1
|
Lin X, Han X, Zhou W, Gong X, Zhou Y, Wang Q, Zhang C. RBM15 increase tumor-infiltrating CD4+ T cell in ESCC via modulating of PLOD3. Am J Cancer Res 2024; 14:5486-5503. [PMID: 39659928 PMCID: PMC11626265 DOI: 10.62347/idcp2061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Collagen, a primary protein component of the extracellular matrix (ECM), undergoes a notable series of alterations concomitant with the growth of the tumor. Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 (PLOD3) is involved in the synthesis of collagen and has been associated with a variety of cancers. However, it is unclear how PLOD3 functions in esophageal squamous cell carcinoma (ESCC). METHODS Differentially expressed genes between ESCC and adjacent normal tissues were identified using proteomic and transcriptomic analyses. These genes were then subjected to survival analysis to identify prognostic markers. Immune cell infiltration in the two subgroups was evaluated. Spearman's correlation analysis was performed to examine the correlation between PLOD3 and RBM15 expression in TCGA-ESCC database. shRNA-mediated approach was used to knockdown RBM15 in ESCC cells. The effects of RBM15 knockdown on PLOD3 expression were assessed by real-time PCR and Western blot. Moreover, COX algorithm was employed to construct a prognostic signature. RESULTS PLOD3 was found to be highly expressed in ESCC patients and correlated with a favorable prognosis. Immune cell infiltration estimation indicated tumor-infiltrating CD4+ T cell was increased in PLOD3-high group. Correlation analysis revealed that PLOD3 was associated with RBM15 and was closely related to CD4+ T cell infiltration. Moreover, loss-of-function approaches showed that depletion of RBM15 attenuated PLOD3 expression in ESCC cells. Following univariate and multivariate Cox regression analyses, PLOD3 and RBM15 were identified as a two-gene prognostic signature for ESCC. CONCLUSION RBM15 enhances tumor-infiltrating CD4+ T Cell abundance in ESCC by regulating PLOD3. Two new independent prognostic factors, PLOD3 and RBM15, may be useful in predicting the prognosis of ESCC.
Collapse
Affiliation(s)
- Xuyang Lin
- Department of Stomatology, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical UniversityHuai’an 223001, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical UniversityNanjing 210000, Jiangsu, China
| | - Xiao Han
- Department of Central Laboratory, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical UniversityHuai’an 223001, Jiangsu, China
| | - Wubi Zhou
- Department of Pathology, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical UniversityHuai’an 223001, Jiangsu, China
| | - Xiaoxia Gong
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast UniversityNanjing 210000, Jiangsu, China
| | - Yu Zhou
- Department of Medical Oncology, Cancer Center, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical UniversityHuai’an 223001, Jiangsu, China
| | - Qilong Wang
- Department of Central Laboratory, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical UniversityHuai’an 223001, Jiangsu, China
| | - Chengwan Zhang
- Department of Central Laboratory, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical UniversityHuai’an 223001, Jiangsu, China
| |
Collapse
|
2
|
Fadlallah H, El Masri J, Fakhereddine H, Youssef J, Chemaly C, Doughan S, Abou-Kheir W. Colorectal cancer: Recent advances in management and treatment. World J Clin Oncol 2024; 15:1136-1156. [PMID: 39351451 PMCID: PMC11438855 DOI: 10.5306/wjco.v15.i9.1136] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/11/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, and the second most common cause of cancer-related death. In 2020, the estimated number of deaths due to CRC was approximately 930000, accounting for 10% of all cancer deaths worldwide. Accordingly, there is a vast amount of ongoing research aiming to find new and improved treatment modalities for CRC that can potentially increase survival and decrease overall morbidity and mortality. Current management strategies for CRC include surgical procedures for resectable cases, and radiotherapy, chemotherapy, and immunotherapy, in addition to their combination, for non-resectable tumors. Despite these options, CRC remains incurable in 50% of cases. Nonetheless, significant improvements in research techniques have allowed for treatment approaches for CRC to be frequently updated, leading to the availability of new drugs and therapeutic strategies. This review summarizes the most recent therapeutic approaches for CRC, with special emphasis on new strategies that are currently being studied and have great potential to improve the prognosis and lifespan of patients with CRC.
Collapse
Affiliation(s)
- Hiba Fadlallah
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jad El Masri
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hiam Fakhereddine
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Joe Youssef
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Chrystelle Chemaly
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
3
|
Zhang Z, Wang P, Chen S, Xiang D, Chen J, Huang W, Liu X, Yi T, Wang D, Pu Y, He L, Zhang H. NXPH4 can be used as a biomarker for pan-cancer and promotes colon cancer progression. Aging (Albany NY) 2024; 16:5866-5886. [PMID: 38613793 PMCID: PMC11042927 DOI: 10.18632/aging.205648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/17/2024] [Indexed: 04/15/2024]
Abstract
NXPH4 promotes cancer proliferation and invasion. However, its specific role and mechanism in cancer remain unclear. Transcriptome and clinical data for pan-cancer were derived from the TCGA database. K-M survival curve and univariate Cox were used for prognostic analysis. CIBERSORT and TIMER algorithms were employed to calculate immune cell infiltration. Gene set enrichment analysis (GSEA) was employed for investigating the function of NXPH4. Western blot verified differential expression of NXPH4 in colon cancer. Functional assays (CCK-8, plate clonogenicity assay, wound healing assay, and Transwell assay) confirmed the impact of NXPH4 on proliferation, invasion, and migration of colon cancer cells. Dysregulation of NXPH4 in pan-cancer suggests its potential as a diagnostic and prognostic marker for certain cancers, including colon and liver cancer. High expression of NXPH4 in pan-cancer might be associated with the increase in copy number and hypomethylation. NXPH4 expression in pan-cancer is substantially linked to immune cell infiltration in the immune microenvironment. NXPH4 expression is associated with the susceptibility to immunotherapy and chemotherapy. Western blot further confirmed the higher expression of NXPH4 in colon cancer. Knockdown of NXPH4 significantly suppresses proliferation, invasion, and migration of colon cancer cell lines HT-29 and HCT116, as validated by functional assays.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Department of Anorectal Surgery, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Pengfei Wang
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Siwen Chen
- The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dezhi Xiang
- Department of Anorectal Surgery, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Jinzhen Chen
- Department of Anorectal Surgery, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Wanchang Huang
- Department of Anorectal Surgery, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Xiao Liu
- Department of Anorectal Surgery, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Tongwen Yi
- Department of Anorectal Surgery, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Dawei Wang
- Key Laboratory of Hepatosplenic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfei Pu
- Key Laboratory of Hepatosplenic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Longfu He
- Department of Anorectal Surgery, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Hao Zhang
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| |
Collapse
|
4
|
Trimaglio G, Sneperger T, Raymond BBA, Gilles N, Näser E, Locard-Paulet M, Ijsselsteijn ME, Brouwer TP, Ecalard R, Roelands J, Matsumoto N, Colom A, Habch M, de Miranda NFCC, Vergnolle N, Devaud C, Neyrolles O, Rombouts Y. The C-type lectin DCIR contributes to the immune response and pathogenesis of colorectal cancer. Sci Rep 2024; 14:7199. [PMID: 38532110 DOI: 10.1038/s41598-024-57941-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
Development and progression of malignancies are accompanied and influenced by alterations in the surrounding immune microenvironment. Understanding the cellular and molecular interactions between immune cells and cancer cells has not only provided important fundamental insights into the disease, but has also led to the development of new immunotherapies. The C-type lectin Dendritic Cell ImmunoReceptor (DCIR) is primarily expressed by myeloid cells and is an important regulator of immune homeostasis, as demonstrated in various autoimmune, infectious and inflammatory contexts. Yet, the impact of DCIR on cancer development remains largely unknown. Analysis of available transcriptomic data of colorectal cancer (CRC) patients revealed that high DCIR gene expression is associated with improved patients' survival, immunologically "hot" tumors and high immunologic constant of rejection, thus arguing for a protective and immunoregulatory role of DCIR in CRC. In line with these correlative data, we found that deficiency of DCIR1, the murine homologue of human DCIR, leads to the development of significantly larger tumors in an orthotopic murine model of CRC. This phenotype is accompanied by an altered phenotype of tumor-associated macrophages (TAMs) and a reduction in the percentage of activated effector CD4+ and CD8+ T cells in CRC tumors of DCIR1-deficient mice. Overall, our results show that DCIR promotes antitumor immunity in CRC, making it an attractive target for the future development of immunotherapies to fight the second deadliest cancer in the world.
Collapse
Affiliation(s)
- Giulia Trimaglio
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Tamara Sneperger
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Benjamin B A Raymond
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nelly Gilles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuelle Näser
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie Locard-Paulet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Thomas P Brouwer
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Romain Ecalard
- INSERM US006 ANEXPLO/CREFRE, Purpan Hospital, Toulouse, France
| | - Jessica Roelands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Naoki Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - André Colom
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Myriam Habch
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Nathalie Vergnolle
- Institut de Recherche en Santé Digestive, IRSD, Université de Toulouse, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Christel Devaud
- Institut de Recherche en Santé Digestive, IRSD, Université de Toulouse, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yoann Rombouts
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
5
|
Ayyoub M, Devaud C. [Intestinal immunity controls metastases outcome in colorectal cancers]. Med Sci (Paris) 2024; 40:121-123. [PMID: 38411413 DOI: 10.1051/medsci/2023205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Affiliation(s)
- Maha Ayyoub
- Université Toulouse III-Paul Sabatier, Inserm, CNRS, Université de Toulouse, Centre de recherches en cancérologie de Toulouse, Toulouse, France - Institut universitaire du cancer de Toulouse (IUCT)-oncopole, Oncopole Claudius Regaud, Toulouse, France
| | - Christel Devaud
- Université Toulouse III-Paul Sabatier, Inserm, CNRS, Université de Toulouse, Centre de recherches en cancérologie de Toulouse, Toulouse, France - Institut universitaire du cancer de Toulouse (IUCT)-oncopole, Oncopole Claudius Regaud, Toulouse, France
| |
Collapse
|
6
|
Xiong FQ, Zhang W, Zheng C, Li Y, Gong X, Zhang Y, Wang H, Zhang PC, Li YP. Gemcitabine-loaded synthetic high-density lipoprotein preferentially eradicates hepatic monocyte-derived macrophages in mouse liver with colorectal cancer metastases. Acta Pharmacol Sin 2023; 44:2331-2341. [PMID: 37225846 PMCID: PMC10618456 DOI: 10.1038/s41401-023-01110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Liver metastasis of colorectal cancer (CRC) is the critical cause of CRC-related death due to its unique immunosuppressive microenvironment. In this study we generated a gemcitabine-loaded synthetic high-density lipoprotein (G-sHDL) to reverse immunosuppression in livers with CRC metastases. After intravenous injection, sHDL targeted hepatic monocyte-derived alternatively activated macrophages (Mono-M2) in the livers of mice bearing both subcutaneous tumors and liver metastases. The G-sHDL preferentially eradicated Mono-M2 in the livers with CRC metastases, which consequently prevented Mono-M2-mediated killing of tumor antigen-specific CD8+ T cells in the livers and thus improved the densities of tumor antigen-specific CD8+ T cells in the blood, tumor-draining lymph nodes and subcutaneous tumors of the treated mice. While reversing the immunosuppressive microenvironment, G-sHDL also induced immunogenic cell death of cancer cells, promoted maturation of dendritic cells, and increased tumor infiltration and activity of CD8+ T cells. Collectively, G-sHDL inhibited the growth of both subcutaneous tumors and liver metastases, and prolonged the survival of animals, which could be further improved when used in conjunction with anti-PD-L1 antibody. This platform can be a generalizable platform to modulate immune microenvironment of diseased livers.
Collapse
Affiliation(s)
- Feng-Qin Xiong
- China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wen Zhang
- China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chao Zheng
- China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiang Gong
- China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Hao Wang
- China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.
| | - Peng-Cheng Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, China.
| | - Ya-Ping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264000, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
McCormick AL, Anderson TS, Daugherity EA, Okpalanwaka IF, Smith SL, Appiah D, Lowe DB. Targeting the pericyte antigen DLK1 with an alpha type-1 polarized dendritic cell vaccine results in tumor vascular modulation and protection against colon cancer progression. Front Immunol 2023; 14:1241949. [PMID: 37849752 PMCID: PMC10578441 DOI: 10.3389/fimmu.2023.1241949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Despite the availability of various treatment options, colorectal cancer (CRC) remains a significant contributor to cancer-related mortality. Current standard-of-care interventions, including surgery, chemotherapy, and targeted agents like immune checkpoint blockade and anti-angiogenic therapies, have improved short-term patient outcomes depending on disease stage, but survival rates with metastasis remain low. A promising strategy to enhance the clinical experience with CRC involves the use of dendritic cell (DC) vaccines that incite immunity against tumor-derived blood vessels, which are necessary for CRC growth and progression. In this report, we target tumor-derived pericytes expressing DLK1 with a clinically-relevant alpha type-1 polarized DC vaccine (αDC1) in a syngeneic mouse model of colorectal cancer. Our pre-clinical data demonstrate the αDC1 vaccine's ability to induce anti-tumor effects by facilitating cytotoxic T lymphocyte activity and ablating the tumor vasculature. This work, overall, provides a foundation to further interrogate immune-mediated mechanisms of protection in order to help devise efficacious αDC1-based strategies for patients with CRC.
Collapse
Affiliation(s)
- Amanda L. McCormick
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Trevor S. Anderson
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Elizabeth A. Daugherity
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Izuchukwu F. Okpalanwaka
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Savanna L. Smith
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Duke Appiah
- Department of Public Health, School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Devin B. Lowe
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| |
Collapse
|
8
|
Pichler AC, Carrié N, Cuisinier M, Ghazali S, Voisin A, Axisa PP, Tosolini M, Mazzotti C, Golec DP, Maheo S, do Souto L, Ekren R, Blanquart E, Lemaitre L, Feliu V, Joubert MV, Cannons JL, Guillerey C, Avet-Loiseau H, Watts TH, Salomon BL, Joffre O, Grinberg-Bleyer Y, Schwartzberg PL, Lucca LE, Martinet L. TCR-independent CD137 (4-1BB) signaling promotes CD8 +-exhausted T cell proliferation and terminal differentiation. Immunity 2023; 56:1631-1648.e10. [PMID: 37392737 PMCID: PMC10649891 DOI: 10.1016/j.immuni.2023.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/29/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
CD137 (4-1BB)-activating receptor represents a promising cancer immunotherapeutic target. Yet, the cellular program driven by CD137 and its role in cancer immune surveillance remain unresolved. Using T cell-specific deletion and agonist antibodies, we found that CD137 modulates tumor infiltration of CD8+-exhausted T (Tex) cells expressing PD1, Lag-3, and Tim-3 inhibitory receptors. T cell-intrinsic, TCR-independent CD137 signaling stimulated the proliferation and the terminal differentiation of Tex precursor cells through a mechanism involving the RelA and cRel canonical NF-κB subunits and Tox-dependent chromatin remodeling. While Tex cell accumulation induced by prophylactic CD137 agonists favored tumor growth, anti-PD1 efficacy was improved with subsequent CD137 stimulation in pre-clinical mouse models. Better understanding of T cell exhaustion has crucial implications for the treatment of cancer and infectious diseases. Our results identify CD137 as a critical regulator of Tex cell expansion and differentiation that holds potential for broad therapeutic applications.
Collapse
Affiliation(s)
- Andrea C Pichler
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nadège Carrié
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Marine Cuisinier
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Samira Ghazali
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UPS, INSERM, CNRS, Toulouse, France
| | - Allison Voisin
- Centre de Recherche en Cancérologie de Lyon, Labex DEVweCAN, INSERM, CNRS, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Pierre-Paul Axisa
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Marie Tosolini
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Céline Mazzotti
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Dominic P Golec
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sabrina Maheo
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Laura do Souto
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Rüçhan Ekren
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Eve Blanquart
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Lea Lemaitre
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Virginie Feliu
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Marie-Véronique Joubert
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Jennifer L Cannons
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Camille Guillerey
- Cancer Immunotherapies Group, The University of Queensland, Brisbane, QLD, Australia
| | - Hervé Avet-Loiseau
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Benoit L Salomon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UPS, INSERM, CNRS, Toulouse, France; Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Olivier Joffre
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UPS, INSERM, CNRS, Toulouse, France
| | - Yenkel Grinberg-Bleyer
- Centre de Recherche en Cancérologie de Lyon, Labex DEVweCAN, INSERM, CNRS, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Pamela L Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Liliana E Lucca
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.
| | - Ludovic Martinet
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France.
| |
Collapse
|
9
|
Jiang H, Liu Y, Zhou R, Feng Y, Yan L. Circulating interleukins and risk of colorectal cancer: a Mendelian randomization study. Scand J Gastroenterol 2023; 58:1466-1473. [PMID: 37525405 DOI: 10.1080/00365521.2023.2240928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Recent studies have suggested a potential causal association between Interleukins (ILs) and Colorectal Cancer (CRC), and thus, it is important to examine the causal relationship between them using a Mendelian randomization (MR) approach. METHODS The instrumental variables were extracted for IL-1ra, IL-6, IL-6ra, IL-8, IL-16, IL-18, IL-27 from genome-wide association studies of European ancestry. Summary statistics of CRC were also retrieved. An inverse variance-weighted MR approach was implemented as the primary method to compute overall effects from multiple instruments. Additional MR approaches and sensitivity and heterogeneity pleiotropy analyses were also conducted respectively. RESULTS Our analysis suggested a causal effect between an increase of IL-8 and a reduced risk of CRC (odds ratio 0.65; 95% confidence interval, 0.43-0.98; p = 0.041) and did not provide evidence for causal effects of IL-1ra, IL-6, IL-6ra, IL-16, IL-18, IL-27. Sensitivity analyses suggested the robustness of MR results and that they were unlikely to be affected by unbalanced pleiotropy or significant heterogeneity. CONCLUSIONS This study investigated the role of ILs in the development of CRC and we found a causal effect between an increase of IL-8 and a reduced risk of CRC but not found evidence for causal effects of IL-1ra, IL-6, IL-6ra, IL-16, IL-18, IL-27. Sensitivity analyses suggested the robustness of MR results and that they were unlikely to be affected by unbalanced pleiotropy or significant heterogeneity.
Collapse
Affiliation(s)
- Haifeng Jiang
- Department of General Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongming Liu
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ru Zhou
- Department of General Surgery, RuiJin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Feng
- Department of General Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Yan
- Department of General Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Feliu V, Gomez-Roca C, Michelas M, Thébault N, Lauzéral-Vizcaino F, Salvioni A, Scandella L, Sarot E, Valle C, Balança CC, Scarlata CM, Delord JP, Ayyoub M, Devaud C. Distant antimetastatic effect of enterotropic colon cancer-derived α4β7 +CD8 + T cells. Sci Immunol 2023; 8:eadg8841. [PMID: 37289857 DOI: 10.1126/sciimmunol.adg8841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/29/2023] [Indexed: 06/10/2023]
Abstract
Despite the high prognostic value of immune infiltrates in colorectal cancer (CRC), metastatic disease remains resistant to immunotherapy by immune checkpoint blockade (ICB). Here, we show, in metastatic CRC preclinical models, that orthotopically implanted primary colon tumors exert a colon-specific antimetastatic effect on distant hepatic lesions. Enterotropic α4β7 integrin-expressing neoantigen-specific CD8 T cells were key components of the antimetastatic effect. Accordingly, the presence of concomitant colon tumors improved control of liver lesions by anti-PD-L1 proof-of-concept immunotherapy and generated protective immune memory, whereas partial depletion of α4β7+ cells abrogated control of metastases. Last, in patients with metastatic CRC, response to ICB was associated with expression of α4β7 integrin in metastases and with circulating α4β7+ CD8 T cells. Our findings identify a systemic cancer immunosurveillance role for gut-primed tumor-specific α4β7+ CD8 T cells.
Collapse
Affiliation(s)
- Virginie Feliu
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer de Toulouse (IUCT)-Oncopole, Institut Claudius Regaud, Toulouse, France
| | - Carlos Gomez-Roca
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer de Toulouse (IUCT)-Oncopole, Institut Claudius Regaud, Toulouse, France
| | - Marie Michelas
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer de Toulouse (IUCT)-Oncopole, Institut Claudius Regaud, Toulouse, France
| | - Noémie Thébault
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer de Toulouse (IUCT)-Oncopole, Institut Claudius Regaud, Toulouse, France
| | - Françoise Lauzéral-Vizcaino
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Anna Salvioni
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer de Toulouse (IUCT)-Oncopole, Institut Claudius Regaud, Toulouse, France
| | - Lise Scandella
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Emeline Sarot
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Carine Valle
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Camille-Charlotte Balança
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer de Toulouse (IUCT)-Oncopole, Institut Claudius Regaud, Toulouse, France
| | - Clara-Maria Scarlata
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer de Toulouse (IUCT)-Oncopole, Institut Claudius Regaud, Toulouse, France
| | - Jean-Pierre Delord
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer de Toulouse (IUCT)-Oncopole, Institut Claudius Regaud, Toulouse, France
| | - Maha Ayyoub
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer de Toulouse (IUCT)-Oncopole, Institut Claudius Regaud, Toulouse, France
| | - Christel Devaud
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer de Toulouse (IUCT)-Oncopole, Institut Claudius Regaud, Toulouse, France
| |
Collapse
|
11
|
Huang K, Luo W, Fang J, Yu C, Liu G, Yuan X, Liu Y, Wu W. Notch3 signaling promotes colorectal tumor growth by enhancing immunosuppressive cells infiltration in the microenvironment. BMC Cancer 2023; 23:55. [PMID: 36647017 PMCID: PMC9843853 DOI: 10.1186/s12885-023-10526-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Macrophage infiltration in the tumor microenvironment participates in the regulation of tumor progression. Previous studies have found that Notch signaling pathway is involved in regulating the progression of colorectal cancer (CRC), however, the specific mechanism is still unclear. METHODS The correlation between Notch signaling pathway and macrophage infiltration was investigated in TCGA database and verified in clinical samples of patients with CRC using immunohistochemistry. Gene Set Enrichment Analysis was used to find out genes related to Notch3 expression. Colony formation assay, and flow cytometry were utilized to test tumor growth and immune cell infiltration in vitro and in vivo. RESULTS Using bioinformatics analysis and clinical sample validation, we found that Notch3 was highly expressed in colon tumor tissues compared to adjacent normal tissues, and it participated in regulating the recruitment of macrophages to the tumor microenvironment. Furthermore, we found that the Notch3 expression was positively correlated with the expression of macrophage recruitment-related cytokines in colon tumor tissues. Finally, we demonstrated that depletion of Notch3 had no significant effect on the growth of colon tumor cells in vitro, while, attenuated the growth of colon cancer tumors in vivo. Simultaneous, immunosuppressive cells, macrophages and myeloid-derived suppressor cell (MDSC) infiltration were dramatically reduced in the tumor microenvironment. CONCLUSION Our study illustrated that Notch3 could facilitate the progression of CRC by increasing the infiltration of macrophages and MDSCs to promote the immunosuppressive tumor microenvironment. Targeting Notch3 specifically is a potentially effective treatment for CRC.
Collapse
Affiliation(s)
- Kai Huang
- grid.412679.f0000 0004 1771 3402Department of Gastrointestinal Surgery, Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Wenwu Luo
- grid.412679.f0000 0004 1771 3402Department of Pathology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Jinmei Fang
- grid.59053.3a0000000121679639Department of Radiation Oncology, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Changjun Yu
- grid.412679.f0000 0004 1771 3402Department of Gastrointestinal Surgery, Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Guangjie Liu
- grid.412679.f0000 0004 1771 3402Department of Gastrointestinal Surgery, Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Xiaodong Yuan
- grid.59053.3a0000000121679639Organ Transplant Center, Department of Hepatobiliary and Transplantation Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yun Liu
- grid.59053.3a0000000121679639Department of Radiation Oncology, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenyong Wu
- grid.412679.f0000 0004 1771 3402Department of Gastrointestinal Surgery, Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China ,Department of General Surgery, Anhui No.2 Provincial People’s Hospital, Hefei, 230011 China
| |
Collapse
|
12
|
Denis M, Mathé D, Micoud M, Choffour PA, Grasselly C, Matera EL, Dumontet C. Impact of mouse model tumor implantation site on acquired resistance to anti-PD-1 immune checkpoint therapy. Front Immunol 2023; 13:1011943. [PMID: 36703964 PMCID: PMC9872099 DOI: 10.3389/fimmu.2022.1011943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The use of tumor subcutaneous (SC) implantations rather than orthotopic sites is likely to induce a significant bias, in particular, in the field of immunotherapy. Methods In this study, we developed and characterized MC38 models, implanted subcutaneously and orthotopically, which were either sensitive or rendered resistant to anti-PD1 therapy. We characterized the tumor immune infiltrate by flow cytometry at baseline and after treatment. Results and Discussion Our results demonstrate several differences between SC and orthotopic models at basal state, which tend to become similar after therapy. These results emphasize the need to take into account tumor implantation sites when performing preclinical studies with immunotherapeutic agents.
Collapse
Affiliation(s)
- Morgane Denis
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France,R&D Department, Antineo, Lyon, France
| | | | - Manon Micoud
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | | | - Chloé Grasselly
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Eva-Laure Matera
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Charles Dumontet
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France,Hematology Department, Hospices Civils de Lyon, Lyon, France,*Correspondence: Charles Dumontet,
| |
Collapse
|
13
|
Martinelli S, Amore F, Canu L, Maggi M, Rapizzi E. Tumour microenvironment in pheochromocytoma and paraganglioma. Front Endocrinol (Lausanne) 2023; 14:1137456. [PMID: 37033265 PMCID: PMC10073672 DOI: 10.3389/fendo.2023.1137456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Pheochromocytomas and Paragangliomas (Pheo/PGL) are rare catecholamine-producing tumours derived from adrenal medulla or from the extra-adrenal paraganglia respectively. Around 10-15% of Pheo/PGL develop metastatic forms and have a poor prognosis with a 37% of mortality rate at 5 years. These tumours have a strong genetic determinism, and the presence of succinate dehydrogenase B (SDHB) mutations are highly associated with metastatic forms. To date, no effective treatment is present for metastatic forms. In addition to cancer cells, the tumour microenvironment (TME) is also composed of non-neoplastic cells and non-cellular components, which are essential for tumour initiation and progression in multiple cancers, including Pheo/PGL. This review, for the first time, provides an overview of the roles of TME cells such as cancer-associated fibroblasts (CAFs) and tumour-associated macrophages (TAMs) on Pheo/PGL growth and progression. Moreover, the functions of the non-cellular components of the TME, among which the most representatives are growth factors, extracellular vesicles and extracellular matrix (ECM) are explored. The importance of succinate as an oncometabolite is emerging and since Pheo/PGL SDH mutated accumulate high levels of succinate, the role of succinate and of its receptor (SUCNR1) in the modulation of the carcinogenesis process is also analysed. Further understanding of the mechanism behind the complicated effects of TME on Pheo/PGL growth and spread could suggest novel therapeutic targets for further clinical treatments.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Francesca Amore
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Letizia Canu
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Elena Rapizzi
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- *Correspondence: Elena Rapizzi,
| |
Collapse
|
14
|
Hou W, Yi C, Zhu H. Predictive biomarkers of colon cancer immunotherapy: Present and future. Front Immunol 2022; 13:1032314. [PMID: 36483562 PMCID: PMC9722772 DOI: 10.3389/fimmu.2022.1032314] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy has revolutionized colon cancer treatment. Immune checkpoint inhibitors (ICIs) have shown clinical benefits for colon cancer patients, especially those with high microsatellite instability (MSI-H). In 2020, the US Food and Drug Administration (FDA)-approved ICI pembrolizumab as the first-line treatment for metastatic MSI-H colon cancer patients. Additionally, neoadjuvant immunotherapy has presented efficacy in treating early-stage colon cancer patients. Although MSI has been thought of as an effective predictive biomarker for colon cancer immunotherapy, only a small proportion of colon cancer patients were MSI-H, and certain colon cancer patients with MSI-H presented intrinsic or acquired resistance to immunotherapy. Thus, further search for predictive biomarkers to stratify patients is meaningful in colon cancer immunotherapy. Except for MSI, other biomarkers, such as PD-L1 expression level, tumor mutation burden (TMB), tumor-infiltrating lymphocytes (TILs), certain gut microbiota, ctDNA, and circulating immune cells were also proposed to be correlated with patient survival and ICI efficacy in some colon cancer clinical studies. Moreover, developing new diagnostic techniques helps identify accurate predictive biomarkers for colon cancer immunotherapy. In this review, we outline the reported predictive biomarkers in colon cancer immunotherapy and further discuss the prospects of technological changes for biomarker development in colon cancer immunotherapy.
Collapse
Affiliation(s)
- Wanting Hou
- Department of Medical Oncology Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Cheng Yi
- Department of Medical Oncology Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Hong Zhu
- Department of Medical Oncology Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
15
|
Liu L, Huang L, Chen W, Zhang G, Li Y, Wu Y, Xiong J, Jie Z. Comprehensive Analysis of Necroptosis-Related Long Noncoding RNA Immune Infiltration and Prediction of Prognosis in Patients With Colon Cancer. Front Mol Biosci 2022; 9:811269. [PMID: 35237659 PMCID: PMC8883231 DOI: 10.3389/fmolb.2022.811269] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Colon cancer (CC) is one of the most frequent malignancies in the world, with a high rate of morbidity and death. In CC, necroptosis and long noncoding RNA (lncRNAs) are crucial, but the mechanism is not completely clear. The goal of this study was to create a new signature that might predict patient survival and tumor immunity in patients with CC. Expression profiles of necroptosis-related lncRNAs in 473 patients with CC were retrieved from the TCGA database. A consensus clustering analysis based on differentially expressed (DE) genes and a prognostic model based on least absolute shrinkage and selection operator (LASSO) regression analysis were conducted. Clinicopathological correlation analysis, expression difference analysis, PCA, TMB, GO analysis, KEGG enrichment analysis, survival analysis, immune correlation analysis, prediction of clinical therapeutic compounds, and qRT–PCR were also conducted. Fifty-six necroptosis-related lncRNAs were found to be linked to the prognosis, and consensus clustering analysis was performed. There were substantial variations in survival, immune checkpoint expression, clinicopathological correlations, and tumor immunity among the different subgroups. Six lncRNAs were discovered, and patients were split into high-risk and low-risk groups based on a risk score generated using these six lncRNAs. The survival time of low-risk patients was considerably longer than that of high-risk patients, indicating that these lncRNAs are directly associated with survival. The risk score was associated with the tumor stage, infiltration depth, lymph node metastasis, and distant metastasis. After univariate and multivariate Cox regression analysis, the risk score and tumor stage remained significant. Cancer- and metabolism-related pathways were enriched by KEGG analyses. Immune infiltration was shown to differ significantly between high- and low-risk patients in a tumor immunoassay. Eight compounds were screened out, and qRT–PCR confirmed the differential expression of the six lncRNAs. Overall, in CC, necroptosis-related lncRNAs have an important function, and the prognosis of patients with CC can be predicted by these six necroptosis-related lncRNAs. They may be useful in the future for customized cancer therapy.
Collapse
Affiliation(s)
- Li Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liu Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenzheng Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guoyang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yebei Li
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yukang Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianbo Xiong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Jianbo Xiong, ; Zhigang Jie,
| | - Zhigang Jie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Jianbo Xiong, ; Zhigang Jie,
| |
Collapse
|
16
|
Liu M, Zheng Q, Chen S, Liu J, Li S. FUT7 Promotes the Epithelial-Mesenchymal Transition and Immune Infiltration in Bladder Urothelial Carcinoma. J Inflamm Res 2021; 14:1069-1084. [PMID: 33790621 PMCID: PMC8007615 DOI: 10.2147/jir.s296597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background Bladder urothelial carcinoma (BLCA) is one of the most frequently appearing, lethal and aggressive malignancies of the genitourinary system with growing morbidity and mortality, which affects human health seriously. Protein glycosylation, catalyzed by specific glycosyltransferase, has been found to be abnormal in several diseases, especially cancer. Fucosyltransferase VII (FUT7), one of the fucosyltransferases, was observed abnormally expressed in various cancers, however, the role of FUT7 in BLCA, and the association between its expression and clinical outcomes or immune infiltration remains unclear. Methodology FUT7 expression in BLCA was analyzed in Oncomine database, which was further confirmed with immunohistochemistry and ELISA. The prognostic value of FUT7 for BLCA was evaluated with PrognoScan database, and its genetic alteration was examined in cBioPortal database. The proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) changes of bladder cancer cells after FUT7 siRNA or cDNA transfection were determined by CCK8, colony formation, transwell and Western blot, respectively. The correlation between FUT7 expression and immune infiltration levels was analyzed in TIMER and TISIDB databases, and the methylation level of FUT7 was detected in UALCAN database. Results The results showed that the expression of FUT7 was increased in BLCA, and patients with high FUT7 level were predicted to have lower overall survival and disease-specific survival rates, which were not influenced by FUT7 genetic alterations. Downregulation FUT7 inhibited the proliferation, migration, invasion and EMT of bladder cancer cells, whereas upregulation of FUT7 showed the opposite effects. We found that FUT7 was positively correlated with immune cell infiltration levels (CD8+ T cells, CD4+T cells, macrophage, neutrophil and dendritic cells), and also the expression of gene markers of immune cells. The negative correlation between FUT7 expression and FUT7 methylation level was observed, among which FUT7 expression was positively correlated with the abundance of 28 kinds of tumor-infiltrating lymphocytes (TILs), while FUT7 methylation level was negatively correlated with TILs. Conclusion Altogether, these findings suggested that FUT7 possessed the potential to serve as a detection biomarker or immunotherapeutic target for BLCA.
Collapse
Affiliation(s)
- Mulin Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, People's Republic of China
| | - Qin Zheng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning Province, 116044, People's Republic of China
| | - Siyi Chen
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning Province, 116044, People's Republic of China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, People's Republic of China
| | - Shijun Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, People's Republic of China
| |
Collapse
|
17
|
Emerging Trends for Radio-Immunotherapy in Rectal Cancer. Cancers (Basel) 2021; 13:cancers13061374. [PMID: 33803620 PMCID: PMC8003099 DOI: 10.3390/cancers13061374] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
Rectal cancer is a heterogeneous disease at the genetic and molecular levels, both aspects having major repercussions on the tumor immune contexture. Whilst microsatellite status and tumor mutational load have been associated with response to immunotherapy, presence of tumor-infiltrating lymphocytes is one of the most powerful prognostic and predictive biomarkers. Yet, the majority of rectal cancers are characterized by microsatellite stability, low tumor mutational burden and poor T cell infiltration. Consequently, these tumors do not respond to immunotherapy and treatment largely relies on radiotherapy alone or in combination with chemotherapy followed by radical surgery. Importantly, pre-clinical and clinical studies suggest that radiotherapy can induce a complete reprograming of the tumor microenvironment, potentially sensitizing it for immune checkpoint inhibition. Nonetheless, growing evidence suggest that this synergistic effect strongly depends on radiotherapy dosing, fractionation and timing. Despite ongoing work, information about the radiotherapy regimen required to yield optimal clinical outcome when combined to checkpoint blockade remains largely unavailable. In this review, we describe the molecular and immune heterogeneity of rectal cancer and outline its prognostic value. In addition, we discuss the effect of radiotherapy on the tumor microenvironment, focusing on the mechanisms and benefits of its combination with immune checkpoint inhibitors.
Collapse
|
18
|
Weyemi U, Galluzzi L. Chromatin and genomic instability in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:ix-xvii. [PMID: 34507786 DOI: 10.1016/s1937-6448(21)00116-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Urbain Weyemi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States; Department of Dermatology, Yale School of Medicine, New Haven, CT, United States; Université de Paris, Paris, France.
| |
Collapse
|