1
|
Wang H, Song X, Shen H, Liu W, Wang Y, Zhang M, Yang T, Mou Y, Ren C, Song X. Cancer neuroscience in head and neck: interactions, modulation, and therapeutic strategies. Mol Cancer 2025; 24:101. [PMID: 40165230 PMCID: PMC11956203 DOI: 10.1186/s12943-025-02299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Head and neck cancer (HNC) is an aggressive malignancy with significant effects on the innervation. Not only is it at the top of the cancer spectrum with a dismal prognosis, but it also imposes considerable stress on patients and society owing to frequent neurological symptoms. With progress in cancer neuroscience, the interactions between HNC and the nervous system, as well as the underlying mechanisms, have become increasingly clear. Compelling evidence suggests communication of information between cancer and nerve cells and devastation of the neurological system with tumor growth. However, the thorough grasp of HNC in cancer neuroscience has been severely constrained by the intricacy of HNC and fragmented research. This review comprehensively organizes and summarizes the latest research on the crosstalk between HNC and the nervous system. It aims to clarify various aspects of the neurological system in HNC, including the physiology, progression, and treatment of cancer. Furthermore, the opportunities and challenges of cancer neuroscience in HNC are discussed, which offers fresh perspectives on the neurological aspects of HNC diagnosis and management.
Collapse
Affiliation(s)
- Hanrui Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiaoyu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Hui Shen
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Wanchen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Mingjun Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ting Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| | - Chao Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| |
Collapse
|
2
|
Rutkowski K, Gola M, Godlewski J, Starzyńska A, Marvaso G, Mastroleo F, Giulia Vincini M, Porazzi A, Zaffaroni M, Jereczek-Fossa BA. Understanding the role of nerves in head and neck cancers - a review. Oncol Rev 2025; 18:1514004. [PMID: 39906323 PMCID: PMC11791411 DOI: 10.3389/or.2024.1514004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/03/2024] [Indexed: 02/06/2025] Open
Abstract
Worldwide, head and neck cancers (HNCs) account for approximately 900,000 cases and 500,000 deaths annually, with their incidence continuing to rise. Carcinogenesis is a complex, multidimensional molecular process leading to cancer development, and in recent years, the role of nerves in the pathogenesis of various malignancies has been increasingly recognized. Thanks to the abundant innervation of the head and neck region, peripheral nervous system has gained considerable interest for its possible role in the development and progression of HNCs. Intratumoral parasympathetic, sympathetic, and sensory nerve fibers are emerging as key players and potential targets for novel anti-cancer and pain-relieving medications in different tumors, including HNCs. This review explores nerve-cancer interactions, including perineural invasion (PNI), cancer-related axonogenesis, neurogenesis, and nerve reprogramming, with an emphasis on their molecular mechanisms, mediators and clinical implications. PNI, an adverse histopathologic feature, has been widely investigated in HNCs. However, its prognostic value remains debated due to inconsistent results when classified dichotomously (present/absent). Emerging evidence suggests that quantitative and qualitative descriptions of PNI may better reflect its clinical usefulness. The review also examines therapies targeting nerve-cancer crosstalk and highlights the influence of HPV status on tumor innervation. By synthesizing current knowledge, challenges, and future perspectives, this review offers insights into the molecular basis of nerve involvement in HNCs and the potential for novel therapeutic approaches.
Collapse
Affiliation(s)
- Krzysztof Rutkowski
- Department of Hematology, Transplantology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Michał Gola
- Department of Human Histology and Embryology, Collegium Medicum, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
- Department of Oncology and Immuno-Oncology, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre, Olsztyn, Poland
| | - Janusz Godlewski
- Department of Human Histology and Embryology, Collegium Medicum, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
- Department of Surgical Oncology, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre, Olsztyn, Poland
| | - Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, Gdańsk, Poland
- Department of Otolaryngology, Phoniatrics and Audiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Giulia Marvaso
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federico Mastroleo
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Maria Giulia Vincini
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Alice Porazzi
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Mattia Zaffaroni
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Pei M, Wiefels M, Harris D, Velez Torres JM, Gomez-Fernandez C, Tang JC, Hernandez Aya L, Samuels SE, Sargi Z, Weed D, Dinh C, Kaye ER. Perineural Invasion in Head and Neck Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:3695. [PMID: 39518134 PMCID: PMC11545267 DOI: 10.3390/cancers16213695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer, with a lifetime risk of 14-20% that is rising every year. Although prognosis for cSCC is generally good, certain high-risk features of cSCC portend increased rates of nodal and distant metastasis, recurrence, and disease-specific mortality. One such high-risk factor is perineural invasion (PNI), which is broadly defined as the invasion of cancer into and around nerves. Compared to other high-risk factors, PNI presence is associated with the highest risk for locoregional and distant metastasis. Still, the mechanisms underlying the pathogenesis of PNI remain poorly understood. Recent studies suggest the migration and invasion of tumors into nerves is a result of complex molecular crosstalk within the tumor-nerve microenvironment, wherein the milieu of signaling molecules simultaneously promote neuronal growth and tumor cell invasion. Methods: Understanding the molecular and cellular mechanisms that promote PNI will lead to future developments of targeted therapies that may improve locoregional control and survival. Results/Conclusions: In our article, we aim to provide a comprehensive review of recent findings about the pathogenesis of PNI, clinical implications of PNI-positive disease in cSCC, available treatment modalities, and potential future therapeutic targets.
Collapse
Affiliation(s)
- Michelle Pei
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA (M.W.); (D.W.)
| | - Matthew Wiefels
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA (M.W.); (D.W.)
| | - Danielle Harris
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA (M.W.); (D.W.)
| | - Jaylou M. Velez Torres
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA (S.E.S.)
| | - Carmen Gomez-Fernandez
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA (M.W.); (D.W.)
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA (S.E.S.)
| | - Jennifer C. Tang
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA (S.E.S.)
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Leonel Hernandez Aya
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA (S.E.S.)
- Department of Medicine, Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stuart E. Samuels
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA (S.E.S.)
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zoukaa Sargi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA (M.W.); (D.W.)
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA (S.E.S.)
| | - Donald Weed
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA (M.W.); (D.W.)
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA (S.E.S.)
| | - Christine Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA (M.W.); (D.W.)
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA (S.E.S.)
| | - Erin R. Kaye
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA (M.W.); (D.W.)
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA (S.E.S.)
| |
Collapse
|
4
|
Viet CT, Asam KR, Yu G, Dyer EC, Kochanny S, Thomas CM, Callahan NF, Morlandt AB, Cheng AC, Patel AA, Roden DF, Young S, Melville J, Shum J, Walker PC, Nguyen KK, Kidd SN, Lee SC, Folk GS, Viet DT, Grandhi A, Deisch J, Ye Y, Momen-Heravi F, Pearson AT, Aouizerat BE. Artificial intelligence-based epigenomic, transcriptomic and histologic signatures of tobacco use in oral squamous cell carcinoma. NPJ Precis Oncol 2024; 8:130. [PMID: 38851780 PMCID: PMC11162452 DOI: 10.1038/s41698-024-00605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/08/2024] [Indexed: 06/10/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) biomarker studies rarely employ multi-omic biomarker strategies and pertinent clinicopathologic characteristics to predict mortality. In this study we determine for the first time a combined epigenetic, gene expression, and histology signature that differentiates between patients with different tobacco use history (heavy tobacco use with ≥10 pack years vs. no tobacco use). Using The Cancer Genome Atlas (TCGA) cohort (n = 257) and an internal cohort (n = 40), we identify 3 epigenetic markers (GPR15, GNG12, GDNF) and 13 expression markers (IGHA2, SCG5, RPL3L, NTRK1, CD96, BMP6, TFPI2, EFEMP2, RYR3, DMTN, GPD2, BAALC, and FMO3), which are dysregulated in OSCC patients who were never smokers vs. those who have a ≥ 10 pack year history. While mortality risk prediction based on smoking status and clinicopathologic covariates alone is inaccurate (c-statistic = 0.57), the combined epigenetic/expression and histologic signature has a c-statistic = 0.9409 in predicting 5-year mortality in OSCC patients.
Collapse
Affiliation(s)
- Chi T Viet
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA.
| | - Kesava R Asam
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- Translational Research Center, New York University College of Dentistry, New York, NY, USA
| | - Gary Yu
- New York University Rory Meyers College of Nursing, New York, NY, USA
| | - Emma C Dyer
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Sara Kochanny
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Carissa M Thomas
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicholas F Callahan
- Department of Oral and Maxillofacial Surgery, University of Illinois Chicago, College of Dentistry, Chicago, IL, USA
| | - Anthony B Morlandt
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Allen C Cheng
- Head and Neck Surgery, Providence Cancer Institute, Portland, OR, USA
- Head and Neck Surgery, Legacy Cancer Center, Portland, OR, USA
| | - Ashish A Patel
- Head and Neck Surgery, Providence Cancer Institute, Portland, OR, USA
- Head and Neck Surgery, Legacy Cancer Center, Portland, OR, USA
| | - Dylan F Roden
- Department of Otolaryngology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Simon Young
- Katz Department of Oral & Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - James Melville
- Katz Department of Oral & Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - Jonathan Shum
- Katz Department of Oral & Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - Paul C Walker
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Khanh K Nguyen
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Stephanie N Kidd
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Steve C Lee
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | | | - Anupama Grandhi
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - Jeremy Deisch
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Yi Ye
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- Translational Research Center, New York University College of Dentistry, New York, NY, USA
| | - Fatemeh Momen-Heravi
- Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Alexander T Pearson
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Bradley E Aouizerat
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- Translational Research Center, New York University College of Dentistry, New York, NY, USA
- New York University Rory Meyers College of Nursing, New York, NY, USA
| |
Collapse
|
5
|
Ji Y, Zhang Z, Zhao X, Li Z, Hu X, Zhang M, Pan X, Wang X, Chen W. IL-1α facilitates GSH synthesis to counteract oxidative stress in oral squamous cell carcinoma under glucose-deprivation. Cancer Lett 2024; 589:216833. [PMID: 38548217 DOI: 10.1016/j.canlet.2024.216833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Understanding the intrinsic mechanisms underpinning cancer metabolism and therapeutic resistance is of central importance for effective nutrition-starvation therapies. Here, we report that Interleukin 1A (IL1A) mRNA and IL-1α protein facilitate glutathione (GSH) synthesis to counteract oxidative stress and resistance against nutrition-starvation therapy in oral squamous cell carcinoma (OSCC). The expression of IL1A mRNA was elevated in the case of OSCC associated with unfavorable clinical outcomes. Both IL1A mRNA and IL-1α protein expression were increased under glucose-deprivation in vitro and in vivo. The transcription of IL1A mRNA was regulated in an NRF2-dependent manner in OSCC cell lines under glucose-deprivation. Moreover, the IL-1α conferred resistance to oxidative stress via GSH synthesis in OSCC cell lines. The intratumoral administration of siRNAs against IL1A mRNA markedly reversed GSH production and sensitized OSCC cells to Anlotinib in HN6 xenograft models. Overall, the current study demonstrates novel evidence that the autocrine IL-1α favors endogenous anti-oxidative process and confers therapeutic resistance to nutrition-starvation in OSCCs.
Collapse
Affiliation(s)
- Yikang Ji
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Zhen Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Xinran Zhao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Zhiyin Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Xin Hu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Mi Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Xinhua Pan
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China.
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, China.
| |
Collapse
|
6
|
Cheng K, Pan J, Liu Q, Ji Y, Liu L, Guo X, Wang Q, Li S, Sun J, Gong M, Zhang Y, Yuan Y. Exosomal lncRNA XIST promotes perineural invasion of pancreatic cancer cells via miR-211-5p/GDNF. Oncogene 2024; 43:1341-1352. [PMID: 38454138 DOI: 10.1038/s41388-024-02994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Perineural invasion (PNI) is an essential form of tumor metastasis in multiple malignant cancers, such as pancreatic cancer, prostate cancer, and head and neck cancer. Growing evidence has revealed that pancreatic cancer recurrence and neuropathic pain positively correlate with PNI. Therefore, targeting PNI is a proper strategy for pancreatic cancer treatment. Exosomal lncRNA derived from pancreatic cancer cells is an essential component of the tumor microenvironment. However, whether exosomal lncXIST derived from pancreatic cancer cells can promote PNI and its exact mechanism remains to be elucidated. We show that lncXIST mediates nerve-tumor crosstalk via exosomal delivery. Our data reveal that exosomal lncXIST derived from pancreatic cancer cells is delivered to neural cells and promotes their release of glial-cell-line-derived neurotrophic factor (GDNF), essential in facilitating the PNI of pancreatic cancer. Mechanistically, microRNA-211-5p negatively regulates GDNF, and lncXIST serves as a miR-211-5p sponge. The function of exosomes in the dynamic interplay between nerves and cancer is confirmed in both in vivo and in vitro PNI models. Therefore, targeting pancreatic cancer cell-derived exosomal lncXIST may provide clues for a promising approach for developing a new strategy to combat PNI of pancreatic cancer.
Collapse
Affiliation(s)
- Ke Cheng
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jinjin Pan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Qinlong Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Yuke Ji
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Liang Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Xiangqian Guo
- Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 47500, China
| | - Qiang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 47500, China
| | - Shao Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Jinyue Sun
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Miaomiao Gong
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| | - Ying Zhang
- Sixth Department of liver disease, Dalian Public Health Clinical Center, Dalian, 116044, China.
| | - Yuhui Yuan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
7
|
Kakoty V, Sarathlal KC, Kaur P, Wadhwa P, Vishwas S, Khan FR, Alhazmi AYM, Almasoudi HH, Gupta G, Chellappan DK, Paudel KR, Kumar D, Dua K, Singh SK. Unraveling the role of glial cell line-derived neurotrophic factor in the treatment of Parkinson's disease. Neurol Sci 2024; 45:1409-1418. [PMID: 38082050 DOI: 10.1007/s10072-023-07253-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/02/2023] [Indexed: 03/16/2024]
Abstract
Parkinson's disease is the second most common neurodegenerative condition with its prevalence projected to 8.9 million individuals globally in the year 2019. Parkinson's disease affects both motor and certain non-motor functions of an individual. Numerous research has focused on the neuroprotective effect of the glial cell line-derived neurotrophic factor (GDNF) in Parkinson's disease. Discovered in 1993, GDNF is a neurotrophic factor identified from the glial cells which was found to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. Given this property, recent studies have focused on the exogenous administration of GDNF for relieving Parkinson's disease-related symptoms both at a pre-clinical and a clinical level. This review will focus on enumerating the molecular connection between Parkinson's disease and GDNF and shed light on all the available drug delivery approaches to facilitate the selective delivery of GDNF into the brain paving the way as a potential therapeutic candidate for Parkinson's disease in the future.
Collapse
Affiliation(s)
- Violina Kakoty
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - K C Sarathlal
- Department of Non-Communicable Disease, Translational Health Science and Technology Institute, Faridabad, India
| | - Palwinder Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Pankaj Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | | | - Hassan Hussain Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, 61441, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | | | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2050, Australia
| | - Dileep Kumar
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Kamal Dua
- School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
8
|
Tao ZY, Wang L, Zhu WY, Zhang G, Su YX. Lingual Denervation Improves the Efficacy of Anti-PD-1 Immunotherapy in Oral Squamous Cell Carcinomas by Downregulating TGFβ Signaling. CANCER RESEARCH COMMUNICATIONS 2024; 4:418-430. [PMID: 38324026 PMCID: PMC10868515 DOI: 10.1158/2767-9764.crc-23-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/14/2023] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
PURPOSE Intratumoral nerve infiltration relates to tumor progression and poor survival in oral squamous cell carcinoma (OSCC). How neural involvement regulates antitumor immunity has not been well characterized. This study aims to investigate molecular mechanisms of regulating tumor aggressiveness and impairing antitumor immunity by nerve-derived factors. EXPERIMENTAL DESIGN We performed the surgical lingual denervation in an immunocompetent mouse OSCC model to investigate its effect on tumor growth and the efficacy of anti-PD-1 immunotherapy. A trigeminal ganglion neuron and OSCC cell coculture system was established to investigate the proliferation, migration, and invasion of tumor cells and the PD-L1 expression. Both the neuron-tumor cell coculture in vitro model and the OSCC animal model were explored. RESULTS Lingual denervation slowed down tumor growth and improved the efficacy of anti-PD-1 treatment in the OSCC model. Coculturing with neurons not only enhanced the proliferation, migration, and invasion but also upregulated TGFβ-SMAD2 signaling and PD-L1 expression of tumor cells. Treatment with the TGFβ signaling inhibitor galunisertib reversed nerve-derived tumor aggressiveness and downregulated PD-L1 on tumor cells. Similarly, lingual denervation in vivo decreased TGFβ and PD-L1 expression and increased CD8+ T-cell infiltration and the expression of IFNγ and TNFα within tumor. CONCLUSIONS Neural involvement enhanced tumor aggressiveness through upregulating TGFβ signaling and PD-L1 expression in OSCC, while denervation of OSCC inhibited tumor growth, downregulated TGFβ signaling, enhanced activities of CD8+ T cells, and improved the efficacy of anti-PD-1 immunotherapy. This study will encourage further research focusing on denervation as a potential adjuvant therapeutic approach in OSCC. SIGNIFICANCE This study revealed the specific mechanisms for nerve-derived cancer progression and impaired antitumor immunity in OSCC, providing a novel insight into the cancer-neuron-immune network as well as pointing the way for new strategies targeting nerve-cancer cross-talk as a potential adjuvant therapeutic approach for OSCC.
Collapse
Affiliation(s)
- Zhuo-Ying Tao
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Leilei Wang
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Wang-Yong Zhu
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Gao Zhang
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Yu-Xiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| |
Collapse
|
9
|
Lin X, Zhao X, Chen Y, Yang R, Dai Z, Li W, Lin C, Cao W. CXC ligand 13 orchestrates an immunoactive microenvironment and enhances immunotherapy response in head and neck squamous cell carcinoma. Int J Immunopathol Pharmacol 2024; 38:3946320241227312. [PMID: 38252495 PMCID: PMC10807398 DOI: 10.1177/03946320241227312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Objectives: This study aims to systematically explore the role of chemokine CXC ligand 13 (CXCL13) in head and neck squamous cell carcinoma (HNSCC). Methods: The Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases provided the RNA-seq data for cancer and normal tissues, respectively. Gene set enrichment analysis was applied to search the cancer hallmarks associated with CXCL13 expression. TIMER2.0 was the main platform used to investigate the immune cell infiltration related to CXCL13. Immunohistochemistry was applied to explore the relationship between CXCL13 and patients' prognosis and the relationship between CXCL13 and tertiary lymphoid structures (TLSs). Results: The expression of CXCL13 was upregulated in most tumors, including HNSCC. The higher expression of CXCL13 was closely related to the positive prognosis of HNSCC. CXCL13 was mainly expressed in B cells and CD8 + T cells, revealing the relationship between its expression and immune activation in the tumor microenvironment. Furthermore, immunohistochemistry and multiple fluorescence staining analysis of HNSCC samples showed a powerful correlation between CXCL13 expression, TLSs formation, and positive prognosis. Finally, CXCL13 significantly increased the response to cancer immunotherapy. Conclusions: CXCL13 may function as a potential biomarker for predicting prognosis and immunotherapy response and associate with TLSs in HNSCC.
Collapse
Affiliation(s)
- Xiaohu Lin
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xiaomei Zhao
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yiming Chen
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Rong Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhenlin Dai
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Li
- Xuchang Central Hospital, Henan, China
| | - Chengzhong Lin
- Department of Oral Maxillofacial Surgery, Zhongshan Hospital, Fu Dan University, Shanghai, China
| | - Wei Cao
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
10
|
Barlak N, Kusdemir G, Gumus R, Gundogdu B, Sahin MH, Tatar A, Ittmann M, Karatas OF. Overexpression of POFUT1 promotes malignant phenotype and mediates perineural invasion in head and neck squamous cell carcinoma. Cell Biol Int 2023; 47:1950-1963. [PMID: 37641160 DOI: 10.1002/cbin.12085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/09/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive neoplasms, which requires more effective prevention and treatment modalities. Previous studies found that protein O-fucosyltransferase 1 (POFUT1) upregulation promotes carcinogenesis, although the potential roles, underlying molecular mechanisms, and biological implications of POFUT1 in HNSCC were not investigated. In this study, in silico analyses referred POFUT1 as a potential oncogene in HNSCC. Further analysis of tumor and normal tissue samples as well as HNSCC cells with quantitative real-time polymerase chain reaction, Western blot analysis, and immunohistochemistry showed significant overexpression of POFUT1 in HNSCC clinical tumor tissue specimens and cell lines compared to corresponding controls. In vitro investigations revealed that overexpression of POFUT1 promoted phenotypes associated with cancer aggressiveness and its knockdown in HNSCC cells suppressed those phenotypes. Further xenograft experiments demonstrated that POFUT1 is an oncogene in vivo for HNSCC. Immunohistochemical analysis with human clinical samples and cancer cell-dorsal root ganglion ex-vivo coculture model showed that deregulation of POFUT1 is involved in the perineural invasion of HNSCC cells. These results suggest POFUT1 expression as a potential prognostic marker for patients with head and neck cancer and highlight its potential as a target for HNSCC therapy, although more molecular clues are needed to better define the functions of POFUT1 related to HNSCC carcinogenesis.
Collapse
Affiliation(s)
- Neslisah Barlak
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Gulnur Kusdemir
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Rasim Gumus
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Betul Gundogdu
- Department of Medical Pathology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Mehmet Hakan Sahin
- Department of Brain and Nerve Surgery, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Arzu Tatar
- Department of Otorhinolaryngology Diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Michael Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey, VAMC, Houston, Texas, USA
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| |
Collapse
|
11
|
Mol P, Balaya RDA, Dagamajalu S, Babu S, Chandrasekaran P, Raghavan R, Suresh S, Ravishankara N, Raju AH, Nair B, Modi PK, Mahadevan A, Prasad TSK, Raju R. A network map of GDNF/RET signaling pathway in physiological and pathological conditions. J Cell Commun Signal 2023; 17:1089-1095. [PMID: 36715855 PMCID: PMC10409931 DOI: 10.1007/s12079-023-00726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) signals through a multi-component receptor system predominantly consisting of glycosyl-phosphatidylinositol-anchored GDNF family receptor alpha-1 (GFRα1) and the Rearranged during transfection (RET) receptor tyrosine kinase. GDNF/RET signaling is vital to the central and peripheral nervous system, kidney morphogenesis, and spermatogenesis. In addition, the dysregulation of the GDNF/RET signaling has been implicated in the pathogenesis of cancers. Despite the extensive research on GDNF/RET signaling, a molecular network of reactions induced by GDNF reported across the published literature. However, a comprehensive GDNF/RET pathway resource is currently unavailable. We describe an integrated signaling pathway reaction map of GDNF/RET consisting of 1151 molecular reactions. These include information pertaining to 52 molecular association events, 70 enzyme catalysis events, 36 activation/inhibition events, 22 translocation events, 856 gene regulation events, and 115 protein-level expression events induced by GDNF in diverse cell types. We developed a comprehensive GDNF/RET signaling network map based on these molecular reactions. The pathway map was made accessible through WikiPathways database ( https://www.wikipathways.org/index.php/Pathway:WP5143 ). Biocuration and development of gene regulatory network map of GDNF/RET signaling pathway.
Collapse
Affiliation(s)
- Praseeda Mol
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525 India
| | | | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Sreeranjini Babu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Pavithra Chandrasekaran
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Reshma Raghavan
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Sneha Suresh
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Namitha Ravishankara
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Anu Hemalatha Raju
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525 India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
- Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| | | | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018 India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| |
Collapse
|
12
|
Myeloid-derived suppressor cells in head and neck squamous cell carcinoma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 375:33-92. [PMID: 36967154 DOI: 10.1016/bs.ircmb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs), which originated from hematopoietic stem cells, are heterogeneous population of cells that have different differentiation patterns and widely presented in tumor microenvironment. For tumor research, myeloid suppressor cells have received extensive attention since their discovery due to their specific immunosuppressive properties, and the mechanisms of immunosuppression and therapeutic approaches for MDSCs have been investigated in a variety of different types of malignancies. To improve the efficacy of treatment for head and neck squamous cell carcinoma (HNSCC), a disease with a high occurrence, immunotherapy has gradually emerged in after traditional surgery and subsequent radiotherapy and chemotherapy, and has made some progress. In this review, we introduced the mechanisms on the development, differentiation, and elimination of MDSCs and provided a detailed overview of the mechanisms behind the immunosuppressive properties of MDSCs. We summarized the recent researches on MDSCs in HNSCC, especially for targeting-MDSCs therapy and combination with other types of therapy such as immune checkpoint blockade (ICB). Furthermore, we looked at drug delivery patterns and collected the current diverse drug delivery systems for the improvement that contributed to therapy against MDSCs in HNSCC. Most importantly, we made possible outlooks for the future research priorities, which provide a basis for further study on the clinical significance and therapeutic value of MDSCs in HNSCC.
Collapse
|
13
|
Tassone P, Caruso C, White M, Tavares Dos Santos H, Galloway T, Dooley L, Zitsch R, Lester Layfield J, Baker O. The role of matrixmetalloproteinase-2 expression by fibroblasts in perineural invasion by oral cavity squamous cell carcinoma. Oral Oncol 2022; 132:106002. [PMID: 35779484 DOI: 10.1016/j.oraloncology.2022.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVES The mechanisms of perineural invasion (PNI) in oral cavity squamous cell carcinoma are only partially understood, and no studies have specifically investigated the role of perineural fibroblasts in PNI. Here, we identified fibroblasts within the microenvironment of perineural invasion and assessed their expression of matrix metalloproteinase-2 (MMP-2). MATERIALS AND METHODS Tumor specimens from 12 patients with oral cavity squamous cell carcinoma and pathologically-confirmed perineural invasion were stained by immunohistochemistry (IHC) for vimentin (positive control) and MMP-2. Scoring was quantified and compared at nerves involved with PNI and nerves uninvolved with PNI. RESULTS All 12 patients had perineural fibroblasts around involved and uninvolved nerves as marked by vimentin IHC staining. Perineural fibroblasts had detectable MMP-2 expression at areas of perineural invasion in all 12 patients, but no patients had MMP-2 expression by fibroblasts at nerves without PNI. CONCLUSION MMP-2 is expressed by fibroblasts within the microenvironment of perineural invasion, and MMP-2 expression by fibroblasts is a possible mechanism of perineural invasion by oral cavity squamous cell carcinoma. MMP-2 may be an anti-cancer target among oral cavity squamous cell carcinoma patients with PNI.
Collapse
Affiliation(s)
- Patrick Tassone
- Department of Otolaryngology - Head & Neck Surgery, University of Missouri, Columbia, MO, United States.
| | - Carla Caruso
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, United States
| | - Meghan White
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, United States
| | - Harim Tavares Dos Santos
- Department of Otolaryngology - Head & Neck Surgery, University of Missouri, Columbia, MO, United States; Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Tabitha Galloway
- Department of Otolaryngology - Head & Neck Surgery, University of Missouri, Columbia, MO, United States
| | - Laura Dooley
- Department of Otolaryngology - Head & Neck Surgery, University of Missouri, Columbia, MO, United States
| | - Robert Zitsch
- Department of Otolaryngology - Head & Neck Surgery, University of Missouri, Columbia, MO, United States
| | - J Lester Layfield
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, United States
| | - Olga Baker
- Department of Otolaryngology - Head & Neck Surgery, University of Missouri, Columbia, MO, United States; Department of Biochemistry, University of Missouri, Columbia, MO, United States; Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
14
|
Ni B, Li Q, Zhuang C, Huang P, Xia X, Yang L, Ma X, Huang C, Zhao W, Tu L, Shen Y, Zhu C, Zhang Z, Zhao E, Wang M, Cao H. The nerve-tumour regulatory axis GDNF-GFRA1 promotes tumour dormancy, imatinib resistance and local recurrence of gastrointestinal stromal tumours by achieving autophagic flux. Cancer Lett 2022; 535:215639. [PMID: 35288241 DOI: 10.1016/j.canlet.2022.215639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022]
Abstract
Complete surgical resection, accessible therapeutic targets and effective tyrosine kinase inhibitors (TKIs) have not completely cured gastrointestinal stromal tumours (GISTs), with most patients suffering from residual tumours and recurrence. The existence of nerve infiltration in GIST provides a way for tumour cells to escape local resection and systemic targeted therapy, which may challenge the previous understanding of its behaviour patterns and inspire the development of more radical excision and more precise targeted therapy. Moreover, tumour dormancy has emerged as a major cause of drug resistance and tumour relapse. Among these pathways, the nerve-tumour regulatory axis GDNF-GFRA1 is activated in GISTs, assists tumour cells in achieving dormancy and protects them from apoptosis under environmental stress by enhancing autophagic flux. The concrete mechanism is that the GDNF-regulating interaction between GFRA1 and the lysosomal calcium channel MCOLN1 activates Ca2+-dependent TFEB signalling. Activated TFEB transcriptionally regulates intracellular lysosome levels, which could achieve feedback upregulation of cellular autophagy flux during TKI treatment. This dormancy-transition axis fills parts of the mechanistic vacancy before the onset of secondary mutations, and strategies for TKIs combined with targeting GFRA1-dependent autophagy have distinct promise as prospective clinical therapies.
Collapse
Affiliation(s)
- Bo Ni
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Li
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun Zhuang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiqi Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Xia
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linxi Yang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinli Ma
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyi Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Tu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanying Shen
- Department of Pathology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Enhao Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ming Wang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hui Cao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Molecular and Cellular Mechanisms of Perineural Invasion in Oral Squamous Cell Carcinoma: Potential Targets for Therapeutic Intervention. Cancers (Basel) 2021; 13:cancers13236011. [PMID: 34885121 PMCID: PMC8656475 DOI: 10.3390/cancers13236011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Squamous cell carcinoma is the most common type of oral cavity cancer. It can spread along and invade nerves in a process called perineural invasion. Perineural invasion can increase the chances of tumor recurrence and reduce survival in patients with oral cancer. Understanding how oral cancer interacts with nerves to facilitate perineural invasion is an important area of research. Targeting key events that contribute to perineural invasion in oral cavity cancer may reduce tumor recurrence and improve survival. In this review, we describe the impact of perineural invasion in oral cancer and the mechanisms that contribute to perineural invasion. Highlighting the key events of perineural invasion is important for the identification and testing of novel therapies for oral cancer with perineural invasion. Abstract The most common oral cavity cancer is squamous cell carcinoma (SCC), of which perineural invasion (PNI) is a significant prognostic factor associated with decreased survival and an increased rate of locoregional recurrence. In the classical theory of PNI, cancer was believed to invade nerves directly through the path of least resistance in the perineural space; however, more recent evidence suggests that PNI requires reciprocal signaling interactions between tumor cells and nerve components, particularly Schwann cells. Specifically, head and neck SCC can express neurotrophins and neurotrophin receptors that may contribute to cancer migration towards nerves, PNI, and neuritogenesis towards cancer. Through reciprocal signaling, recent studies also suggest that Schwann cells may play an important role in promoting PNI by migrating toward cancer cells, intercalating, and dispersing cancer, and facilitating cancer migration toward nerves. The interactions of neurotrophins with their high affinity receptors is a new area of interest in the development of pharmaceutical therapies for many types of cancer. In this comprehensive review, we discuss diagnosis and treatment of oral cavity SCC, how PNI affects locoregional recurrence and survival, and the impact of adjuvant therapies on tumors with PNI. We also describe the molecular and cellular mechanisms associated with PNI, including the expression of neurotrophins and their receptors, and highlight potential targets for therapeutic intervention for PNI in oral SCC.
Collapse
|
16
|
Qiao Y, Liu C, Zhang X, Zhou Q, Li Y, Xu Y, Gao Z, Xu Y, Kong L, Yang A, Mei M, Ren Y, Wang X, Zhou X. PD-L2 based immune signature confers poor prognosis in HNSCC. Oncoimmunology 2021; 10:1947569. [PMID: 34377590 PMCID: PMC8344752 DOI: 10.1080/2162402x.2021.1947569] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PD-L2 expression is an important predictor of anti-PD-1 therapy efficacy in patients with head and neck squamous cell carcinoma (HNSCC). However, whether the PD-L2-based immune signature can serve as a prognostic biomarker for patients with HNSCC remains unclear. Here, we reported that PD-L2 was positively stained in 62.7% of tumors, which was more than twice as that of PD-L1, and in 61.4% of patients with PD-L1-negative tumors. Survival tree analysis (STA) revealed that PD-L2high was an independent predictor of poor overall survival (OS). Six patterns were generated from STA, demonstrating that patients with PD-L2lowCD3high were associated with an improved median OS of 72 months and prognostic index (PI) of -3.95 (95% CI, -5.14 to -2.76), whereas patients with PD-L2highCD3lowCD8low to a median OS of 10 months and PI of 1.43 (95% CI, 0.56 to 2.30). Analysis of single-cell RNA sequencing showed that PD-L2 expression was associated with IL-6 expression. We confirmed that IL-6 augments PD-L2 expression in HNSCC cell lines. The PD-L2-based immune signature can serve as an effective biomarker for anti-PD-1 therapy. In addition, PD-L2 may serve as a potential immunotherapeutic target, and we propose anti-IL6 therapy in the adjuvant setting for patients with HNSCC with high PD-L2 expression.
Collapse
Affiliation(s)
- Yu Qiao
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Xiaoyue Zhang
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Qianqian Zhou
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Yatian Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yini Xu
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Zhenyue Gao
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yiqi Xu
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingping Kong
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Aifeng Yang
- Department of Second General Surgery, Shuangyashan People's Hospital, Heilongjiang, China
| | - Mei Mei
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yu Ren
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| |
Collapse
|
17
|
Fancelli S, Caliman E, Mazzoni F, Brugia M, Castiglione F, Voltolini L, Pillozzi S, Antonuzzo L. Chasing the Target: New Phenomena of Resistance to Novel Selective RET Inhibitors in Lung Cancer. Updated Evidence and Future Perspectives. Cancers (Basel) 2021; 13:cancers13051091. [PMID: 33806299 PMCID: PMC7961559 DOI: 10.3390/cancers13051091] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary REarranged during Transfection (RET) is an emerging target for several types of cancer, including non-small cell lung cancer (NSCLC). The recent U.S. FDA approval of pralsetinib and selpercatinib raises issues regarding the emergence of secondary mutations and amplifications involved in parallel signaling pathways and receptors, liable for resistance mechanisms. The aim of this review is to explore recent knowledge on RET resistance in NSCLC in pre-clinic and in clinical settings and accordingly, the state-of-the-art in new drugs or combination of drugs development. Abstract The potent, RET-selective tyrosine kinase inhibitors (TKIs) pralsetinib and selpercatinib, are effective against the RET V804L/M gatekeeper mutants, however, adaptive mutations that cause resistance at the solvent front RET G810 residue have been found, pointing to the need for the development of the next-generation of RET-specific TKIs. Also, as seen in EGFR- and ALK-driven NSCLC, the rising of the co-occurring amplifications of KRAS and MET could represent other escaping mechanisms from direct inhibition. In this review, we summarize actual knowledge on RET fusions, focusing on those involved in NSCLC, the results of main clinical trials of approved RET-inhibition drugs, with particular attention on recent published results of selective TKIs, and finally, pre-clinical evidence regarding resistance mechanisms and suggestion on hypothetical and feasible drugs combinations and strategies viable in the near future.
Collapse
Affiliation(s)
- Sara Fancelli
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
| | - Enrico Caliman
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Francesca Mazzoni
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
| | - Marco Brugia
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
| | - Francesca Castiglione
- Pathological Histology and Molecular Diagnostics Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Luca Voltolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Thoraco-Pulmonary Surgery Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Serena Pillozzi
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
| | - Lorenzo Antonuzzo
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Correspondence: ; Tel.: +39-055-7948406
| |
Collapse
|
18
|
Qureshy Z, Johnson DE, Grandis JR. Targeting the JAK/STAT pathway in solid tumors. JOURNAL OF CANCER METASTASIS AND TREATMENT 2020; 6:27. [PMID: 33521321 PMCID: PMC7845926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aberrant activation of signal transducer and activator of transcription (STAT) proteins is associated with the development and progression of solid tumors. However, as transcription factors, these proteins are difficult to target directly. In this review, we summarize the role of targeting Janus kinases (JAKs), upstream activators of STATs, as a strategy for decreasing STAT activation in solid tumors. Preclinical studies in solid tumor cell line models show that JAK inhibitors decrease STAT activation, cell proliferation, and cell survival; in in vivo models, they also inhibit tumor growth. JAK inhibitors, particularly the JAK1/2 inhibitor ruxolitinib, sensitize cell lines and murine models to chemotherapy, immunotherapy, and oncolytic viral therapy. Ten JAK inhibitors have been or are actively being tested in clinical trials as monotherapy or in combination with other agents in patients with solid tumors; two of these inhibitors are already Food and Drug Administration (FDA) approved for the treatment of myeloproliferative disorders and rheumatoid arthritis, making them attractive agents for use in patients with solid tumors as they are known to be well-tolerated. Four JAK inhibitors (two of which are FDA approved for other indications) have exhibited promising anti-cancer effects in preclinical studies; however, clinical studies specifically assessing their activity against the JAK/STAT pathway in solid tumors have not yet been conducted. In summary, JAK inhibition is a viable option for targeting the JAK/STAT pathway in solid tumors and merits further testing in clinical trials.
Collapse
Affiliation(s)
- Zoya Qureshy
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco 94158, USA
| | - Daniel E Johnson
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco 94158, USA
| | - Jennifer R Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco 94158, USA
| |
Collapse
|
19
|
Danbaran GR, Aslani S, Sharafkandi N, Hemmatzadeh M, Hosseinzadeh R, Azizi G, Jadidi-Niaragh F, Babaie F, Mohammadi H. How microRNAs affect the PD-L1 and its synthetic pathway in cancer. Int Immunopharmacol 2020; 84:106594. [PMID: 32416456 DOI: 10.1016/j.intimp.2020.106594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
Abstract
Programmed cell death-ligand 1 (PD-L1) is a glycoprotein that is expressed on the cell surface of both hematopoietic and nonhematopoietic cells. PD-L1 play a role in the immune tolerance and protect self-tissues from immune system attack. Dysfunction of this molecule has been highlighted in the pathogenesis of tumors, autoimmunity, and infectious disorders. MicroRNAs (miRNAs) are endogenous molecules that are classified as small non-coding RNA with approximately 20-22 nucleotides (nt) length. The function of miRNAs is based on complementary interactions with target mRNA via matching completely or incompletely. The result of this function is decay of the target mRNA or preventing mRNA translation. In the past decades, several miRNAs have been discovered which play an important role in the regulation of PD-L1 in various malignancies. In this review, we discuss the effect of miRNAs on PD-L1 expression and consider the effect of miRNAs on the synthetic pathway of PD-L1, especially during cancers.
Collapse
Affiliation(s)
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nadia Sharafkandi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Babaie
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
20
|
Lin C, Ren Z, Yang X, Yang R, Chen Y, Liu Z, Dai Z, Zhang Y, He Y, Zhang C, Wang X, Cao W, Ji T. Nerve growth factor (NGF)-TrkA axis in head and neck squamous cell carcinoma triggers EMT and confers resistance to the EGFR inhibitor erlotinib. Cancer Lett 2020; 472:81-96. [PMID: 31838083 DOI: 10.1016/j.canlet.2019.12.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/08/2023]
Abstract
Understanding the molecular mechanisms regulating tumor dissemination and therapeutic resistance is of central importance for effective cancer therapies. Here, we report that nerve growth factor (NGF) and its receptor TrkA facilitate epithelial-mesenchymal transition (EMT) and EGFR inhibitor resistance via STAT3 activation in head and neck squamous cell carcinoma (HNSCC). Both NGF and TrkA expression were elevated in HNSCC, indicating poor clinical outcomes. NGF was highly expressed in cancer cells and nerves in perineural niche, whereas TrkA expression was higher in cancer cells with perineural invasion. The NGF/TrkA axis could promote HNSCC cell dissemination and trigger EMT via STAT3 activation. Moreover, we discovered that the NGF/TrkA axis conferred resistance to the EGFR inhibitor erlotinib via EMT processes in HNSCC cells. Blocking TrkA signaling markedly reversed EMT and sensitized HNSCC cells to erlotinib in both in vitro and in vivo models. Overall, our results demonstrate novel evidence that the paracrine NGF/TrkA axis favors EMT and confers EGFR-targeted therapeutic resistance in HNSCC.
Collapse
Affiliation(s)
- Chengzhong Lin
- The 2nd Dental Center, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; National Clinical Research Center for Oral Disease, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Zhenhu Ren
- National Clinical Research Center for Oral Disease, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Xi Yang
- National Clinical Research Center for Oral Disease, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Rong Yang
- National Clinical Research Center for Oral Disease, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Yiming Chen
- National Clinical Research Center for Oral Disease, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Zheqi Liu
- National Clinical Research Center for Oral Disease, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Zhenlin Dai
- National Clinical Research Center for Oral Disease, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Yu Zhang
- National Clinical Research Center for Oral Disease, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Youya He
- National Clinical Research Center for Oral Disease, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Chunye Zhang
- National Clinical Research Center for Oral Disease, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xu Wang
- National Clinical Research Center for Oral Disease, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China.
| | - Wei Cao
- National Clinical Research Center for Oral Disease, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China.
| | - Tong Ji
- National Clinical Research Center for Oral Disease, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
21
|
Sudo S, Kajiya H, Okano S, Sasaki M, Katsumata Y, Ohno J, Ikebe T, Hiraki A, Okabe K. Cisplatin-induced programmed cell death ligand-2 expression is associated with metastasis ability in oral squamous cell carcinoma. Cancer Sci 2020; 111:1113-1123. [PMID: 32012401 PMCID: PMC7156784 DOI: 10.1111/cas.14336] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Programmed cell death ligands (PD‐Ls) are expressed in tumor cells where they bind to programmed cell death‐1, an immunocyte co–receptor, resulting in tumor cell evasion from the immune system. Chemotherapeutic drugs have been recently reported to induce the expression of PD‐L, such as PD‐L1, in some cancer cells. However, little is known regarding PD‐L2 expression and its role in oral squamous cell carcinoma (OSCC). In this study, we examined the effect of cisplatin on the expression and regulation of PD‐L2 in OSCC cell lines and analyzed malignant behavior in PD‐L2‐expressing cells using colony, transwell and transformation assays. In addition, we examined PD‐L2 expression in the tumor tissues of OSCC patients using cytology and tissue microarray methods. In OSCC cell lines, cisplatin treatment upregulated PD‐L2 expression, along with that of the drug efflux transporter ABCG2, via signal transducers and activator of transcription (STAT) 1/3 activation. Moreover, PD‐L2‐positive or PD‐L2‐overexpressing cells demonstrated upregulation in both invasion and transformation ability but not in proliferation compared with PD‐L2‐negative or PD‐L2‐silencing cells. PD‐L2 expression was also observed in OSCC cells of cytology samples and tissue from OSCC patients. The intensity of PD‐L2 expression was correlated with more malignant morphological features in the histological appearance and an invasive pattern. Our findings indicate that cisplatin‐upregulated PD‐L2 expression in OSCC via STAT1/3 activation and the expression of PD‐L2 are likely to be associated with malignancy in OSCC. The PD‐L2 expression in cisplatin‐resistant OSCC cells may be a critical factor in prognosis of advanced OSCC patients.
Collapse
Affiliation(s)
- Shunichi Sudo
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.,Department of Oral Maxillofacial Surgery, Fukuoka Dental College, Fukuoka, Japan
| | - Hiroshi Kajiya
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.,Research Center for Regenerative Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Shinji Okano
- Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Mina Sasaki
- Department of Oral Maxillofacial Surgery, Fukuoka Dental College, Fukuoka, Japan
| | - Yuri Katsumata
- Department of Oral Maxillofacial Surgery, Fukuoka Dental College, Fukuoka, Japan
| | - Jun Ohno
- Research Center for Regenerative Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Tetsuro Ikebe
- Department of Oral Maxillofacial Surgery, Fukuoka Dental College, Fukuoka, Japan
| | - Akimitsu Hiraki
- Department of Oral Maxillofacial Surgery, Fukuoka Dental College, Fukuoka, Japan
| | - Koji Okabe
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
22
|
Liang CY, Li ZY, Gan TQ, Fang YY, Gan BL, Chen WJ, Dang YW, Shi K, Feng ZB, Chen G. Downregulation of hsa-microRNA-204-5p and identification of its potential regulatory network in non-small cell lung cancer: RT-qPCR, bioinformatic- and meta-analyses. Respir Res 2020; 21:60. [PMID: 32102656 PMCID: PMC7045575 DOI: 10.1186/s12931-020-1274-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Background Pulmonary malignant neoplasms have a high worldwide morbidity and mortality, so the study of these malignancies using microRNAs (miRNAs) has attracted great interest and enthusiasm. The aim of this study was to determine the clinical effect of hsa-microRNA-204-5p (miR-204-5p) and its underlying molecular mechanisms in non-small cell lung cancer (NSCLC). Methods Expression of miR-204-5p was investigated by real-time quantitative PCR (RT-qPCR). After data mining from public online repositories, several integrative assessment methods, including receiver operating characteristic (ROC) curves, hazard ratios (HR) with 95% confidence intervals (95% CI), and comprehensive meta-analyses, were conducted to explore the expression and clinical utility of miR-204-5p. The potential objects regulated and controlled by miR-204-5p in the course of NSCLC were identified by estimated target prediction and analysis. The regulatory network of miR-204-5p, with its target genes and transcription factors (TFs), was structured from database evidence and literature references. Results The expression of miR-204-5p was downregulated in NSCLC, and the downtrend was related to gender, histological type, vascular invasion, tumor size, clinicopathologic grade and lymph node metastasis (P<0.05). MiR-204-5p was useful in prognosis, but was deemed unsuitable at present as an auxiliary diagnostic or prognostic risk factor for NSCLC due to the lack of statistical significance in meta-analyses and absence of large-scale investigations. Gene enrichment and annotation analyses identified miR-204-5p candidate targets that took part in various genetic activities and biological functions. The predicted TFs, like MAX, MYC, and RUNX1, interfered in regulatory networks involving miR-204-5p and its predicted hub genes, though a modulatory loop or axis of the miRNA-TF-gene that was out of range with shortage in database prediction, experimental proof and literature confirmation. Conclusions The frequently observed decrease in miR-204-5p was helpful for NSCLC diagnosis. The estimated target genes and TFs contributed to the anti-oncogene effects of miR-204-5p.
Collapse
Affiliation(s)
- Chang-Yu Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zu-Yun Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ting-Qing Gan
- Department of Medical Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ye-Ying Fang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Bin-Liang Gan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wen-Jie Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ke Shi
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
23
|
Cao H, He Q, von Eyben R, Bloomstein J, Nambiar DK, Viswanathan V, Aggarwal S, Kwok S, Liang R, Koong AJ, Lewis JS, Kong C, Xiao N, Le QT. The role of Glial cell derived neurotrophic factor in head and neck cancer. PLoS One 2020; 15:e0229311. [PMID: 32084217 PMCID: PMC7034888 DOI: 10.1371/journal.pone.0229311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/03/2020] [Indexed: 11/25/2022] Open
Abstract
Glial cell-derived neurotrophic factor (GDNF) is reported to promote the survival of neurons and salivary gland regeneration after radiation damage. This study investigated the effect of GDNF on cell migration, growth, and response to radiation in preclinical models of head and neck squamous cell carcinoma (HNSCC) and correlated GDNF expression to treatment outcomes in HNSCC patients. Our ultimate goal is to determine whether systemic administration of GDNF at high dose is safe for the management of hyposalivation or xerostomia in HNSCC patients. Three HPV-positive and three HPV-negative cell lines were examined for cell migration, growth, and clonogenic survival in vitro and tumor growth assay in vivo. Immunohistochemical staining of GDNF, its receptors GFRα1 and its co-receptor RET was performed on two independent HNSCC tissue microarrays (TMA) and correlated to treatment outcomes. Results showed that GDNF only enhanced cell migration in two HPV-positive cells at supra-physiologic doses, but not in HPV-negative cells. GDNF did not increase cell survival in the tested cell lines post-irradiation. Likewise, GDNF treatment affected neither tumor growth in vitro nor response to radiation in xenografts in two HPV-positive and two HPV-negative HNSCC models. High stromal expression of GDNF protein was associated with worse overall survival in HPV-negative HNSCC on multivariate analysis in a combined cohort of patients from Stanford University (n = 82) and Washington University (n = 189); however, the association between GDNF gene expression and worse survival was not confirmed in a separate group of HPV-negative HNSCC patients identified from the Cancer Genome Atlas (TCGA) database. Based on these data, we do not believe that GNDF is a safe systemic treatment to prevent or treat xerostomia in HNSCC and a local delivery approach such as intraglandular injection needs to be explored.
Collapse
Affiliation(s)
- Hongbin Cao
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Qian He
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rie von Eyben
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Joshua Bloomstein
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Dhanya K. Nambiar
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sonya Aggarwal
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shirley Kwok
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rachel Liang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Amanda Jeanette Koong
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - James S. Lewis
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Christina Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nan Xiao
- Department of Biomedical Sciences, University of the Pacific Arthur A. Dugoni School of Dentistry, San Francisco, California, United States of America
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
24
|
Cui B, Chen J, Luo M, Wang L, Chen H, Kang Y, Wang J, Zhou X, Feng Y, Zhang P. Protein kinase D3 regulates the expression of the immunosuppressive protein, PD‑L1, through STAT1/STAT3 signaling. Int J Oncol 2020; 56:909-920. [PMID: 32319563 PMCID: PMC7050980 DOI: 10.3892/ijo.2020.4974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is capable of constructing a favorable immune escape environment through interactions of cells with cells and of cells with the environment. Programmed death ligand-1 (PD-L1) is a well-recognized inhibitor of anti-tumor immunity that plays an important role in tumor immune escape. However, the molecular mechanisms regulating PD-L1 expression are not yet fully understood. In this study, to investigate the role of protein kinase D3 (PKD3) in the regulation of PD-L1 expression, the expression and correlation of PKD3 and PD-L1 were first analyzed by the immunostaining of human OSCC tissue sections, cell experiments and TCGA gene expression databases. The expression levels of PKD3 and PD-L1 were found to be significantly higher in OSCC cells than in normal tissues or cells. In addition, the expression levels of PKD3 and PD-L1 were found to be significantly positively correlated. Subsequently, it was found that the levsel of PD-L1 expression decreased following the silencing of PKD3 and that the ability of interferon (IFN)-γ to induce PD-L1 expression was also decreased in OSCC. The opposite phenomenon occurred following the overexpression of PKD3. It was also found that the phosphorylation of signal transducer and activator of transcription (STAT)1/STAT3 was reduced by the knockdown of PKD3 in OSCC. Moreover, the expression level of PD-L1 was decreased after the use of siRNA to knockdown STAT1 or STAT3. On the whole, the findings of this study confirm that PKD3 regulates the expression of PD-L1 induced by IFN-γ by regulating the phosphorylation of STAT1/STAT3. These findings broaden the understanding of the biological function of PKD3, suggesting that PKD is a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Bomiao Cui
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Min Luo
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Liwei Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hongli Chen
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yingzhu Kang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jingnan Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yun Feng
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
25
|
Ryan N, Anderson K, Volpedo G, Hamza O, Varikuti S, Satoskar AR, Oghumu S. STAT1 inhibits T-cell exhaustion and myeloid derived suppressor cell accumulation to promote antitumor immune responses in head and neck squamous cell carcinoma. Int J Cancer 2019; 146:1717-1729. [PMID: 31709529 DOI: 10.1002/ijc.32781] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/21/2019] [Accepted: 10/31/2019] [Indexed: 12/16/2022]
Abstract
Cancers of the oral cavity remain the sixth most diagnosed cancer worldwide, with high rates of recurrence and mortality. We determined the role of STAT1 during oral carcinogenesis using two orthotopic models in mice genetically deficient for Stat1. Metastatic (LY2) and nonmetastatic (B4B8) head and neck squamous cell carcinoma (HNSCC) cell lines were injected into the oral cavity of Stat1 deficient (Stat1-/- ) and Stat1 competent (Stat1+/+ ) mice. Stat1-/- mice displayed increased tumor growth and metastasis compared to Stat1+/+ mice. Mechanistically, Stat1-/- mice displayed impaired CD4+ and CD8+ T-cell expansion compared to Stat1+/+ mice. This was associated with enhanced T-cell exhaustion, and severely attenuated T-cell antitumor effector responses including reduced expression of IFN-γ and perforin at the tumor site. Interestingly, tumor necrosis factor (TNF)-α production by T cells in tumor-bearing mice was suppressed by Stat1 deficiency. This deficiency in T-cell expansion and functional responses in mice was linked to PD-1 and CD69 overexpression in T cells of Stat1-/- mice. In contrast, we observed increased accumulation of CD11b+ Ly6G+ myeloid derived suppressor cells in tumors, draining lymph nodes, spleens and bone marrow of tumor-bearing Stat1-/- mice, resulting in a protumorigenic microenvironment. Our data demonstrates that STAT1 is an essential mediator of the antitumor response through inhibition of myeloid derived suppressor cell accumulation and promotion of T-cell mediated immune responses in murine head and neck squamous cell carcinoma. Selective induction of STAT1 phosphorylation in HNSCC patients could potentially improve oral tumor outcomes and response to therapy.
Collapse
Affiliation(s)
- Nathan Ryan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Kelvin Anderson
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Greta Volpedo
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH.,Department of Microbiology, The Ohio State University, Columbus, OH
| | - Omar Hamza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Sanjay Varikuti
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Abhay R Satoskar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH.,Department of Microbiology, The Ohio State University, Columbus, OH
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
26
|
Intracellular Neuroprotective Mechanisms in Neuron-Glial Networks Mediated by Glial Cell Line-Derived Neurotrophic Factor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1036907. [PMID: 31827666 PMCID: PMC6885812 DOI: 10.1155/2019/1036907] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/19/2019] [Indexed: 12/28/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has a pronounced neuroprotective effect in various nervous system pathologies, including ischaemic brain damage and neurodegenerative diseases. In this work, we studied the effect of GDNF on the ultrastructure and functional activity of neuron-glial networks during acute hypoxic exposure, a key damaging factor in numerous brain pathologies. We analysed the molecular mechanisms most likely involved in the positive effects of GDNF. Hypoxia modelling was performed on day 14 of culturing primary hippocampal cells obtained from mouse embryos (E18). GDNF (1 ng/ml) was added to the culture medium 20 min before oxygen deprivation. Acute hypoxia-induced irreversible changes in the ultrastructure of neurons and astrocytes led to the loss of functional Сa2+ activity and neural network disruption. Destructive changes in the mitochondrial apparatus and its functional activity characterized by an increase in the basal oxygen consumption rate and respiratory chain complex II activity during decreased stimulated respiration intensity were observed 24 hours after hypoxic injury. At a concentration of 1 ng/ml, GDNF maintained the functional metabolic network activity in primary hippocampal cultures and preserved the structure of the synaptic apparatus and number of mature chemical synapses, confirming its neuroprotective effect. GDNF maintained the normal structure of mitochondria in neuronal outgrowth but not in the soma. Analysis of the possible GDNF mechanism revealed that RET kinase, a component of the receptor complex, and the PI3K/Akt pathway are crucial for the neuroprotective effect of GDNF. The current study also revealed the role of GDNF in the regulation of HIF-1α transcription factor expression under hypoxic conditions.
Collapse
|
27
|
Abstract
Head and neck cancers are among the 10 most common cancers in the world and include cancers of the oral cavity, hypopharynx, larynx, nasopharynx, and oropharynx. At least 90% of head and neck cancers are squamous cell carcinomas (SCCs). This summary discusses the integration of clinical and mechanistic studies in achieving diagnostic and therapeutic precision in the context of oral cancer. Specifically, based on recent mechanistic studies, a subsequent study reevaluated current diagnostic criteria of perineural invasion in patients with oral cavity SCC showing that overall survival could be associated with nerve-tumor distance; validation of the findings of this study from a small group of patients could lead to a personalized approach to treatment selection in patients with oral cavity SCC. Moreover, delineation of key pathways in SCC revealed novel treatment targets that can be exploited to develop personalized treatment strategies to achieve long-term remission.
Collapse
Affiliation(s)
- N J D'Silva
- Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Pathology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - J S Gutkind
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
28
|
Mo RJ, Han ZD, Liang YK, Ye JH, Wu SL, Lin SX, Zhang YQ, Song SD, Jiang FN, Zhong WD, Wu CL. Expression of PD-L1 in tumor-associated nerves correlates with reduced CD8 + tumor-associated lymphocytes and poor prognosis in prostate cancer. Int J Cancer 2019; 144:3099-3110. [PMID: 30537104 DOI: 10.1002/ijc.32061] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022]
Abstract
To investigate immune profile consisting of stromal PD-L1 expression, inhibitory or non-T-cell inflamed tumor microenvironment that may predict response to anti-PD-L1/PD-1 immunotherapy in prostate cancer, we validated the specificity of a PD-L1 monoclonal antibody (E1L3N) and identified PD-L1 specific expression in prostatic stromal nerve cells. PD-L1 expression was analyzed in 73 primary prostate cancers and 7 castration-resistant prostate cancers (CRPC) by immunohistochemistry (IHC) and resulting data from primary prostate cancers were correlated with tumor-associated lymphocytes (TALs), clinicopathological characteristics and clinical outcome. PD-L1 was expressed in the tumor cells in only one primary prostate cancer case and none of the CRPC. However, PD-L1 was frequently observed in the nerve branches in the tumor-associated stroma (69 of 73 cases, 94.5%), supported by colocalization with axonal marker PGP9.5. FoxP3-, CD3- and CD8-positive T lymphocytes were observed in 74.6% (47/63), 98.4% (62/63) and 100% (61/61) of the cases, respectively. The density of PD-L1+ tumor-associated nerves (TANs) was inversely correlated with that of CD8+ TALs. Higher density of PD-L1+ TANs was significantly associated with biochemical recurrence (BCR) in Kaplan-Meier survival analysis (p = 0.016). In both univariate and multivariate Cox analysis, the density of PD-L1+ TANs was independently prognostic of BCR. In conclusion, PD-L1 expression is rare in prostate tumor cells but prevalent in TANs and negatively correlated with CD8+ TALs. Neuro-immunological interaction may be a contribution to immune-suppressive microenvironment. Combinatorial treatment regimen designs to neural PD-L1 and TALs should be warranted in future clinical application of anti-PD-L1/PD-1 immunotherapy in prostate cancer.
Collapse
Affiliation(s)
- Ru-Jun Mo
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Urology and Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhao-Dong Han
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Ying-Ke Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Urology and Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jian-Heng Ye
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Urology and Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shu-Lin Wu
- Department of Urology and Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sharron X Lin
- Department of Urology and Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yan-Qiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sheng-Da Song
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fu-Neng Jiang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wei-De Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Urology and Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Urology, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China.,Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chin-Lee Wu
- Department of Urology and Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Mulligan LM. GDNF and the RET Receptor in Cancer: New Insights and Therapeutic Potential. Front Physiol 2019; 9:1873. [PMID: 30666215 PMCID: PMC6330338 DOI: 10.3389/fphys.2018.01873] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
The Glial cell line-derived neurotrophic Family Ligands (GFL) are soluble neurotrophic factors that are required for development of multiple human tissues, but which are also important contributors to human cancers. GFL signaling occurs through the transmembrane RET receptor tyrosine kinase, a well-characterized oncogene. GFL-independent RET activation, through rearrangement or point mutations occurs in thyroid and lung cancers. However, GFL-mediated activation of wildtype RET is an increasingly recognized mechanism promoting tumor growth and dissemination of a much broader group of cancers. RET and GFL expression have been implicated in metastasis or invasion in diverse human cancers including breast, pancreatic, and prostate tumors, where they are linked to poorer patient prognosis. In addition to directly inducing tumor growth in these diseases, GFL-RET signaling promotes changes in the tumor microenvironment that alter the surrounding stroma and cellular composition to enhance tumor invasion and metastasis. As such, GFL RET signaling is an important target for novel therapeutic approaches to limit tumor growth and spread and improve disease outcomes.
Collapse
Affiliation(s)
- Lois M. Mulligan
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, Cancer Research Institute, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
30
|
A gene expression profile associated with perineural invasion identifies a subset of HNSCC at risk of post-surgical recurrence. Oral Oncol 2018; 86:53-60. [PMID: 30409320 DOI: 10.1016/j.oraloncology.2018.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Perineural invasion (PNI) is a common histopathological finding in head and neck squamous cell carcinoma (HNSCC). We aimed to explore the molecular mechanisms involved in PNI and the role of PNI as an aggressive pathological feature. MATERIALS AND METHODS We used data from The Cancer Genome Atlas (TCGA) to relate the histological presentation of 528 HNSCC tumours to clinical, whole genome expression and proteomic data. RESULTS We identified a specific gene expression profile highly enriched in genes related to muscle differentiation/function and associated with PNI in HNSCC. We explored the clinical significance of this profile in three groups of HNSCC tumours stratified according to their low, intermediate or high risk of post-surgical recurrence. In the "low-risk" group, defined as tumours indicated for surgery without adjuvant radiotherapy (n = 51), the PNI gene expression profile identified a subset of HNSCC with a higher rate of tumour recurrence, decreased Disease Free Survival (DFS) and Overall Survival (OS) (p < 0.0001 and p = 0.0064, respectively). Comparable results were observed in "intermediate risk" tumours (n = 112), but not in "high risk" tumours (n = 147), whose prognosis was driven by the presence of lymph node extracapsular spread. Finally, we found that tumours with histological PNI had increased activation levels of the Akt/PKB and mTOR (mammalian Target Of Rapamycin) kinases. CONCLUSION PNI is characterised by a specific gene expression profile and distinct biological characteristics. Analysing the PNI gene expression profile holds potential for therapeutic stratification of HNSCC and identification of a subset of tumours with a higher risk of recurrence.
Collapse
|