1
|
Nakamura K, Yaguchi T, Murata M, Ota Y, Mikoshiba A, Kiniwa Y, Okuyama R, Kawakami Y. Tumor eradication by triplet therapy with BRAF inhibitor, TLR 7 agonist, and PD-1 antibody for BRAF-mutated melanoma. Cancer Sci 2024; 115:2879-2892. [PMID: 38894534 PMCID: PMC11462939 DOI: 10.1111/cas.16251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Programmed death 1 (PD-1)/programmed death-ligand 1 inhibitors are commonly used to treat various cancers, including melanoma. However, their efficacy as monotherapy is limited, and combination immunotherapies are being explored to improve outcomes. In this study, we investigated a combination immunotherapy involving an anti-PD-1 antibody that blocks the major adaptive immune-resistant mechanisms, a BRAF inhibitor that inhibits melanoma cell proliferation, and multiple primary immune-resistant mechanisms, such as cancer cell-derived immunosuppressive cytokines, and a Toll-like receptor 7 agonist that enhances innate immune responses that promote antitumor T-cell induction and functions. Using a xenogeneic nude mouse model implanted with human BRAF-mutated melanoma, a BRAF inhibitor vemurafenib was found to restore T-cell-stimulatory activity in conventional dendritic cells by reducing immunosuppressive cytokines, including interleukin 6, produced by human melanoma. Additionally, intravenous administration of the Toll-like receptor 7 agonist DSR6434 enhanced tumor growth inhibition by vemurafenib through stimulating the plasmacytoid dendritic cells/interferon-α/natural killer cell pathways and augmenting the T-cell-stimulatory activity of conventional dendritic cells. In a syngeneic mouse model implanted with murine BRAF-mutated melanoma, the vemurafenib and DSR6434 combination synergistically augmented the induction of melanoma antigen gp100-specific T cells and inhibited tumor growth. Notably, only triplet therapy with vemurafenib, DSR6434, and the anti-PD-1 antibody resulted in complete regression of SIY antigen-transduced BRAF-mutated melanoma in a CD8 T-cell-dependent manner. These findings indicate that a triple-combination strategy targeting adaptive and primary resistant mechanisms while enhancing innate immune responses that promote tumor-specific T cells may be crucial for effective tumor eradication.
Collapse
Affiliation(s)
- Kenta Nakamura
- Division of Cellular Signaling, Institute for Advanced Medical Research, School of MedicineKeio UniversityTokyoJapan
- Department of DermatologyShinshu University School of MedicineNaganoJapan
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, School of MedicineKeio UniversityTokyoJapan
- Department of Immunology and Genomic MedicineKyoto University Graduate School of MedicineKyotoJapan
| | | | - Yosuke Ota
- Cancer Research UnitSumitomo Pharma Co. Ltd.OsakaJapan
| | - Asuka Mikoshiba
- Department of DermatologyShinshu University School of MedicineNaganoJapan
| | - Yukiko Kiniwa
- Department of DermatologyShinshu University School of MedicineNaganoJapan
| | - Ryuhei Okuyama
- Department of DermatologyShinshu University School of MedicineNaganoJapan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, School of MedicineKeio UniversityTokyoJapan
- Department of Immunology, School of MedicineInternational University of Health and WelfareChibaJapan
| |
Collapse
|
2
|
Taghiloo S, Ajami A, Alizadeh-Navaei R, Asgarian-Omran H. Combination therapy of acute myeloid leukemia by dual PI3K/mTOR inhibitor BEZ235 and TLR-7/8 agonist R848 in murine model. Int Immunopharmacol 2023; 125:111211. [PMID: 37956488 DOI: 10.1016/j.intimp.2023.111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Due to the high relapse rate and toxicity of the common therapies in patients with acute myeloid leukemia (AML), modifications in the treatment strategies are required. The present study was conducted to determine the effects of combinational therapy with a dual PI3K/mTOR inhibitor, BEZ235, and TLR7/8 agonist, R848, on murine AML model. METHODS BEZ235 and R848 were administered to AML leukemic mice in either a single or combination treatment. Frequency of T-CD4+, T-CD8+, MDSCs, NK, exhausted T cells and the degranulation levels was measured via flow cytometry. The cytotoxicity and proliferation levels were evaluated by MTT assay. Then, the expression of iNOS, arginase-1, PD-L1, Gal-9, PVR, IFN-γ, TNF-α, IL-4, IL-10, IL-12 and IL-17 was investigated by Real-Time PCR. Organomegaly, body weight and survival rate were also monitored. RESULTS Following combinational therapy with BEZ235 and R848, increasing in the frequency of anti-tumor immune cells including T-CD4+ cells and M1 macroghages, and decreasing in pro-tumor immune cells including MDSCs, exhausted T-CD4+ and T-CD8+ cells and also M2 macrophages were observed. The functional defects of immune cells in term of proliferation, cytotoxicity, degranulation, and cytokines expression were improved in leukemic mice after treatment with BEZ235 and R848. Finally, organomegaly, body weight and survival analysis showed significant improvements after treatment with BEZ235 and R848. CONCLUSION Taken together, we indicated that the combinational therapy with BEZ235 and R848 could be considered as a potential and powerful therapeutic option for AML patients. Further clinical studies are required to expand our current findings.
Collapse
Affiliation(s)
- Saeid Taghiloo
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abolghasem Ajami
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
3
|
Li F, Song B, Zhou WF, Chu LJ. Toll-Like Receptors 7/8: A Paradigm for the Manipulation of Immunologic Reactions for Immunotherapy. Viral Immunol 2023; 36:564-578. [PMID: 37751284 DOI: 10.1089/vim.2023.0077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The innate immune system recognizes conserved features of viral and microbial pathogens through pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are one type of PRR used by the innate immune system to mediate the secretion of proinflammatory cytokines and promote innate and adaptive immune responses. TLR family members TLR7 and TLR8 (referred to as TLR7/8 from herein) are endosomal transmembrane receptors that recognize purine-rich single-stranded RNA (ssRNA) and bacterial DNA, eliciting an immunologic reaction to pathogens. TLR7/8 were discovered to mediate the secretion of proinflammatory cytokines by activating immune cells. In addition, accumulating evidence has indicated that TLR7/8 may be closely related to numerous immune-mediated disorders, specifically several types of cancer, autoimmune disease, and viral disease. TLR7/8 agonists and antagonists, which are used as drugs or adjuvants, have been identified in preclinical studies and clinical trials as promising immune stimulators for the immunotherapy of these immune-mediated disorders. These results provided reasoning to further explore immunotherapy for the treatment of immune-mediated disorders. Nevertheless, numerous needs remain unmet, and the therapeutic effects of TLR7/8 agonists and antagonists are poor and exert strong immune-related toxicities. The present review aimed to provide an overview of the TLR family members, particularly TLR7/8, and address the underlying molecular mechanisms and clinical implications of TLR7/8 in immune-mediated disorders. The aim of the work is to discuss the underlying molecular mechanisms and clinical implications of TLR7/8 in immune-mediated disorders.
Collapse
Affiliation(s)
- Fang Li
- Department of Clinical Medicine, Anhui Medical College, Hefei, China
| | - Biao Song
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei-Feng Zhou
- Department of Clinical Medicine, Anhui Medical College, Hefei, China
| | - Li-Jin Chu
- Department of Clinical Medicine, Anhui Medical College, Hefei, China
| |
Collapse
|
4
|
Turco V, Pfleiderer K, Hunger J, Horvat NK, Karimian-Jazi K, Schregel K, Fischer M, Brugnara G, Jähne K, Sturm V, Streibel Y, Nguyen D, Altamura S, Agardy DA, Soni SS, Alsasa A, Bunse T, Schlesner M, Muckenthaler MU, Weissleder R, Wick W, Heiland S, Vollmuth P, Bendszus M, Rodell CB, Breckwoldt MO, Platten M. T cell-independent eradication of experimental glioma by intravenous TLR7/8-agonist-loaded nanoparticles. Nat Commun 2023; 14:771. [PMID: 36774352 PMCID: PMC9922247 DOI: 10.1038/s41467-023-36321-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/24/2023] [Indexed: 02/13/2023] Open
Abstract
Glioblastoma, the most common and aggressive primary brain tumor type, is considered an immunologically "cold" tumor with sparse infiltration by adaptive immune cells. Immunosuppressive tumor-associated myeloid cells are drivers of tumor progression. Therefore, targeting and reprogramming intratumoral myeloid cells is an appealing therapeutic strategy. Here, we investigate a β-cyclodextrin nanoparticle (CDNP) formulation encapsulating the Toll-like receptor 7 and 8 (TLR7/8) agonist R848 (CDNP-R848) to reprogram myeloid cells in the glioma microenvironment. We show that intravenous monotherapy with CDNP-R848 induces regression of established syngeneic experimental glioma, resulting in increased survival rates compared with unloaded CDNP controls. Mechanistically, CDNP-R848 treatment reshapes the immunosuppressive tumor microenvironment and orchestrates tumor clearing by pro-inflammatory tumor-associated myeloid cells, independently of T cells and NK cells. Using serial magnetic resonance imaging, we identify a radiomic signature in response to CDNP-R848 treatment and ultrasmall superparamagnetic iron oxide (USPIO) imaging reveals that immunosuppressive macrophage recruitment is reduced by CDNP-R848. In conclusion, CDNP-R848 induces tumor regression in experimental glioma by targeting blood-borne macrophages without requiring adaptive immunity.
Collapse
Affiliation(s)
- Verena Turco
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany.,Neuroradiology Department, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Kira Pfleiderer
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Neuroradiology Department, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Jessica Hunger
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Neuroradiology Department, University Hospital Heidelberg, 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Natalie K Horvat
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg University, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Kianush Karimian-Jazi
- Neuroradiology Department, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Katharina Schregel
- Neuroradiology Department, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Manuel Fischer
- Neuroradiology Department, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Gianluca Brugnara
- Neuroradiology Department, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Kristine Jähne
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Volker Sturm
- Neuroradiology Department, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Yannik Streibel
- Neuroradiology Department, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Duy Nguyen
- Junior Research Group Bioinformatics and Omics Data Analytics, DKFZ, Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg University, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Dennis A Agardy
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Abdulrahman Alsasa
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Theresa Bunse
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | - Matthias Schlesner
- Junior Research Group Bioinformatics and Omics Data Analytics, DKFZ, Heidelberg, Germany.,Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg University, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, DKTK within DKFZ, Heidelberg, Germany.,Department of Neurology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Heiland
- Neuroradiology Department, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Philipp Vollmuth
- Neuroradiology Department, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Martin Bendszus
- Neuroradiology Department, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Michael O Breckwoldt
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. .,Neuroradiology Department, University Hospital Heidelberg, 69120, Heidelberg, Germany.
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. .,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany.
| |
Collapse
|
5
|
Veneziani I, Alicata C, Moretta L, Maggi E. The Latest Approach of Immunotherapy with Endosomal TLR Agonists Improving NK Cell Function: An Overview. Biomedicines 2022; 11:biomedicines11010064. [PMID: 36672572 PMCID: PMC9855813 DOI: 10.3390/biomedicines11010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) are the most well-defined pattern recognition receptors (PRR) of several cell types recognizing pathogens and triggering innate immunity. TLRs are also expressed on tumor cells and tumor microenvironment (TME) cells, including natural killer (NK) cells. Cell surface TLRs primarily recognize extracellular ligands from bacteria and fungi, while endosomal TLRs recognize microbial DNA or RNA. TLR engagement activates intracellular pathways leading to the activation of transcription factors regulating gene expression of several inflammatory molecules. Endosomal TLR agonists may be considered as new immunotherapeutic adjuvants for dendritic cell (DC) vaccines able to improve anti-tumor immunity and cancer patient outcomes. The literature suggests that endosomal TLR agonists modify TME on murine models and human cancer (clinical trials), providing evidence that locally infused endosomal TLR agonists may delay tumor growth and induce tumor regression. Recently, our group demonstrated that CD56bright NK cell subset is selectively responsive to TLR8 engagement. Thus, TLR8 agonists (loaded or not to nanoparticles or other carriers) can be considered a novel strategy able to promote anti-tumor immunity. TLR8 agonists can be used to activate and expand in vitro circulating or intra-tumoral NK cells to be adoptively transferred into patients.
Collapse
Affiliation(s)
- Irene Veneziani
- Translational Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Alicata
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Maggi
- Translational Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
6
|
Yang Y, Li H, Fotopoulou C, Cunnea P, Zhao X. Toll-like receptor-targeted anti-tumor therapies: Advances and challenges. Front Immunol 2022; 13:1049340. [PMID: 36479129 PMCID: PMC9721395 DOI: 10.3389/fimmu.2022.1049340] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors, originally discovered to stimulate innate immune reactions against microbial infection. TLRs also play essential roles in bridging the innate and adaptive immune system, playing multiple roles in inflammation, autoimmune diseases, and cancer. Thanks to the immune stimulatory potential of TLRs, TLR-targeted strategies in cancer treatment have proved to be able to regulate the tumor microenvironment towards tumoricidal phenotypes. Quantities of pre-clinical studies and clinical trials using TLR-targeted strategies in treating cancer have been initiated, with some drugs already becoming part of standard care. Here we review the structure, ligand, signaling pathways, and expression of TLRs; we then provide an overview of the pre-clinical studies and an updated clinical trial watch targeting each TLR in cancer treatment; and finally, we discuss the challenges and prospects of TLR-targeted therapy.
Collapse
Affiliation(s)
- Yang Yang
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hongyi Li
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Christina Fotopoulou
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paula Cunnea
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xia Zhao
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Yang R, Yu S, Xu T, Zhang J, Wu S. Emerging role of RNA sensors in tumor microenvironment and immunotherapy. J Hematol Oncol 2022; 15:43. [PMID: 35413927 PMCID: PMC9006576 DOI: 10.1186/s13045-022-01261-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022] Open
Abstract
RNA sensors detect foreign and endogenous RNAs to protect the host by initiating innate and adaptive immune response. In tumor microenvironment (TME), activation of RNA sensors induces tumor-inhibitory cytotoxic T lymphocyte responses and inhibits the activity of immunosuppressive cells though stimulating type I IFN signaling pathway. These characteristics allow RNA sensors to be prospective targets in tumor immunotherapy. Therefore, a comprehensive understanding of the roles of RNA sensors in TME could provide new insight into the antitumor immunotherapy. Moreover, RNA sensors could be prominent triggering targets to synergize with immunotherapies. In this review, we highlight the diverse mechanisms of RNA sensors in cancer immunity and their emerging contributions in cancer immunotherapy, including monotherapy with RNA sensor agonists, as well as combination with chemotherapy, radiotherapy, immune checkpoint blockade or cancer vaccine.
Collapse
Affiliation(s)
- Rui Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Sihui Yu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tianhan Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Haegebaert RM, Kempers M, Ceelen W, Lentacker I, Remaut K. Nanoparticle mediated targeting of toll-like receptors to treat colorectal cancer. Eur J Pharm Biopharm 2022; 172:16-30. [PMID: 35074555 DOI: 10.1016/j.ejpb.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
9
|
A Combined TLR7/TLR9/GATA3 Score Can Predict Prognosis in Biliary Tract Cancer. Diagnostics (Basel) 2021; 11:diagnostics11091597. [PMID: 34573939 PMCID: PMC8469358 DOI: 10.3390/diagnostics11091597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Biliary tract cancer (BTC) refers to a heterogenous group of epithelial malignancies arising along the biliary tree. The highly aggressive nature combined with its silent presentation contribute to the dismal prognosis of this tumor. Tumor-infiltrating immune cells (TIICs) are frequently present in BTC and there is growing evidence regarding their role as therapeutic targets. In this study, we analyzed the immune cell infiltration in BTC and developed a promising immune signature score to predict prognosis in BTC. Immunohistochemistry (IHC) was carried out on tissue microarray sections from 45 patients with resectable cholangiocarcinoma for the detection of 6-sulfoLacNAc+ monocytes (slanMo), BDCA-2+ plasmacytoid dendritic cells (pDC), CD8+ or CD4+T-lymphocytes, CD103+ cells, GATA3+ cells, Toll-like receptor (TLR) 3, 7 and 9-expressing cells as well as programmed cell death protein 1 and programmed cell death ligand 1 positive cells. Data from the IHC staining were analyzed and correlated with clinicopathological and survival data. High expression of TLR7, TLR9, and GATA3 was associated with improved overall survival (OS, Log-rank p < 0.05). In addition, TLR9 was associated with better disease-free survival (Log-rank p < 0.05). In the multivariate Cox proportional-hazards model for OS, the TLR/TLR9/GATA3 score was found to be an independent prognostic factor for OS (“Score 2” vs. “Score 0”: HR 11.17 95% CI 2.27–54.95, p < 0.01).
Collapse
|
10
|
Zhang H, Tang WL, Kheirolomoom A, Fite BZ, Wu B, Lau K, Baikoghli M, Raie MN, Tumbale SK, Foiret J, Ingham ES, Mahakian LM, Tam SM, Cheng RH, Borowsky AD, Ferrara KW. Development of thermosensitive resiquimod-loaded liposomes for enhanced cancer immunotherapy. J Control Release 2021; 330:1080-1094. [PMID: 33189786 PMCID: PMC7906914 DOI: 10.1016/j.jconrel.2020.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/01/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
Resiquimod (R848) is a toll-like receptor 7 and 8 (TLR7/8) agonist with potent antitumor and immunostimulatory activity. However, systemic delivery of R848 is poorly tolerated because of its poor solubility in water and systemic immune activation. In order to address these limitations, we developed an intravenously-injectable formulation with R848 using thermosensitive liposomes (TSLs) as a delivery vehicle. R848 was remotely loaded into TSLs composed of DPPC: DSPC: DSPE-PEG2K (85:10:5, mol%) with 100 mM FeSO4 as the trapping agent inside. The final R848 to lipid ratio of the optimized R848-loaded TSLs (R848-TSLs) was 0.09 (w/w), 10-fold higher than the previously-reported values. R848-TSLs released 80% of R848 within 5 min at 42 °C. These TSLs were then combined with αPD-1, an immune checkpoint inhibitor, and ultrasound-mediated hyperthermia in a neu deletion (NDL) mouse mammary carcinoma model (Her2+, ER/PR negative). Combined with αPD-1, local injection of R848-TSLs showed superior efficacy with complete NDL tumor regression in both treated and abscopal sites achieved in 8 of 11 tumor bearing mice over 100 days. Immunohistochemistry confirmed enhanced CD8+ T cell infiltration and accumulation by R848-TSLs. Systemic delivery of R848-TSLs, combined with local hyperthermia and αPD-1, inhibited tumor growth and extended median survival from 28 days (non-treatment control) to 94 days. Upon re-challenge with reinjection of tumor cells, none of the previously cured mice developed tumors, as compared with 100% of age-matched control mice. The dose of R848 (10 μg for intra-tumoral injection or 6 mg/kg for intravenous injection delivered up to 4 times) was well-tolerated without weight loss or organ hypertrophy. In summary, we developed R848-TSLs that can be administered locally or systematically, resulting in tumor regression and enhanced survival when combined with αPD-1 in mouse models of breast cancer.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Wei-Lun Tang
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Azadeh Kheirolomoom
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Brett Z Fite
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Bo Wu
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Kenneth Lau
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Mo Baikoghli
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Marina Nura Raie
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Spencer K Tumbale
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Josquin Foiret
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Elizabeth S Ingham
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Lisa M Mahakian
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Sarah M Tam
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - R Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | - Katherine W Ferrara
- Molecular Imaging Program, Department of Radiology, Stanford University, 3165 Porter Drive, Palo Alto, CA 94304, USA.
| |
Collapse
|
11
|
Frega G, Wu Q, Le Naour J, Vacchelli E, Galluzzi L, Kroemer G, Kepp O. Trial Watch: experimental TLR7/TLR8 agonists for oncological indications. Oncoimmunology 2020; 9:1796002. [PMID: 32934889 PMCID: PMC7466852 DOI: 10.1080/2162402x.2020.1796002] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Resiquimod (R848) and motolimod (VTX-2337) are second-generation experimental derivatives of imiquimod, an imidazoquinoline with immunostimulatory properties originally approved by the US Food and Drug Administration for the topical treatment of actinic keratosis and genital warts more than 20 years ago. Both resiquimod and motolimod operate as agonists of Toll-like receptor 7 (TLR7) and/or TLR8, in thus far delivering adjuvant-like signals to antigen-presenting cells (APCs). In line with such an activity, these compounds are currently investigated as immunostimulatory agents for the treatment of various malignancies, especially in combination with peptide-based, dendritic cell-based, cancer cell lysate-based, or DNA-based vaccines. Here, we summarize preclinical and clinical evidence recently collected to support the development of resiquimod and motolimod and other TLR7/TLR8 agonists as anticancer agents.
Collapse
Affiliation(s)
- Giorgio Frega
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.,Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Qi Wu
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Julie Le Naour
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Erika Vacchelli
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Karolinska Institutet, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Oliver Kepp
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| |
Collapse
|
12
|
Patinote C, Karroum NB, Moarbess G, Cirnat N, Kassab I, Bonnet PA, Deleuze-Masquéfa C. Agonist and antagonist ligands of toll-like receptors 7 and 8: Ingenious tools for therapeutic purposes. Eur J Med Chem 2020; 193:112238. [PMID: 32203790 PMCID: PMC7173040 DOI: 10.1016/j.ejmech.2020.112238] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
The discovery of the TLRs family and more precisely its functions opened a variety of gates to modulate immunological host responses. TLRs 7/8 are located in the endosomal compartment and activate a specific signaling pathway in a MyD88-dependant manner. According to their involvement into various autoimmune, inflammatory and malignant diseases, researchers have designed diverse TLRs 7/8 ligands able to boost or block the inherent signal transduction. These modulators are often small synthetic compounds and most act as agonists and to a much lesser extent as antagonists. Some of them have reached preclinical and clinical trials, and only one has been approved by the FDA and EMA, imiquimod. The key to the success of these modulators probably lies in their combination with other therapies as recently demonstrated. We gather in this review more than 360 scientific publications, reviews and patents, relating the extensive work carried out by researchers on the design of TLRs 7/8 modulators, which are classified firstly by their biological activities (agonist or antagonist) and then by their chemical structures, which total syntheses are not discussed here. This review also reports about 90 clinical cases, thereby showing the biological interest of these modulators in multiple pathologies.
Collapse
Affiliation(s)
- Cindy Patinote
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Nour Bou Karroum
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France; Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | - Georges Moarbess
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | - Natalina Cirnat
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Issam Kassab
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | | | | |
Collapse
|
13
|
Toll-Like Receptors in Natural Killer Cells and Their Application for Immunotherapy. J Immunol Res 2020; 2020:2045860. [PMID: 32377528 PMCID: PMC7199539 DOI: 10.1155/2020/2045860] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/21/2019] [Indexed: 12/21/2022] Open
Abstract
Innate immunity represents the first barrier for host defense against microbial infection. Toll-like receptors (TLRs) are the most well-defined PRRs with respect to PAMP recognition and induction of innate immune responses. They recognize pathogen-associated molecular patterns (PAMPs) and trigger innate immune responses by inducing inflammatory cytokines, chemokines, antigen-presenting molecules, and costimulatory molecules. TLRs are expressed either on the cell surface or within endosomes of innate immune cells. NK cells are one of the innate immune cells and also express TLRs to recognize or respond to PAMPs. TLRs in NK cells induce the innate immune responses against bacterial and viral infections via inducing NK cytotoxicity and cytokine production. In this review, we will discuss the expression and cellular function of TLRs in NK cells and also introduce some therapeutic applications of TLR agonists for NK cell-mediated immunotherapy.
Collapse
|
14
|
Bellmann L, Cappellano G, Schachtl-Riess JF, Prokopi A, Seretis A, Ortner D, Tripp CH, Brinckerhoff CE, Mullins DW, Stoitzner P. A TLR7 agonist strengthens T and NK cell function during BRAF-targeted therapy in a preclinical melanoma model. Int J Cancer 2019; 146:1409-1420. [PMID: 31702822 PMCID: PMC7003881 DOI: 10.1002/ijc.32777] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/25/2019] [Accepted: 10/31/2019] [Indexed: 12/30/2022]
Abstract
Therapeutic success of targeted therapy with BRAF inhibitors (BRAFi) for melanoma is limited by resistance development. Observations from preclinical mouse models and recent insights into the immunological effects caused by BRAFi give promise for future development of combination therapy for human melanoma. In our study, we used the transplantable D4M melanoma mouse model with the BRAFV600E mutation and concomitant PTEN loss in order to characterize alterations in tumor‐infiltrating effector immune cells when tumors become resistant to BRAFi. We found that BRAFi‐sensitive tumors displayed a pronounced inflammatory milieu characterized by high levels of cytokines and chemokines accompanied by an infiltration of T and NK cells. The tumor‐infiltrating effector cells were activated and produced high levels of IFN‐γ, TNF‐α and granzyme B. When tumors became resistant and progressively grew, they reverted to a low immunogenic state similar to untreated tumors as reflected by low mRNA levels of proinflammatory cytokines and chemokines and fewer tumor‐infiltrating T and NK cells. Moreover, these T and NK cells were functionally impaired in comparison to their counterparts in BRAFi‐sensitive tumors. Their effector cell function could be restored by additional peritumoral treatment with the TLR7 agonist imiquimod, a clinically approved agent for nonmelanoma skin cancer. Indeed, resistance to BRAFi therapy was delayed and accompanied by high numbers of activated T and NK cells in tumors. Thus, combining BRAFi with an immune stimulating agent such as a TLR ligand could be a promising alternative approach for the treatment of melanoma. What's new? While inhibitors targeting mutant BRAF proteins can induce melanoma regression, many tumors become resistant to these agents, possibly owing to immunological effects of BRAF inhibitor therapy. Here, using a preclinical mouse model, the authors show that during the early treatment phase with BRAF inhibitors, melanomas are highly immunogenic, with infiltrating T cells and natural killer cells. When resistance develops, however, tumors regress toward low immunogenicity, similar to untreated tumors. Experiments show that in the BRAF‐sensitive phase, peritumoral injection of the TLR7 ligand imiquimod preserves immunogenicity and delays resistance, thus representing a potentially effective novel therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Lydia Bellmann
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Cappellano
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johanna F Schachtl-Riess
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anastasia Prokopi
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Athanasios Seretis
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Ortner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph H Tripp
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Constance E Brinckerhoff
- Department of Medicine and Biochemistry, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH
| | - David W Mullins
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Vascotto F, Petschenka J, Walzer KC, Vormehr M, Brkic M, Strobl S, Rösemann R, Diken M, Kreiter S, Türeci Ö, Sahin U. Intravenous delivery of the toll-like receptor 7 agonist SC1 confers tumor control by inducing a CD8+ T cell response. Oncoimmunology 2019; 8:1601480. [PMID: 31143525 DOI: 10.1080/2162402x.2019.1601480] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022] Open
Abstract
TLR7 agonists are considered promising drugs for cancer therapy. The currently available compounds are not well tolerated when administered intravenously and therefore are restricted to disease settings amenable for topical application. Here we present the preclinical characterization of SC1, a novel synthetic agonist with exquisite specificity for TLR7. We found that intravenously administered SC1 mediates systemic release of type I interferon, but not of proinflammatory cytokines such as TNFα and IL6, and results in activation of circulating immune cells. Tumors of SC1-treated mice have brisk immune cell infiltrates and are polarized towards a Th1 type signature. Intratumoral CD8+ T cells and CD11b+ conventional dendritic cells (cDCs) are significantly increased, plasmacytoid dendritic cells (pDCs) are strongly activated and macrophages are M1 phenotype polarized, whereas myeloid-derived suppressor cells (MDSCs) are decreased. We further show that treatment of mice with SC1 profoundly inhibits the growth of established syngeneic tumors and results in significantly prolonged survival. Mice, which are tumor-free after SC1 treatment are protected from subsequent tumor rechallenge. The antitumor effect of SC1 depends on antigen-specific CD8+ T cells, which we found to be strongly enriched in the tumors of SC1-treated mice. In conclusion, this study shows that systemically administered SC1 mobilizes innate and adaptive immunity and is highly potent as single agent in mice and thereby provides a rationale for clinical testing of this compound.
Collapse
Affiliation(s)
- Fulvia Vascotto
- TRON - Translational Oncology, University Medical Center of Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Jutta Petschenka
- TRON - Translational Oncology, University Medical Center of Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Kerstin C Walzer
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Mathias Vormehr
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Magdalena Brkic
- TRON - Translational Oncology, University Medical Center of Johannes Gutenberg University gGmbH, Mainz, Germany
| | | | | | - Mustafa Diken
- TRON - Translational Oncology, University Medical Center of Johannes Gutenberg University gGmbH, Mainz, Germany.,Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Sebastian Kreiter
- TRON - Translational Oncology, University Medical Center of Johannes Gutenberg University gGmbH, Mainz, Germany.,Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Özlem Türeci
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Ugur Sahin
- TRON - Translational Oncology, University Medical Center of Johannes Gutenberg University gGmbH, Mainz, Germany.,Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany.,Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
16
|
Vormehr M, Reinhard K, Blatnik R, Josef K, Beck JD, Salomon N, Suchan M, Selmi A, Vascotto F, Zerweck J, Wenschuh H, Diken M, Kreiter S, Türeci Ö, Riemer AB, Sahin U. A non-functional neoepitope specific CD8 + T-cell response induced by tumor derived antigen exposure in vivo. Oncoimmunology 2018; 8:1553478. [PMID: 30723585 DOI: 10.1080/2162402x.2018.1553478] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/09/2018] [Accepted: 11/18/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer-associated mutations, mostly single nucleotide variations, can act as neoepitopes and prime targets for effective anti-cancer T-cell immunity. T cells recognizing cancer mutations are critical for the clinical activity of immune checkpoint blockade (ICB) and they are potent vaccine antigens. High frequencies of mutation-specific T cells are rarely spontaneously induced. Hence, therapies that broaden the tumor specific T-cell response are of interest. Here, we analyzed neoepitope-specific CD8+ T-cell responses mounted either spontaneously or after immunotherapy regimens, which induce local tumor inflammation and cell death, in mice bearing tumors of the widely used colon carcinoma cell line CT26. A comprehensive immune reactivity screening of 2474 peptides covering 628 transcribed CT26 point mutations was conducted. All tested treatment regimens were found to induce a single significant CD8+ T-cell response against a non-synonymous D733A point mutation in the Smc3 gene. Surprisingly, even though Smc3 D733A turned out to be the immune-dominant neoepitope in CT26 tumor bearing mice, neither T cells specific for this neoepitope nor their T cell receptors (TCRs) were able to recognize or lyse tumor cells. Moreover, vaccination with the D733A neoepitope did not result in anti-tumoral activity despite induction of specific T cells. This is to our knowledge the first report that neoepitope specific CD8+ T cells primed by tumor-released antigen exposure in vivo can be functionally irrelevant.
Collapse
Affiliation(s)
- Mathias Vormehr
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany.,Experimental and Translational Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Katharina Reinhard
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Renata Blatnik
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), and Molecular Vaccine Design, German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Kathrin Josef
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), and Molecular Vaccine Design, German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Jan David Beck
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Nadja Salomon
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Martin Suchan
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Abderraouf Selmi
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Fulvia Vascotto
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Mainz, Germany
| | | | | | - Mustafa Diken
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany.,TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Sebastian Kreiter
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany.,TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Özlem Türeci
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Angelika B Riemer
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), and Molecular Vaccine Design, German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Ugur Sahin
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany.,Experimental and Translational Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Mainz, Germany
| |
Collapse
|
17
|
Smith M, García-Martínez E, Pitter MR, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Toll-like receptor agonists in cancer immunotherapy. Oncoimmunology 2018; 7:e1526250. [PMID: 30524908 PMCID: PMC6279325 DOI: 10.1080/2162402x.2018.1526250] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptor (TLR) agonists demonstrate therapeutic promise as immunological adjuvants for anticancer immunotherapy. To date, three TLR agonists have been approved by US regulatory agencies for use in cancer patients. Additionally, the potential of hitherto experimental TLR ligands to mediate clinically useful immunostimulatory effects has been extensively investigated over the past few years. Here, we summarize recent preclinical and clinical advances in the development of TLR agonists for cancer therapy.
Collapse
Affiliation(s)
- Melody Smith
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elena García-Martínez
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Michael R. Pitter
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jitka Fucikova
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- INSERM, U1015, Villejuif, France
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/ Paris V, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- INSERM, U1138, Paris, France
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/ Paris V, Paris, France
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
18
|
Abumaree MH, Bahattab E, Alsadoun A, Al Dosaimani A, Abomaray FM, Khatlani T, Kalionis B, El-Muzaini MF, Alawad AO, AlAskar AS. Characterization of the interaction between human decidua parietalis mesenchymal stem/stromal cells and natural killer cells. Stem Cell Res Ther 2018; 9:102. [PMID: 29650045 PMCID: PMC5898063 DOI: 10.1186/s13287-018-0844-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/02/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Background Human decidua parietalis mesenchymal stem/multipotent stromal cells (DPMSCs) have unique phenotypic and functional properties that make them promising candidates for cell-based therapy. Here, we investigated DPMSC interaction with natural killer (NK) cells, and the effects of this interaction on NK cell phenotypic characteristics and functional activities. Methods DPMSCs isolated from the decidua parietalis of human fetal membranes were cultured with interleukin (IL)-2-activated and IL-2-unactivated NK cells isolated from healthy human peripheral blood. NK cell proliferation and cytolytic activities were then examined using functional assays. NK cell expression of receptors mediating the cytolytic activity against DPMSCs, and the mechanism underlying this effect on DPMSCs, were also examined using flow cytometry and light microscopy, respectively. Results DPMSCs stimulated IL-2-induced proliferation of resting NK cells and the proliferation of activated NK cells. Moreover, IL-2-activated NK cells, but not freshly isolated NK cells, efficiently lysed DPMSCs. The induction of this NK cell cytolytic activity against DPMSCs was mediated by the activating NK cell receptors NKG2D, CD69, NKp30, and NKp44. However, DPMSCs showed a direct induction of NK cell cytolytic activity through CD69. We also found that DPMSCs expressed the ligands for these activating NK cell receptors including Nectin-2, ULBP-2, MICA, and MICB. Although DPMSCs expressed HLA class I molecules, they were susceptible to lysis by NK cells, suggesting that HLA class I antigens do not play a significant role in NK cell cytolytic action. In addition, DPMSCs did not inhibit NK cell cytolytic activity against cancer cells. Importantly, DPMSCs significantly increased NK expression of inflammatory molecules with anticancer activities. Conclusions We conclude that DPMSCs have potential for therapeutic application in cancer therapy, but not in transplantation or immunological diseases.
Collapse
Affiliation(s)
- M H Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia. .,College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 3660, Mail Code 3124, Riyadh, 11481, Saudi Arabia.
| | - E Bahattab
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O Box 6086, Riyadh, 11442, Saudi Arabia
| | - A Alsadoun
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O Box 6086, Riyadh, 11442, Saudi Arabia
| | - A Al Dosaimani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 3660, Mail Code 3124, Riyadh, 11481, Saudi Arabia
| | - F M Abomaray
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, 14186, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Karolinska Institutet, 14186, Stockholm, Sweden
| | - T Khatlani
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia
| | - B Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre and University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - M F El-Muzaini
- Department of Obstetrics and Gynaecology, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 3660, Mail Code 3124, Riyadh, 11481, Saudi Arabia
| | - A O Alawad
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O Box 6086, Riyadh, 11442, Saudi Arabia
| | - A S AlAskar
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia.,College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 3660, Mail Code 3124, Riyadh, 11481, Saudi Arabia.,Adult Hematology and Stem Cell Transplantation, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia
| |
Collapse
|
19
|
Seo H, Kim BS, Bae EA, Min BS, Han YD, Shin SJ, Kang CY. IL21 Therapy Combined with PD-1 and Tim-3 Blockade Provides Enhanced NK Cell Antitumor Activity against MHC Class I-Deficient Tumors. Cancer Immunol Res 2018; 6:685-695. [PMID: 29615398 DOI: 10.1158/2326-6066.cir-17-0708] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/18/2018] [Accepted: 03/15/2018] [Indexed: 11/16/2022]
Abstract
Increased expression of coinhibitory molecules such as PD-1 and Tim-3 on NK cells has been demonstrated in advanced cancer patients who harbor MHC class I-deficient tumors. However, even in preclinical models, the antitumor effects of checkpoint blockade on NK cells have not been clearly elucidated. Here, we show that anti-PD-1/anti-Tim-3 treatment suppressed tumor progression in mice bearing MHC class I-deficient tumors, and the suppression was further enhanced by recombinant IL21 (rIL21) treatments through an NK-cell-dependent mechanism. We also show that the intratumoral delivery of rIL21 attracted NK cells to the tumor site in a CXCR3-dependent fashion. A combination of IL21 and checkpoint blockade facilitated the effector function of exhausted NK cells in cancer patients. Given the effects of the checkpoint blockade and rIL21 combination on NK cells infiltrating into MHC class I-deficient tumors, we suggest that the efficacy of checkpoint blockade can be enhanced through the administration of IL21 for advanced cancer patients with MHC class I-low/deficient tumors. Cancer Immunol Res; 6(6); 685-95. ©2018 AACR.
Collapse
Affiliation(s)
- Hyungseok Seo
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy Seoul National University, Seoul, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Byung-Seok Kim
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun-Ah Bae
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Byung Soh Min
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Dae Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Joon Shin
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang-Yuil Kang
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy Seoul National University, Seoul, Republic of Korea. .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Mikulak J, Oriolo F, Zaghi E, Di Vito C, Mavilio D. Natural killer cells in HIV-1 infection and therapy. AIDS 2017; 31:2317-2330. [PMID: 28926399 DOI: 10.1097/qad.0000000000001645] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
: Natural killer (NK) cells are important effectors of innate immunity playing a key role in the eradication and clearance of viral infections. Over the recent years, several studies have shown that HIV-1 pathologically changes NK cell homeostasis and hampers their antiviral effector functions. Moreover, high levels of chronic HIV-1 viremia markedly impair those NK cell regulatory features that normally regulate the cross talks between innate and adaptive immune responses. These pathogenic events take place early in the infection and are associated with a pathologic redistribution of NK cell subsets that includes the expansion of anergic CD56/CD16 NK cells with an aberrant repertoire of activating and inhibitory receptors. Nevertheless, the presence of specific haplotypes for NK cell receptors and the engagement of NK cell antibody-dependent cell cytotocity have been reported to control HIV-1 infection. This dichotomy can be extremely useful to both predict the clinical outcome of the infection and to develop alternative antiviral pharmacological approaches. Indeed, the administration of antiretroviral therapy in HIV-1-infected patients restores NK cell phenotype and functions to normal levels. Thus, antiretroviral therapy can help to develop NK cell-directed therapeutic strategies that include the use of broadly neutralizing antibodies and toll-like receptor agonists. The present review discusses how our current knowledge of NK cell pathophysiology in HIV-1 infection is being translated both in experimental and clinical trials aimed at controlling the infection and disease.
Collapse
|
21
|
Doorduijn EM, Sluijter M, Salvatori DC, Silvestri S, Maas S, Arens R, Ossendorp F, van der Burg SH, van Hall T. CD4 + T Cell and NK Cell Interplay Key to Regression of MHC Class I low Tumors upon TLR7/8 Agonist Therapy. Cancer Immunol Res 2017. [PMID: 28637878 DOI: 10.1158/2326-6066.cir-16-0334] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the next challenges in cancer immunotherapy is the resistance of tumors to T-cell-based treatments through loss of MHC class I. Here, we show that under these circumstances, the Toll-like receptor (TLR)-7/8 ligand imiquimod, but not the TLR3 ligand poly I:C or TLR9 ligand CpG, mediated an effective antitumor response. The rejection of these immune-escaped cancers was mediated by NK cells and CD4+ T cells, whereas activated CD8+ T cells were dispensable. Application of the innate immune stimulator at a distant site activated NK cells and thereby elicited tumor-specific T-cell responses in tumor-bearing mice. Mechanistically, imiquimod activated NK cells to kill tumor cells, resulting in release of tumor antigens and induction of tumor-specific CD4+ T cells. These T helper cells provoked a strong induction of CXCL9 and CXCL10 in the tumor environment. Simultaneously, imiquimod induced the expression of the cognate chemokine receptor CXCR3 on peripheral lymphocytes. This ignited intratumoral CD4+ T-cell infiltration and accumulation, which was critical for tumor rejection; CXCR3 blocking antibodies mitigated the clinical response. In the effector phase, NK cell recruitment to tumors and their activation depended on CD4+ T cells. Together, we have uncovered a potent immune axis of tumor-specific CD4+ T cells and NK cells that eliminates escaped MHC-Ilow tumors. Cancer Immunol Res; 5(8); 642-53. ©2017 AACR.
Collapse
Affiliation(s)
- Elien M Doorduijn
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Marjolein Sluijter
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Daniela C Salvatori
- Central Laboratory Animal Facility, Leiden University Medical Center (LUMC), Leiden, the Netherlands.,Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Serenella Silvestri
- Central Laboratory Animal Facility, Leiden University Medical Center (LUMC), Leiden, the Netherlands.,Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Saskia Maas
- Central Laboratory Animal Facility, Leiden University Medical Center (LUMC), Leiden, the Netherlands.,Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Ramon Arens
- Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Ferry Ossendorp
- Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, the Netherlands.
| |
Collapse
|
22
|
Chi H, Li C, Zhao FS, Zhang L, Ng TB, Jin G, Sha O. Anti-tumor Activity of Toll-Like Receptor 7 Agonists. Front Pharmacol 2017; 8:304. [PMID: 28620298 PMCID: PMC5450331 DOI: 10.3389/fphar.2017.00304] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/10/2017] [Indexed: 01/04/2023] Open
Abstract
Toll-like receptors (TLRs) are a class of pattern recognition receptors that play a bridging role in innate immunity and adaptive immunity. The activated TLRs not only induce inflammatory responses, but also elicit the development of antigen specific immunity. TLR7, a member of TLR family, is an intracellular receptor expressed on the membrane of endosomes. TLR7 can be triggered not only by ssRNA during viral infections, but also by immune modifiers that share a similar structure to nucleosides. Its powerful immune stimulatory action can be potentially used in the anti-tumor therapy. This article reviewed the anti-tumor activity and mechanism of TLR7 agonists that are frequently applied in preclinical and clinical investigations, and mainly focused on small synthetic molecules, including imiquimod, resiquimod, gardiquimod, and 852A, etc.
Collapse
Affiliation(s)
- Huju Chi
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science CentreShenzhen, China
| | - Chunman Li
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science CentreShenzhen, China
| | - Flora Sha Zhao
- School of Life Sciences, Faculty of Science, The Chinese University of Hong KongHong Kong, Hong Kong
| | - Li Zhang
- Department of Physiology and Neurology, University of ConnecticutStorrs, CT, United States
| | - Tzi Bun Ng
- Departmet of Biochemistry, Faculty of Science, The Chinese University of Hong KongHong Kong, Hong Kong
| | - Guangyi Jin
- Department of Pharmacy, Shenzhen University Health Science CentreShenzhen, China
| | - Ou Sha
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science CentreShenzhen, China
| |
Collapse
|