 DOI: 10.3389/fimmu.2018.02478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/08/2018] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) is a viral infection with skin-to-skin based transmission mode. HPV annually caused over 500,000 cancer cases including cervical, anogenital and oropharyngeal cancer among others. HPV vaccination has become a public-health concern, worldwide, to prevent the cases of HPV infections including precancerous lesions, cervical cancers, and genital warts especially in adolescent female and male population by launching national programs with international alliances. Currently, available prophylactic and therapeutic vaccines are expensive to be used in developing countries for vaccination programs. The recent progress in immunotherapy, biotechnology, recombinant DNA technology and molecular biology along with alternative and complementary medicinal systems have paved novel ways and valuable opportunities to design and develop effective prophylactic and therapeutic vaccines, drugs and treatment approach to counter HPV effectively. Exploration and more researches on such advances could result in the gradual reduction in the incidences of HPV cases across the world. The present review presents a current global scenario and futuristic prospects of the advanced prophylactic and therapeutic approaches against HPV along with recent patents coverage of the progress and advances in drugs, vaccines and therapeutic regimens to effectively combat HPV infections and its cancerous conditions.
Collapse
Affiliation(s)
- Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Sameer Hassan
- Department of Biomedical Informatics, National Institute for Research in Tuberculosis, Indian Council of Medical Research, Chennai, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, U P Pt. Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Therapeutic cancer vaccines: From initial findings to prospects. Immunol Lett 2018; 196:11-21. [DOI: 10.1016/j.imlet.2018.01.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/30/2017] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
|
15
|
Pierini S, Perales-Linares R, Uribe-Herranz M, Pol JG, Zitvogel L, Kroemer G, Facciabene A, Galluzzi L. Trial watch: DNA-based vaccines for oncological indications. Oncoimmunology 2017; 6:e1398878. [PMID: 29209575 DOI: 10.1080/2162402x.2017.1398878] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022] Open
Abstract
DNA-based vaccination is a promising approach to cancer immunotherapy. DNA-based vaccines specific for tumor-associated antigens (TAAs) are indeed relatively simple to produce, cost-efficient and well tolerated. However, the clinical efficacy of DNA-based vaccines for cancer therapy is considerably limited by central and peripheral tolerance. During the past decade, considerable efforts have been devoted to the development and characterization of novel DNA-based vaccines that would circumvent this obstacle. In this setting, particular attention has been dedicated to the route of administration, expression of modified TAAs, co-expression of immunostimulatory molecules, and co-delivery of immune checkpoint blockers. Here, we review preclinical and clinical progress on DNA-based vaccines for cancer therapy.
Collapse
Affiliation(s)
- Stefano Pierini
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renzo Perales-Linares
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mireia Uribe-Herranz
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan G Pol
- Université Paris Descartes/Paris V, France.,Université Pierre et Marie Curie/Paris VI, Paris.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France.,Université Pierre et Marie Curie/Paris VI, Paris.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Andrea Facciabene
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
16
|
Vanpouille-Box C, Lhuillier C, Bezu L, Aranda F, Yamazaki T, Kepp O, Fucikova J, Spisek R, Demaria S, Formenti SC, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Immune checkpoint blockers for cancer therapy. Oncoimmunology 2017; 6:e1373237. [PMID: 29147629 DOI: 10.1080/2162402x.2017.1373237] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 02/08/2023] Open
Abstract
Immune checkpoint blockers (ICBs) are literally revolutionizing the clinical management of an ever more diversified panel of oncological indications. Although considerable attention persists around the inhibition of cytotoxic T lymphocyte-associated protein 4 (CTLA4) and programmed cell death 1 (PDCD1, best known as PD-1) signaling, several other co-inhibitory T-cell receptors are being evaluated as potential targets for the development of novel ICBs. Moreover, substantial efforts are being devoted to the identification of biomarkers that reliably predict the likelihood of each patient to obtain clinical benefits from ICBs in the absence of severe toxicity. Tailoring the delivery of specific ICBs or combinations thereof to selected patient populations in the context of precision medicine programs constitutes indeed a major objective of the future of ICB-based immunotherapy. Here, we discuss recent preclinical and clinical advances on the development of ICBs for oncological indications.
Collapse
Affiliation(s)
| | - Claire Lhuillier
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lucillia Bezu
- Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Fernando Aranda
- Immunoreceptors of the Innate and Adaptive System Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Oliver Kepp
- Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Jitka Fucikova
- Sotio a.c., Prague, Czech Republic.,Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio a.c., Prague, Czech Republic.,Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Université Paris Descartes/Paris V, Paris, France.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
17
|
Cabo M, Offringa R, Zitvogel L, Kroemer G, Muntasell A, Galluzzi L. Trial Watch: Immunostimulatory monoclonal antibodies for oncological indications. Oncoimmunology 2017; 6:e1371896. [PMID: 29209572 PMCID: PMC5706611 DOI: 10.1080/2162402x.2017.1371896] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
The goal of cancer immunotherapy is to establish new or boost pre-existing anticancer immune responses that eradicate malignant cells while generating immunological memory to prevent disease relapse. Over the past few years, immunomodulatory monoclonal antibodies (mAbs) that block co-inhibitory receptors on immune effectors cells - such as cytotoxic T lymphocyte-associated protein 4 (CTLA4), programmed cell death 1 (PDCD1, best known as PD-1) - or their ligands - such as CD274 (best known as PD-L1) - have proven very successful in this sense. As a consequence, many of such immune checkpoint blockers (ICBs) have already entered the clinical practice for various oncological indications. Considerable attention is currently being attracted by a second group of immunomodulatory mAbs, which are conceived to activate co-stimulatory receptors on immune effector cells. Here, we discuss the mechanisms of action of these immunostimulatory mAbs and summarize recent progress in their preclinical and clinical development.
Collapse
Affiliation(s)
- Mariona Cabo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Rienk Offringa
- Department of General Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
- DKFZ-Bayer Joint Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg, Germany
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France
- Université Pierre et Marie Curie/Paris VI, Paris
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, France
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
18
|
Spontaneous and Vaccine-Induced Clearance of Mus Musculus Papillomavirus 1 Infection. J Virol 2017; 91:JVI.00699-17. [PMID: 28515303 PMCID: PMC5512245 DOI: 10.1128/jvi.00699-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/07/2017] [Indexed: 12/24/2022] Open
Abstract
Mus musculus papillomavirus 1 (MmuPV1/MusPV1) induces persistent papillomas in immunodeficient mice but not in common laboratory strains. To facilitate the study of immune control, we sought an outbred and immunocompetent laboratory mouse strain in which persistent papillomas could be established. We found that challenge of SKH1 mice (Crl:SKH1-Hrhr) with MmuPV1 by scarification on their tail resulted in three clinical outcomes: (i) persistent (>2-month) papillomas (∼20%); (ii) transient papillomas that spontaneously regress, typically within 2 months (∼15%); and (iii) no visible papillomas and viral clearance (∼65%). SKH1 mice with persistent papillomas were treated by using a candidate preventive/therapeutic naked-DNA vaccine that expresses human calreticulin (hCRT) fused in frame to MmuPV1 E6 (mE6) and mE7 early proteins and residues 11 to 200 of the late protein L2 (hCRTmE6/mE7/mL2). Three intramuscular DNA vaccinations were delivered biweekly via in vivo electroporation, and both humoral and CD8 T cell responses were mapped and measured. Previously persistent papillomas disappeared within 2 months after the final vaccination. Coincident virologic clearance was confirmed by in situ hybridization and a failure of disease to recur after CD3 T cell depletion. Vaccination induced strong mE6 and mE7 CD8+ T cell responses in all mice, although they were significantly weaker in mice that initially presented with persistent warts than in those that spontaneously cleared their infection. A human papillomavirus 16 (HPV16)-targeted version of the DNA vaccine also induced L2 antibodies and protected mice from vaginal challenge with an HPV16 pseudovirus. Thus, MmuPV1 challenge of SKH1 mice is a promising model of spontaneous and immunotherapy-directed clearances of HPV-related disease.IMPORTANCE High-risk-type human papillomaviruses (hrHPVs) cause 5% of all cancer cases worldwide, notably cervical, anogenital, and oropharyngeal cancers. Since preventative HPV vaccines have not been widely used in many countries and do not impact existing infections, there is considerable interest in the development of therapeutic vaccines to address existing disease and infections. The strict tropism of HPV requires the use of animal papillomavirus models for therapeutic vaccine development. However, MmuPV1 failed to grow in common laboratory strains of mice with an intact immune system. We show that MmuPV1 challenge of the outbred immunocompetent SKH1 strain produces both transient and persistent papillomas and that vaccination of the mice with a DNA expressing an MmuPV1 E6E7L2 fusion with calreticulin can rapidly clear persistent papillomas. Furthermore, an HPV16-targeted version of the DNA can protect against vaginal challenge with HPV16, suggesting the promise of this approach to both prevent and treat papillomavirus-related disease.
Collapse
|
19
|
Kitagawa K, Oda T, Saito H, Araki A, Gonoi R, Shigemura K, Hashii Y, Katayama T, Fujisawa M, Shirakawa T. Development of oral cancer vaccine using recombinant Bifidobacterium displaying Wilms' tumor 1 protein. Cancer Immunol Immunother 2017; 66:787-798. [PMID: 28299466 PMCID: PMC11028424 DOI: 10.1007/s00262-017-1984-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/05/2017] [Indexed: 01/12/2023]
Abstract
Several types of vaccine-delivering tumor-associated antigens (TAAs) have been developed in basic and clinical research. Wilms' tumor 1 (WT1), identified as a gene responsible for pediatric renal neoplasm, is one of the most promising TAA for cancer immunotherapy. Peptide and dendritic cell-based WT1 cancer vaccines showed some therapeutic efficacy in clinical and pre-clinical studies but as yet no oral WT1 vaccine can be administrated in a simple and easy way. In the present study, we constructed a novel oral cancer vaccine using a recombinant Bifidobacterium longum displaying WT1 protein. B. longum 420 was orally administered into mice inoculated with WT1-expressing tumor cells for 4 weeks to examine anti-tumor effects. To analyze the WT1-specific cellular immune responses to oral B. longum 420, mice splenocytes were isolated and cytokine production and cytotoxic activities were determined. Oral administrations of B. longum 420 significantly inhibited WT1-expressing tumor growth and prolonged survival in mice. Immunohistochemical study and immunological assays revealed that B. longum 420 substantially induced tumor infiltration of CD4+T and CD8+T cells, systemic WT1-specific cytokine production, and cytotoxic activity mediated by WT1-epitope specific cytotoxic T lymphocytes, with no apparent adverse effects. Our novel oral cancer vaccine safely induced WT1-specific cellular immunity via activation of the gut mucosal immune system and achieved therapeutic efficacy with several practical advantages over existing non-oral vaccines.
Collapse
Affiliation(s)
- Koichi Kitagawa
- Division of Translational Research for Biologics, Department of Internal Related, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tsugumi Oda
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Hiroki Saito
- Division of Translational Research for Biologics, Department of Internal Related, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Ayame Araki
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Reina Gonoi
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Katsumi Shigemura
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yoshiko Hashii
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Takane Katayama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masato Fujisawa
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Toshiro Shirakawa
- Division of Translational Research for Biologics, Department of Internal Related, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
20
|
Ali AA, McCrudden CM, McCaffrey J, McBride JW, Cole G, Dunne NJ, Robson T, Kissenpfennig A, Donnelly RF, McCarthy HO. DNA vaccination for cervical cancer; a novel technology platform of RALA mediated gene delivery via polymeric microneedles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:921-932. [DOI: 10.1016/j.nano.2016.11.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/11/2016] [Accepted: 11/30/2016] [Indexed: 11/30/2022]
|
21
|
Safety and efficacy of p62 DNA vaccine ELENAGEN in a first-in-human trial in patients with advanced solid tumors. Oncotarget 2017; 8:53730-53739. [PMID: 28881846 PMCID: PMC5581145 DOI: 10.18632/oncotarget.16574] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/16/2017] [Indexed: 01/13/2023] Open
Abstract
Elenagen is a plasmid encoding p62/SQSTM1, the first DNA vaccine possessing two mutually complementing mechanisms of action: it elicits immune response against p62 and mitigates systemic chronic inflammation. Previously, Elenagen demonstrated anti-tumor efficacy and safety in rodent tumor models and spontaneous tumors in dogs. This multicenter I/IIa trial evaluated safety and clinical activity of Elenagen in patients with advanced solid tumors. Fifteen patients were treated with escalating doses of Elenagen (1- 5 mg per doses, 5 times weekly) and additional 12 patients received 1 mg dose. Ten patients with breast and ovary cancers that progressed after Elenagen were then treated with conventional chemotherapy. Adverse events (AE) were of Grade 1; no severe AE were observed. Cumulatively twelve patients (44%) with breast, ovary, lung, renal cancer and melanoma achieved stable disease for at least 8 wks, with 4 of them (15%) had tumor control for more than 24 wks, with a maximum of 32 wks. The patients with breast and ovary cancers achieved additional tumor stabilization for 12-28 wks when treated with chemotherapy following Elenagen treatment. Therefore, Elenagen demonstrated good safety profile and antitumor activity in advanced solid tumors. Especially encouraging is its ability to restore tumor sensitivity to chemotherapy.
Collapse
|
22
|
Collinson-Pautz MR, Slawin KM, Levitt JM, Spencer DM. MyD88/CD40 Genetic Adjuvant Function in Cutaneous Atypical Antigen-Presenting Cells Contributes to DNA Vaccine Immunogenicity. PLoS One 2016; 11:e0164547. [PMID: 27741278 PMCID: PMC5065236 DOI: 10.1371/journal.pone.0164547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/27/2016] [Indexed: 12/28/2022] Open
Abstract
Therapeutic DNA-based vaccines aim to prime an adaptive host immune response against tumor-associated antigens, eliminating cancer cells primarily through CD8+ cytotoxic T cell-mediated destruction. To be optimally effective, immunological adjuvants are required for the activation of tumor-specific CD8+ T cells responses by DNA vaccination. Here, we describe enhanced anti-tumor efficacy of an in vivo electroporation-delivered DNA vaccine by inclusion of a genetically encoded chimeric MyD88/CD40 (MC) adjuvant, which integrates both innate and adaptive immune signaling pathways. When incorporated into a DNA vaccine, signaling by the MC adjuvant increased antigen-specific CD8+ T cells and promoted elimination of pre-established tumors. Interestingly, MC-enhanced vaccine efficacy did not require direct-expression of either antigen or adjuvant by local antigen-presenting cells, but rather our data supports a key role for MC function in "atypical" antigen-presenting cells of skin. In particular, MC adjuvant-modified keratinocytes increased inflammatory cytokine secretion, upregulated surface MHC class I, and were able to increase in vitro and in vivo priming of antigen-specific CD8+ T cells. Furthermore, in the absence of critical CD8α+/CD103+ cross-priming dendritic cells, MC was still able to promote immune priming in vivo, albeit at a reduced level. Altogether, our data support a mechanism by which MC signaling activates an inflammatory phenotype in atypical antigen-presenting cells within the cutaneous vaccination site, leading to an enhanced CD8+ T cell response against DNA vaccine-encoded antigens, through both CD8α+/CD103+ dendritic cell-dependent and independent pathways.
Collapse
Affiliation(s)
- Matthew R. Collinson-Pautz
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States of America
| | - Kevin M. Slawin
- Bellicum Pharmaceuticals, Houston, TX, United States of America
| | - Jonathan M. Levitt
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States of America
| | - David M. Spencer
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States of America
- Bellicum Pharmaceuticals, Houston, TX, United States of America
| |
Collapse
|
23
|
Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: Strategies for improving immunogenicity and efficacy. Pharmacol Ther 2016; 165:32-49. [DOI: 10.1016/j.pharmthera.2016.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Hoesli RC, Moyer JS. Immunotherapy for Head and Neck Squamous Cell Carcinoma. CURRENT ORAL HEALTH REPORTS 2016; 3:74-81. [PMID: 27398287 PMCID: PMC4936409 DOI: 10.1007/s40496-016-0082-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Head and neck squamous cell carcinoma has been found to be an immunosuppressive malignancy, with many defects in the host immune system contributing to the progression of disease. A greater understanding of these defects has lead to the identification and investigation of new therapeutic strategies, targeting immune system dysfunction in an effort to improve the outcomes of this disease. This article provides a brief review of the knowledge regarding the immune defects present in head and neck cancer, as well as a review of the current therapeutic strategies being investigated for use.
Collapse
Affiliation(s)
- Rebecca C Hoesli
- University of Michigan, 1500 East Medical Center Drive - SPC 5312, Ann Arbor, MI 48109
| | - Jeffrey S Moyer
- University of Michigan, 1500 East Medical Center Drive - SPC 5312, Ann Arbor, MI 48109
| |
Collapse
|
25
|
Zamarin D, Jazaeri AA. Leveraging immunotherapy for the treatment of gynecologic cancers in the era of precision medicine. Gynecol Oncol 2016; 141:86-94. [PMID: 27016233 PMCID: PMC5007873 DOI: 10.1016/j.ygyno.2015.12.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/25/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022]
Abstract
During the past decade significant progress in the understanding of stimulatory and inhibitory signaling pathways in immune cells has reinvigorated the field of immuno-oncology. In this review we outline the current immunotherapy based approaches for the treatment of gynecological cancers, and focus on the emerging clinical data on immune checkpoint inhibitors, adoptive cell therapies, and vaccines. It is anticipated that in the coming years biomarker-guided clinical trials, will provide for a better understanding of the mechanisms of response and resistance to immunotherapy, and guide combination treatment strategies that will extend the benefit from immunotherapy to patients with gynecologic cancers.
Collapse
Affiliation(s)
- Dmitriy Zamarin
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, United States
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas, MD Anderson Cancer Center, United States.
| |
Collapse
|
26
|
Zhang J, Yang Z, Dong J. P62: An emerging oncotarget for osteolytic metastasis. J Bone Oncol 2016; 5:30-7. [PMID: 26998424 PMCID: PMC4782024 DOI: 10.1016/j.jbo.2016.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/18/2016] [Accepted: 01/30/2016] [Indexed: 12/13/2022] Open
Abstract
Bone metastasis occurs in the majority of late-stage tumors with poor prognosis. It is mainly classified as osteoblastic metastasis and osteolytic metastasis. The pathogenesis of osteolytic metastasis is a “vicious cycle” between tumor cells and bone cells (primarily the osteoclasts), which is mediated by secretory factors. The P62 adapter protein is a versatile multitasker between tumor cells and bone cells. The overexpression of P62 has been detected among a variety of tumors, playing positive roles in both tumorigenesis and metastasis. Moreover, P62 is an important modulator of the osteoclastogenesis pathway. Therefore, the ability of P62 to modulate tumors and osteoclasts suggests that it may be a feasible oncotarget for bone metastasis, especially for osteolytic metastasis. Recent research has shown that a P62 DNA vaccine triggered effective anti-tumor, anti-metastatic and anti-osteoporotic activities. Growing lines of evidence point to P62 as an emerging oncotarget for osteolytic metastasis. In this review, we outline the different roles of P62 in tumor cells and osteoclasts, focusing on the P62-related signaling pathway in key steps of osteolytic metastasis, including tumorigenesis, metastasis and osteoclastogenesis. Finally, we discuss the newest observations on P62 as an oncotarget for osteolytic metastasis treatment.
Collapse
Affiliation(s)
- Jing Zhang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, PR China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, PR China
| | - Jian Dong
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, PR China; Stem Cell Therapy Technical of Clinical Transformation and Basic Research Key Laboratory of Yunnan Province, Kunming, Yunnan 650118, PR China
| |
Collapse
|
27
|
Le Pogam C, Patel S, Gorombei P, Guerenne L, Krief P, Omidvar N, Tekin N, Bernasconi E, Sicre F, Schlageter MH, Chopin M, Noguera ME, West R, Abu A, Mathews V, Pla M, Fenaux P, Chomienne C, Padua RA. DNA-mediated adjuvant immunotherapy extends survival in two different mouse models of myeloid malignancies. Oncotarget 2015; 6:32494-508. [PMID: 26378812 PMCID: PMC4741708 DOI: 10.18632/oncotarget.5572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023] Open
Abstract
We have previously shown that a specific promyelocytic leukemia-retinoic acid receptor alpha (PML-RARA) DNA vaccine combined with all-trans retinoic acid (ATRA) increases the number of long term survivors with enhanced immune responses in a mouse model of acute promyelocytic leukemia (APL). This study reports the efficacy of a non-specific DNA vaccine, pVAX14Flipper (pVAX14), in both APL and high risk myelodysplastic syndrome (HR-MDS) models. PVAX14 is comprised of novel immunogenic DNA sequences inserted into the pVAX1 therapeutic plasmid. APL mice treated with pVAX14 combined with ATRA had increased survival comparable to that obtained with a specific PML-RARA vaccine. Moreover, the survival advantage correlated with decreased PML-RARA transcript levels and increase in anti-RARA antibody production. In HR-MDS mice, pVAX14 significantly improved survival and reduced biomarkers of leukemic transformation such as phosphorylated mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) 1. In both preclinical models, pVAX14 vaccine significantly increased interferon gamma (IFNγ) production, memory T-cells (memT), reduced the number of colony forming units (CFU) and increased expression of the adapter molecule signalling to NF-κB, MyD88. These results demonstrate the adjuvant properties of pVAX14 providing thus new approaches to improve clinical outcome in two different models of myeloid malignancies, which may have potential for a broader applicability in other cancers.
Collapse
Affiliation(s)
- Carole Le Pogam
- Unité Mixte de la Recherche de Santé (UMR-S), Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U), Paris, France
| | - Satyananda Patel
- Unité Mixte de la Recherche de Santé (UMR-S), Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U), Paris, France
| | - Petra Gorombei
- Unité Mixte de la Recherche de Santé (UMR-S), Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U), Paris, France
| | - Laura Guerenne
- Unité Mixte de la Recherche de Santé (UMR-S), Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U), Paris, France
| | - Patricia Krief
- Unité Mixte de la Recherche de Santé (UMR-S), Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U), Paris, France
| | - Nader Omidvar
- Haemotology Department, Cardiff University School of Medicine, Cardiff, UK
| | - Nilgun Tekin
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Elena Bernasconi
- Unité Mixte de la Recherche de Santé (UMR-S), Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U), Paris, France
| | - Flore Sicre
- Unité Mixte de la Recherche de Santé (UMR-S), Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U), Paris, France.,Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Marie-Helene Schlageter
- Unité Mixte de la Recherche de Santé (UMR-S), Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U), Paris, France.,Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Martine Chopin
- Département d'Expérimentation Animale, Institut Universitaire d'Hématologie, University Paris Diderot, Paris, France
| | - Maria-Elena Noguera
- Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Robert West
- Welsh Heart Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Ansu Abu
- Department of Hematology, Christian Medical College and Hospital, Vellore, India
| | - Vikram Mathews
- Department of Hematology, Christian Medical College and Hospital, Vellore, India
| | - Marika Pla
- Unité Mixte de la Recherche de Santé (UMR-S), Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U), Paris, France
| | - Pierre Fenaux
- Unité Mixte de la Recherche de Santé (UMR-S), Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U), Paris, France.,Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Christine Chomienne
- Unité Mixte de la Recherche de Santé (UMR-S), Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U), Paris, France.,Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Rose Ann Padua
- Unité Mixte de la Recherche de Santé (UMR-S), Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U), Paris, France.,Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
28
|
Panatto D, Amicizia D, Bragazzi NL, Rizzitelli E, Tramalloni D, Valle I, Gasparini R. Human Papillomavirus Vaccine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015:231-322. [DOI: 10.1016/bs.apcsb.2015.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|