1
|
Fox A, Leonard GD, Adzibolosu N, Wong T, Tedja R, Sharma S, Gogoi R, Morris R, Mor G, Fehl C, Alvero AB. Adipose microenvironment promotes hypersialylation of ovarian cancer cells. Front Oncol 2024; 14:1432333. [PMID: 39104719 PMCID: PMC11299042 DOI: 10.3389/fonc.2024.1432333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Ovarian and other peritoneal cancers have a strong tendency to metastasize into the surrounding adipose tissue. This study describes an effect of the adipose microenvironment on upregulation of sialic acid-containing glycans in ovarian cancer (OC). Heterogeneous populations of glycosylated OC tumors converged to a highly sialylated cell state that regulates tumorigenesis in an immune-dependent manner. Methods We modeled the adipose microenvironment by conditioning growth media with human patient-derived adipose tissue. OC cell lines grown in the presence vs. absence of adipose conditioned media (ACM) were characterized by transcriptomics, western blotting, and chemical biology glycan labeling methods. Fluorescence-activated cell sorting was used to separate adipose-driven upregulation of hypersialylated ("SNA-high") vs. hyposialylated ("SNA-low") OC subpopulations. The two subpopulations were characterized by further transcriptomic and quantitative polymerase chain reaction analyses, then injected into a syngeneic mouse model. Immune system involvement was implicated using wild type and athymic nude mice with a primary endpoint of overall survival. Results Adipose conditioning resulted in upregulation of sialyltransferases ST3GAL1, ST6GAL1, ST6GALNAC3, and ST8Sia1. In culture, OC cells displayed two distinct sialylated subpopulations that were stable for up to 9 passages, suggesting inherent heterogeneity in sialylation that is maintained throughout cell division and media changes. OC tumors that implanted in the omental adipose tissue exclusively reprogrammed to the highly sialylated subpopulation. In wild type C57BL/6 mice, only the hypersialylated SNA-high subpopulation implanted in the adipose, whereas the hyposialylated SNA-low subpopulation failed to be tumorigenic (p=0.023, n=5). In the single case where SNA-low established a tumor, post-mortem analysis revealed reprogramming of the tumor to the SNA-high state in vivo. In athymic nude mice, both subpopulations rapidly formed tumors, implicating a role of the adaptive immune system. Conclusions These findings suggest a model of glycan-dependent tumor evolution wherein the adipose microenvironment reprograms OC to a tumorigenic state that resists the adaptive immune system. Mechanistically, adipose factors upregulate sialyltransferases. To our knowledge, this is the first demonstration of the effect of adipose microenvironment on OC tumor sialylation. Our results set the stage for translational applications targeting sialic acid pathways in OC and other peritoneal cancer tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Alexandra Fox
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Garry D. Leonard
- Department of Chemistry, Wayne State University, Detroit, MI, United States
| | - Nicholas Adzibolosu
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Terrence Wong
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Roslyn Tedja
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Sapna Sharma
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Radhika Gogoi
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Robert Morris
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Gil Mor
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| | - Ayesha B. Alvero
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Detroit, MI, United States
| |
Collapse
|
2
|
Fox A, Leonard GD, Adzibolosu N, Wong T, Tedja R, Sharma S, Gogoi R, Morris R, Mor G, Fehl C, Alvero AB. Adipose microenvironment promotes hypersialylation of ovarian cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593990. [PMID: 38798490 PMCID: PMC11118282 DOI: 10.1101/2024.05.13.593990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Sialylation, the addition of negatively charged sialic acid sugars to terminal ends of glycans, is upregulated in most cancers. Hypersialylation supports multiple pro-tumor mechanisms such as enhanced migration and invasion, resistance to apoptosis and immune evasion. A current gap in knowledge is the lack of understanding on how the tumor microenvironment regulates cancer cell sialylation. The adipose niche is a main component of most peritoneal cancers' microenvironment. This includes ovarian cancer (OC), which causes most deaths from all gynecologic cancers. In this report, we demonstrate that the adipose microenvironment is a critical regulator of OC cell sialylation. In vitro adipose conditioning led to an increase in both ⍺2,3- and ⍺2,6-linked cell surface sialic acids in both human and mouse models of OC. Adipose-induced sialylation reprogramming was also observed in vivo from intra-peritoneal OC tumors seeded in the adipose-rich omentum. Mechanistically, we observed upregulation of at least three sialyltransferases, ST3GAL1, ST6GAL1 and ST3GALNAC3. Hypersialylated OC cells consistently formed intra-peritoneal tumors in both immune-competent mice and immune-compromised athymic nude mice. In contrast, hyposiaylated OC cells persistently formed tumors only in athymic nude mice demonstrating that sialylation impacts OC tumor formation in an immune dependent manner. To our knowledge, this is the first demonstration of the effect of adipose microenvironment on OC tumor sialylation. Our results set the stage for translational applications targeting sialic acid pathways in OC and other peritoneal cancers.
Collapse
|
3
|
Alvero AB, Fox A, Madina BR, Krady MM, Gogoi R, Chehade H, Nakaar V, Almassian B, Yarovinsky TO, Rutherford T, Mor G. Immune Modulation of Innate and Adaptive Responses Restores Immune Surveillance and Establishes Antitumor Immunologic Memory. Cancer Immunol Res 2024; 12:261-274. [PMID: 38078853 PMCID: PMC11027955 DOI: 10.1158/2326-6066.cir-23-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/02/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023]
Abstract
Current immunotherapies have proven effective in strengthening antitumor immune responses, but constant opposing signals from tumor cells and the surrounding microenvironment eventually lead to immune escape. We hypothesized that in situ release of antigens and regulation of both the innate and adaptive arms of the immune system would provide a robust and long-term antitumor effect by creating immunologic memory against tumors. To achieve this, we developed CARG-2020, a genetically modified virus-like vesicle (VLV) that is a self-amplifying RNA with oncolytic capacity and encodes immune regulatory genes. CARG-2020 carries three immune modulators: (i) the pleiotropic antitumor cytokine IL12, in which the subunits (p35 and p40) are tethered together; (ii) the extracellular domain (ECD) of the protumor IL17RA, which serves as a dominant-negative antagonist; and (iii) a shRNA targeting PD-L1. Using a mouse model of ovarian cancer, we demonstrated the oncolytic effect and immune-modulatory capacities of CARG-2020. By enhancing IL12 and blocking IL17 and PD-L1, CARG-2020 successfully reactivated immune surveillance by promoting M1, instead of M2, macrophage differentiation, inhibiting MDSC expansion and establishing a potent CD8+ T cell-mediated antitumoral response. Furthermore, we demonstrated that this therapeutic approach provided tumor-specific and long-term protection against the establishment of new tumors. Our results provide a rationale for the further development of this platform as a therapeutic modality for ovarian cancer patients to enhance antitumor responses and prevent a recurrence.
Collapse
Affiliation(s)
- Ayesha B. Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | | | | | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | | | | | | | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| |
Collapse
|
4
|
Alvero AB, Fox A, Madina B, Krady M, Gogoi R, Chehade H, Nakaar V, Almassian B, Yarovinsky T, Rutherford T, Mor G. Immune modulation of innate and adaptive responses restores immune surveillance and establishes anti-tumor immunological memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559828. [PMID: 37808682 PMCID: PMC10557730 DOI: 10.1101/2023.09.27.559828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Current immunotherapies have proven effective in strengthening anti-tumor immune responses but constant opposing signals from tumor cells and surrounding microenvironment eventually lead to immune escape. We hypothesize that in situ release of antigens and regulation of both the innate and adaptive arms of the immune system will provide a robust and long-term anti-tumor effect by creating immunological memory against the tumor. To achieve this, we developed CARG-2020, a virus-like-vesicle (VLV). It is a genetically modified and self-amplifying RNA with oncolytic capacity and encodes immune regulatory genes. CARG-2020 carries three transgenes: 1 ) the pleiotropic antitumor cytokine IL-12 in which the subunits (p35 and p40) are tethered together; 2) the extracellular domain (ECD) of the pro- tumor IL-17RA, which can serve as a dominant negative antagonist; and 3) shRNA for PD-L1. Using a mouse model of ovarian cancer, we demonstrate the oncolytic effect and immune modulatory capacities of CARG-2020. By enhancing IL-12 and blocking IL-17 and PD-L1, CARG-2020 successfully reactivates immune surveillance by promoting M1 instead of M2 macrophage differentiation, inhibiting MDSC expansion, and establishing a potent CD8+ T cell mediated anti-tumoral response. Furthermore, we demonstrate that this therapeutic approach provides tumor-specific and long-term protection preventing the establishment of new tumors. Our results provide rationale for the further development of this platform as a therapeutic modality for ovarian cancer patients to enhance the anti-tumor response and to prevent recurrence.
Collapse
Affiliation(s)
- Ayesha B. Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | | | | | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | | | | | | | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| |
Collapse
|
5
|
Akilov OE. What Does the Future Hold for Biomarkers of Response to Extracorporeal Photopheresis for Mycosis Fungoides and Sézary Syndrome? Cells 2023; 12:2321. [PMID: 37759543 PMCID: PMC10527589 DOI: 10.3390/cells12182321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Extracorporeal photopheresis (ECP) is an FDA-approved immunotherapy for cutaneous T-cell lymphoma, which can provide a complete response in some patients. However, it is still being determined who will respond well, and predictive biomarkers are urgently needed to target patients for timely treatment and to monitor their response over time. The aim of this review is to analyze the current state of the diagnostic, prognostic, and disease state-monitoring biomarkers of ECP, and outline the future direction of the ECP biomarker discovery. Specifically, we focus on biomarkers of response to ECP in mycosis fungoides and Sézary syndrome. The review summarizes the current knowledge of ECP biomarkers, including their limitations and potential applications, and identifies key challenges in ECP biomarker discovery. In addition, we discuss emerging technologies that could revolutionize ECP biomarker discovery and accelerate the translation of biomarker research into clinical practice. This review will interest researchers and clinicians seeking to optimize ECP therapy for cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Oleg E Akilov
- Cutaneous Lymphoma Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Asensi Cantó P, Sanz Caballer J, Solves Alcaína P, de la Rubia Comos J, Gómez Seguí I. Extracorporeal Photopheresis in Graft-versus-Host Disease. Transplant Cell Ther 2023; 29:556-566. [PMID: 37419324 DOI: 10.1016/j.jtct.2023.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Graft-versus-host disease (GVHD) is a major cause of mortality and morbidity following allogeneic hematopoietic stem cell transplantation. Extracorporeal photopheresis (ECP), which exposes mononuclear cells to ultraviolet A irradiation in the presence of a photosensitizing agent, has shown efficacy in the treatment of GVHD. Recent observations in molecular and cell biology have revealed the mechanisms by which ECP can reverse GVHD, including lymphocyte apoptosis, differentiation of dendritic cells from circulating monocytes, and modification of the cytokine profile and T cell subpopulations. Technical innovations have made ECP accessible to a broader range of patients; however, logistical constraints may limit its use. In this review, we scrutinize the development of ECP from its origins to recent insights into the biology underlying ECP efficacy. We also review practical aspects that may complicate successful ECP treatment. Finally, we analyze how these theoretical concepts translate into clinical practice, summarizing the published experiences of leading research groups worldwide.
Collapse
Affiliation(s)
- Pedro Asensi Cantó
- Haematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain.
| | - Jaime Sanz Caballer
- Haematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Pilar Solves Alcaína
- Haematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain; CIBERONC, Instituto Carlos III, Madrid, Spain
| | - Javier de la Rubia Comos
- Haematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain; School of Medicine and Dentistry, Catholic University of Valencia, Valencia, Spain
| | - Inés Gómez Seguí
- Haematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain; CIBERONC, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Chehade H, Purandare N, Fox A, Adzibolosu N, Jayee S, Singh A, Tedja R, Gogoi R, Aras S, Grossman LI, Mor G, Alvero AB. MNRR1 is a driver of ovarian cancer progression. Transl Oncol 2023; 29:101623. [PMID: 36641875 PMCID: PMC9860385 DOI: 10.1016/j.tranon.2023.101623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Cancer progression requires the acquisition of mechanisms that support proliferative potential and metastatic capacity. MNRR1 (also CHCHD2, PARK22, AAG10) is a bi-organellar protein that in the mitochondria can bind to Bcl-xL to enhance its anti-apoptotic function, or to respiratory chain complex IV (COX IV) to increase mitochondrial respiration. In the nucleus, it can act as a transcription factor and promote the expression of genes involved in mitochondrial biogenesis, migration, and cellular stress response. Given that MNRR1 can regulate both apoptosis and mitochondrial respiration, as well as migration, we hypothesize that it can modulate metastatic spread. Using ovarian cancer models, we show heterogeneous protein expression levels of MNRR1 across samples tested and cell-dependent control of its stability and binding partners. In addition to its anti-apoptotic and bioenergetic functions, MNRR1 is both necessary and sufficient for a focal adhesion and ECM repertoire that can support spheroid formation. Its ectopic expression is sufficient to induce the adhesive glycoprotein THBS4 and the type 1 collagen, COL1A1. Conversely, its deletion leads to significant downregulation of these genes. Furthermore, loss of MNRR1 leads to delay in tumor growth, curtailed carcinomatosis, and improved survival in a syngeneic ovarian cancer mouse model. These results suggest targeting MNRR1 may improve survival in ovarian cancer patients.
Collapse
Affiliation(s)
- Hussein Chehade
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Neeraja Purandare
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Nicholas Adzibolosu
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Shawn Jayee
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Aryan Singh
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Roslyn Tedja
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Ayesha B. Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Corresponding author at: 275 E. Hancock St., Detroit, MI, 48201, United States.
| |
Collapse
|
8
|
Chu PY, Tzeng YDT, Tsui KH, Chu CY, Li CJ. Downregulation of ATP binding cassette subfamily a member 10 acts as a prognostic factor associated with immune infiltration in breast cancer. Aging (Albany NY) 2022; 14:2252-2267. [PMID: 35247251 PMCID: PMC8954971 DOI: 10.18632/aging.203933] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
The human ATP binding cassette (ABC) family of transporter proteins plays an important role in the maintenance of homeostasis in vivo. The aim of this study is to evaluate the potential diagnostic, prognostic, and therapeutic value of the ABCA10 gene in BRCA. We found that ABCA10 expression was downregulated in different subgroups of breast cancer and strongly correlated with pathological stage in BRCA patients. Low expression of ABCA10 was associated with BRCA patients showing shorter overall survival (OS). ABCA10 expression may be regulated by promoter methylation, copy number variation (CNV) and kinase, and is associated with immune infiltration. Our study also demonstrated the potential role of ABCA10 modifications in tumor microenvironment (TME) cellular infiltration. Nevertheless, the regulatory mechanism remains unknown and immunotherapy is marginal in BRCA. We demonstrate the expression of different ABCA10 modulators in breast cancer associated with genetic variants, deletions, tumor mutation burden (TMB) and TME. Mutations in ABCA10 are positively associated with different immune cells in six different immune databases and play an important role in immune cell infiltration in breast cancer. Overall, this study provides evidence that ABCA10 could become the potential targets for precision treatment and new biomarkers in the prognosis of breast cancer.
Collapse
Affiliation(s)
- Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Ching-Yu Chu
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
9
|
FOXD1 is a prognostic biomarker and correlated with macrophages infiltration in head and neck squamous cell carcinoma. Biosci Rep 2021; 41:228730. [PMID: 34028536 PMCID: PMC8255535 DOI: 10.1042/bsr20202929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Forkhead Box D1 (FOXD1) is differentially expressed in various tumors. However, its role and correlation with immune cell infiltration remains uncertain in head and neck squamous cell carcinoma (HNSC). Methods: FOXD1 expression was analyzed in The Cancer Genome Atlas (TCGA) pan-cancer data. The clinical prognosis influence of FOXD1 was evaluated by clinical survival data of TCGA. Enrichment analysis of FOXD1 was performed using R packages ‘clusterProfiler’. We downloaded the immune cell infiltration score of TCGA samples from published articles, and analyzed the correlation between immune cell infiltration level and FOXD1 expression. Results: FOXD1 was highly expressed and associated with poorer overall survival (OS, P<0.0001), disease-specific survival (DSS, P=0.00011), and progression-free interval (PFI, P<0.0001) in HNSC and some other tumors. In addition, FOXD1 expression was significantly correlated with infiltration of immune cells. Tumor-associated macrophages (TAMs) infiltration increased in tissues with high FOXD1 expression in HNSC. Immunosuppressive genes such as PD-L1, IL-10, TGFB1, and TGFBR1 were significantly positively correlated with FOXD1. Conclusions: Our study suggests FOXD1 to be an oncogene and act as an indicator of poor prognosis in HNSC. FOXD1 might contribute to the TAM infiltration in HNSC. High FOXD1 may be associated with tumor immunosuppression status.
Collapse
|
10
|
A bioinformatic analysis: the overexpression and clinical significance of FCGBP in ovarian cancer. Aging (Albany NY) 2021. [DOI: 10.18632/aging.202601
expr 933527968 + 963567625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
11
|
Wang K, Guan C, Shang X, Ying X, Mei S, Zhu H, Xia L, Chai Z. A bioinformatic analysis: the overexpression and clinical significance of FCGBP in ovarian cancer. Aging (Albany NY) 2021; 13. [PMID: 33686968 PMCID: PMC7993703 DOI: 10.18632/aging.202601&set/a 838361825+993748247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Fc fragment of IgG-binding protein (FCGBP) is differentially expressed in various tumors. However, the correlation between FCGBP and immune cell infiltration in ovarian cancer remains unclear. FCGBP expression was analyzed using The Cancer Genome Atlas (TCGA) pan-cancer data, and the ovarian cancer expression profile was analyzed using the Gene Expression Omnibus database. The clinical prognostic value of FCGBP was evaluated using clinical survival data from TCGA. Enrichment analysis of FCGBP was performed using the R package clusterProfiler. Based on known immune cell infiltration scores for samples found in TCGA, we analyzed the association between immune cell infiltration level and FCGBP expression. FCGBP was highly expressed and associated with poorer overall survival (p = 0.00051) and disease-specific survival (p = 0.0012) in ovarian cancer and other tumors. Additionally, high FCGBP expression correlated significantly with immune-related gene sets, including those involved in chemokine signaling pathways and innate and adaptive immunity. Further analysis showed that M2 macrophage infiltration increased and M1 macrophage infiltration decreased in tissues with high FCGBP expression. Our study suggests that FCGBP contributes to M2 macrophage polarization by acting as an oncogene in ovarian cancer. FCGBP may represent a clinically helpful biomarker for predicting overall survival of ovarian cancer patients.
Collapse
Affiliation(s)
- Kai Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People's Republic of China.,Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People's Republic of China
| | - Chenan Guan
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People's Republic of China.,Department of Kidney Internal Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People's Republic of China
| | - Xianwen Shang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People's Republic of China.,Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People's Republic of China
| | - Xiang Ying
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People's Republic of China.,Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People's Republic of China
| | - Shuangshuang Mei
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People's Republic of China.,Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People's Republic of China
| | - Hanxiao Zhu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People's Republic of China.,Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People's Republic of China
| | - Liang Xia
- Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China
| | - Zeying Chai
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People's Republic of China.,Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People's Republic of China
| |
Collapse
|
12
|
Wang K, Guan C, Shang X, Ying X, Mei S, Zhu H, Xia L, Chai Z. A bioinformatic analysis: the overexpression and clinical significance of FCGBP in ovarian cancer. Aging (Albany NY) 2021; 13:7416-7429. [PMID: 33686968 PMCID: PMC7993703 DOI: 10.18632/aging.202601] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/29/2020] [Indexed: 04/16/2023]
Abstract
Fc fragment of IgG-binding protein (FCGBP) is differentially expressed in various tumors. However, the correlation between FCGBP and immune cell infiltration in ovarian cancer remains unclear. FCGBP expression was analyzed using The Cancer Genome Atlas (TCGA) pan-cancer data, and the ovarian cancer expression profile was analyzed using the Gene Expression Omnibus database. The clinical prognostic value of FCGBP was evaluated using clinical survival data from TCGA. Enrichment analysis of FCGBP was performed using the R package clusterProfiler. Based on known immune cell infiltration scores for samples found in TCGA, we analyzed the association between immune cell infiltration level and FCGBP expression. FCGBP was highly expressed and associated with poorer overall survival (p = 0.00051) and disease-specific survival (p = 0.0012) in ovarian cancer and other tumors. Additionally, high FCGBP expression correlated significantly with immune-related gene sets, including those involved in chemokine signaling pathways and innate and adaptive immunity. Further analysis showed that M2 macrophage infiltration increased and M1 macrophage infiltration decreased in tissues with high FCGBP expression. Our study suggests that FCGBP contributes to M2 macrophage polarization by acting as an oncogene in ovarian cancer. FCGBP may represent a clinically helpful biomarker for predicting overall survival of ovarian cancer patients.
Collapse
Affiliation(s)
- Kai Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People’s Republic of China
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People’s Republic of China
| | - Chenan Guan
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People’s Republic of China
- Department of Kidney Internal Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People’s Republic of China
| | - Xianwen Shang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People’s Republic of China
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People’s Republic of China
| | - Xiang Ying
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People’s Republic of China
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People’s Republic of China
| | - Shuangshuang Mei
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People’s Republic of China
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People’s Republic of China
| | - Hanxiao Zhu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People’s Republic of China
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People’s Republic of China
| | - Liang Xia
- Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou 310022, People’s Republic of China
| | - Zeying Chai
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People’s Republic of China
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, People’s Republic of China
| |
Collapse
|
13
|
Zhang X, He T, Li Y, Chen L, Liu H, Wu Y, Guo H. Dendritic Cell Vaccines in Ovarian Cancer. Front Immunol 2021; 11:613773. [PMID: 33584699 PMCID: PMC7874064 DOI: 10.3389/fimmu.2020.613773] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer (OC) is one of the most lethal malignant gynecologic tumors, characterized by an uncertain presentation and poor outcomes. With or without neoadjuvant chemotherapy, surgery followed by platinum-based chemotherapy and maintenance therapy are the basis for the treatment of ovarian cancer patients, but the outcome is still highly restricted by their advanced stage when diagnosed and high recurrence rate after chemotherapy. To enhance the anti-tumor effect and postpone recurrence, anti-VEGF agents and PARP inhibitors are suggested as maintenance therapy, but the population that can benefit from these treatments is small. Based on the interactions of immune cells in the tumor microenvironment, immunotherapies are being explored for ovarian cancer treatment. Disappointingly, the immune checkpoint inhibitors show relatively low responses in ovarian cancer. As shown in several studies that have uncovered a relationship between DC infiltration and outcome in ovarian cancer patients, dendritic cell (DC)-based treatments might have a potential effect on ovarian cancer. In this review, we summarize the functions of dendritic cells (DCs) in the tumor microenvironment, as well as the responses and drawbacks of existing clinical studies to draw a comprehensive picture of DC vaccine treatment in ovarian cancer and to discuss the promising future of immune biomarkers.
Collapse
Affiliation(s)
- Xi Zhang
- Department of OB/GYN, Peking University Third Hospital, Beijing, China
| | - Tianhui He
- Department of OB/GYN, Peking University Third Hospital, Beijing, China
| | - Yuan Li
- Department of OB/GYN, Peking University Third Hospital, Beijing, China
| | - Ling Chen
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongyu Liu
- Department of Neurosurgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Yu Wu
- Department of OB/GYN, Peking University Third Hospital, Beijing, China
| | - Hongyan Guo
- Department of OB/GYN, Peking University Third Hospital, Beijing, China
| |
Collapse
|
14
|
Lassa-VSV chimeric virus targets and destroys human and mouse ovarian cancer by direct oncolytic action and by initiating an anti-tumor response. Virology 2020; 555:44-55. [PMID: 33453650 DOI: 10.1016/j.virol.2020.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Abstract
Ovarian cancer is the third most common female cancer, with poor survival in later stages of metastatic spread. We test a chimeric virus consisting of genes from Lassa and vesicular stomatitis viruses, LASV-VSV; the native VSV glycoprotein is replaced by the Lassa glycoprotein, greatly reducing neurotropism. Human ovarian cancer cells in immunocompromised nude mice were lethal in controls. Chemotherapeutic paclitaxel and cisplatin showed modest cancer inhibition and survival extension. In contrast, a single intraperitoneal injection of LASV-VSV selectively infected and killed ovarian cancer cells, generating long-term survival. Mice with human ovarian cancer cells in brain showed rapid deterioration; LASV-VSV microinjection into brain blocked cancer growth, and generated long-term survival. Treatment of immunocompetent mice with infected mouse ovarian cancer cells blocked growth of non-infected ovarian cancer cells peritoneally and in brain. These results suggest LASV-VSV is a viable candidate for further study and may be of use in the treatment of ovarian cancer.
Collapse
|