1
|
Feng C, Chen R, Gao X, Fang W, Wu S, Chen L, Zheng X, Ji X, Yuan M, Fu Y, Ying H, Shen T, Zhu D, Jiang J. Cordycepin enhances the Anticancer efficacy of PD-L1 blockade by modulating the tumor microenvironment of colon cancer. Eur J Pharmacol 2024; 985:177089. [PMID: 39489279 DOI: 10.1016/j.ejphar.2024.177089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND PD-L1 blockade has been found to be effective in treating multiple malignancies. Combined therapy is proposed to provide better therapeutic effects. Cordycepin, a prominent bioactive compound found in cordyceps, can inhibit the development of various cancers. PURPOSE This study aimed to determine the efficacy of combined anti-PD-L1 antibody and cordycepin in tumor treatment. METHODS A single-cell RNA sequencing was used to analyze the mechanism of combined treatment. RESULTS Combination therapy of anti-PD-L1 and cordycepin significantly inhibited tumor growth by regulating the T cell ratio and improving the function of CD8+T cells. Furthermore, cordycepin promoted the reprogramming of type-II macrophages into type-I macrophages, a process confirmed through flow cytometry analysis of the underlying mechanism. CONCLUSION Our findings demonstrate that the combination of anti-PD-L1 and cordycepin effectively suppressed tumor growth by regulating the proportion of T cells and reprograming type-II macrophages.
Collapse
Affiliation(s)
- Chen Feng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
| | - Rongzhang Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
| | - Xinran Gao
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
| | - Weiwei Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
| | - Xinyue Ji
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
| | - Maoling Yuan
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
| | - Yuanyuan Fu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, Jiangsu, 213003, China.
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China; Soochow University, Suzhou, Jiangsu, 215031, China.
| | - Tao Shen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China.
| | - Dawei Zhu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
| |
Collapse
|
2
|
Borges F, Laureano RS, Vanmeerbeek I, Sprooten J, Demeulenaere O, Govaerts J, Kinget L, Saraswat S, Beuselinck B, De Vleeschouwer S, Clement P, De Smet F, Sorg RV, Datsi A, Vigneron N, Naulaerts S, Garg AD. Trial watch: anticancer vaccination with dendritic cells. Oncoimmunology 2024; 13:2412876. [PMID: 39398476 PMCID: PMC11469433 DOI: 10.1080/2162402x.2024.2412876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Dendritic cells (DCs) are critical players at the intersection of innate and adaptive immunity, making them ideal candidates for anticancer vaccine development. DC-based immunotherapies typically involve isolating patient-derived DCs, pulsing them with tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs), and utilizing maturation cocktails to ensure their effective activation. These matured DCs are then reinfused to elicit tumor-specific T-cell responses. While this approach has demonstrated the ability to generate potent immune responses, its clinical efficacy has been limited due to the immunosuppressive tumor microenvironment. Recent efforts have focused on enhancing the immunogenicity of DC-based vaccines, particularly through combination therapies with T cell-targeting immunotherapies. This Trial Watch summarizes recent advances in DC-based cancer treatments, including the development of new preclinical and clinical strategies, and discusses the future potential of DC-based vaccines in the evolving landscape of immuno-oncology.
Collapse
Affiliation(s)
- Francisca Borges
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Octavie Demeulenaere
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Kinget
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Saurabh Saraswat
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Benoit Beuselinck
- Department of Medical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Paul Clement
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Institute for Single-Cell Omics (LISCO), KU Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Rüdiger V. Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université de Louvain, Brussels, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhishek D. Garg
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Wang C, He L, Peng J, Lu C, Zhang M, Qi X, Zhang M, Wang Y. Identification of Siglec-10 as a new dendritic cell checkpoint for cervical cancer immunotherapy. J Immunother Cancer 2024; 12:e009404. [PMID: 39209455 PMCID: PMC11409359 DOI: 10.1136/jitc-2024-009404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The occurrence of chronic inflammation resulting from infection with human papillomaviruses is an important factor in the development of cervical cancer (CC); thus, deciphering the crosstalk between the tumor microenvironment and innate immune cells during the establishment of immune tolerance is vital for identifying potential treatment strategies. METHODS Single-cell RNA sequencing data and primary tumor samples from patients with CC were used to evaluate the functional role of Siglec-10 on dendritic cells (DCs). Patient-derived tumor fragment platforms were used to examine the ability of Siglec-10 blockade to reinvigorate DC-mediate T-cell activation and tumor clearance. RESULTS Here, we demonstrated that Siglec-10 is a prominent inhibitory checkpoint for DCs infiltrated in CC. CC epithelial cells use their aberrant surface sialylated structures to induce the transformation of conventional DCs into phenotypes characterized by low immunogenicity and high immunotolerance. Additionally, Siglec-10+ DCs suppress the function of adaptive T cells via galectin-9 signaling to strengthen the immunosuppressive CC microenvironment. Disturbance of Siglec-10 signaling restored the DC-mediated tumoricidal response and increased adaptive T cells sensitivity to programmed cell death protein 1 inhibition. CONCLUSION Our study confirms the checkpoint role of Siglec-10 on DCs and proposes that targeting Siglec-10 may be a promising avenue for immunotherapy against CC.
Collapse
Affiliation(s)
- Congwen Wang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Lewei He
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jing Peng
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Chong Lu
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Meng Zhang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Xingling Qi
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Mingxing Zhang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yumeng Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Liu X, Zhao A, Xiao S, Li H, Li M, Guo W, Han Q. PD-1: A critical player and target for immune normalization. Immunology 2024; 172:181-197. [PMID: 38269617 DOI: 10.1111/imm.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
Immune system imbalances contribute to the pathogenesis of several different diseases, and immunotherapy shows great therapeutic efficacy against tumours and infectious diseases with immune-mediated derivations. In recent years, molecules targeting the programmed cell death protein 1 (PD-1) immune checkpoint have attracted much attention, and related signalling pathways have been studied clearly. At present, several inhibitors and antibodies targeting PD-1 have been utilized as anti-tumour therapies. However, increasing evidence indicates that PD-1 blockade also has different degrees of adverse side effects, and these new explorations into the therapeutic safety of PD-1 inhibitors contribute to the emerging concept that immune normalization, rather than immune enhancement, is the ultimate goal of disease treatment. In this review, we summarize recent advancements in PD-1 research with regard to immune normalization and targeted therapy.
Collapse
Affiliation(s)
- Xuening Liu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Alison Zhao
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve School of Medicine, Cleveland, Ohio, USA
| | - Su Xiao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
- People's Hospital of Zhoucun, Zibo, Shandong, China
| | - Haohao Li
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Menghua Li
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Wei Guo
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
5
|
Lai W, Liao J, Li X, Liang P, He L, Huang K, Liang X, Wang Y. Characterization of the microenvironment in different immune-metabolism subtypes of cervical cancer with prognostic significance. Front Genet 2023; 14:1067666. [PMID: 36816023 PMCID: PMC9935837 DOI: 10.3389/fgene.2023.1067666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Immune cell infiltration and metabolic reprogramming may have great impact on the tumorigenesis and progression of malignancies. The interaction between these two factors in cervical cancer remains to be clarified. Here we constructed a gene set containing immune and metabolism related genes and we applied this gene set to molecular subtyping of cervical cancer. Methods: Bulk sequencing and single-cell sequencing data were downloaded from the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database respectively. Immune and metabolism related genes were collected from Immport and Kyoto encyclopedia of genes and genomes (KEGG) database respectively. Unsupervised consensus clustering was performed to identify the molecular subtypes. Cibersort was applied to evaluate the immune cells infiltration status. Differential expression analysis and Gene set enrichment analysis (GSEA) were performed to characterize the molecular pattern of different subtypes. Multivariate Cox regression analysis was used for prognosis prediction model construction and receiver operating characteristic (ROC) curve was used for performance evaluation. The hub genes in the model were verified in single-cell sequencing dataset and clinical specimens. In vitro experiments were performed to validate the findings in our research. Results: Three subtypes were identified with prognostic implications. C1 subgroup was in an immunosuppressive state with activation of mitochondrial cytochrome P450 metabolism, C2 had poor immune cells infiltration and was characterized by tRNA anabolism, and the C3 subgroup was in an inflammatory state with activation of aromatic amino acid synthesis. The area under the ROC curve of the constructed model was 0.8, which showed better performance than clinical features. IMPDH1 was found to be significantly upregulated in tumor tissue and it was demonstrated that IMPDH1 could be a novel therapeutic target in vitro. Discussion: In summary, our findings suggested novel molecular subtypes of cervical cancer with distinct immunometabolic profiles and uncovered a novel therapeutic target.
Collapse
Affiliation(s)
- Wujiang Lai
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinrong Liao
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxuan Li
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peili Liang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Center for Reproductive Medicine/Department of Fetal Medicine and Prenatal Diagnosis/BioResource Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liqing He
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Keke Huang
- Department of Obstetrics, Shunde Hospital, The First People’s Hospital of Shunde, Southern Medical University, Foshan, Guangdong, China,*Correspondence: Keke Huang, ; Xiaomei Liang, ; Yifeng Wang,
| | - Xiaomei Liang
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Keke Huang, ; Xiaomei Liang, ; Yifeng Wang,
| | - Yifeng Wang
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Keke Huang, ; Xiaomei Liang, ; Yifeng Wang,
| |
Collapse
|
6
|
Song Z, Zou K, Zou L. Immune checkpoint blockade for locally advanced or recurrent/metastatic cervical cancer: An update on clinical data. Front Oncol 2022; 12:1045481. [PMID: 36644634 PMCID: PMC9832370 DOI: 10.3389/fonc.2022.1045481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has shown great promise in the field of oncology, and recent clinical trials have illustrated that immune checkpoint blockade (ICB) is safe and effective at treating a range of tumor types. Cervical cancer (CC) is the fourth most common malignancy in women. However, first-line treatments for locally advanced cervical cancer (LACC) and recurrent/metastatic (R/M) CC have limited efficacy. Thus, it is necessary to explore new treatment approaches. The National Comprehensive Cancer Network (NCCN) currently recommends pembrolizumab, a programmed cell death protein 1 (PD-1) monoclonal antibody, as a first line therapy for individuals with R/M CC. This study reviews the progress of ICB therapy for LACC and R/M CC and describes the current status of the combination of ICB therapy and other therapeutic modalities, including radiotherapy, chemotherapy, targeted therapy, and other immunotherapies. The focus is placed on studies published since 2018 with the aim of highlighting novel CC-specific immunotherapeutic approaches and treatment targets.
Collapse
Affiliation(s)
- Zhuo Song
- Department of Radiation Oncology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Kun Zou
- Department of Radiation Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Lijuan Zou
- Department of Radiation Oncology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
7
|
Li J, Li X, Guo Q. Drug Resistance in Cancers: A Free Pass for Bullying. Cells 2022; 11:3383. [PMID: 36359776 PMCID: PMC9654341 DOI: 10.3390/cells11213383] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
The cancer burden continues to grow globally, and drug resistance remains a substantial challenge in cancer therapy. It is well established that cancerous cells with clonal dysplasia generate the same carcinogenic lesions. Tumor cells pass on genetic templates to subsequent generations in evolutionary terms and exhibit drug resistance simply by accumulating genetic alterations. However, recent evidence has implied that tumor cells accumulate genetic alterations by progressively adapting. As a result, intratumor heterogeneity (ITH) is generated due to genetically distinct subclonal populations of cells coexisting. The genetic adaptive mechanisms of action of ITH include activating "cellular plasticity", through which tumor cells create a tumor-supportive microenvironment in which they can proliferate and cause increased damage. These highly plastic cells are located in the tumor microenvironment (TME) and undergo extreme changes to resist therapeutic drugs. Accordingly, the underlying mechanisms involved in drug resistance have been re-evaluated. Herein, we will reveal new themes emerging from initial studies of drug resistance and outline the findings regarding drug resistance from the perspective of the TME; the themes include exosomes, metabolic reprogramming, protein glycosylation and autophagy, and the relates studies aim to provide new targets and strategies for reversing drug resistance in cancers.
Collapse
Affiliation(s)
| | | | - Qie Guo
- The Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
8
|
Wang N, Nanding A, Jia X, Wang Y, Yang C, Fan J, Dong A, Zheng G, Ma J, Shi X, Yang Y. Mining of immunological and prognostic-related biomarker for cervical cancer based on immune cell signatures. Front Immunol 2022; 13:993118. [PMID: 36341424 PMCID: PMC9634000 DOI: 10.3389/fimmu.2022.993118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Background Immunotherapy has changed the therapeutic landscape of cervical cancer (CC), but has durable anti-tumor activity only in a subset of patients. This study aims to comprehensively analyze the tumor immune microenvironment (TIME) of CC and to mine biomarkers related to immunotherapy and prognosis. Methods The Cancer Genome Atlas (TCGA) data was utilized to identify heterogeneous immune subtypes based on survival-related immune cell signatures (ICSs). ICSs prognostic model was constructed by Cox regression analyses, and immunohistochemistry was conducted to verify the gene with the largest weight coefficient in the model. Meanwhile, the tumor immune infiltration landscape was comprehensively characterized by ESTIMATE, CIBERSORT and MCPcounter algorithms. In addition, we also analyzed the differences in immunotherapy-related biomarkers between high and low-risk groups. IMvigor210 and two gynecologic tumor cohorts were used to validate the reliability and scalability of the Risk score. Results A total of 291 TCGA-CC samples were divided into two ICSs clusters with significant differences in immune infiltration landscape and prognosis. ICSs prognostic model was constructed based on eight immune-related genes (IRGs), which showed higher overall survival (OS) rate in the low-risk group (P< 0.001). In the total population, time-dependent receiver operating characteristic (ROC) curves displayed area under the curve (AUC) of 0.870, 0.785 and 0.774 at 1-, 3- and 5-years. Immunohistochemical results showed that the expression of the oncogene (FKBP10) was negatively correlated with the degree of differentiation and positively correlated with tumor stage, while the expression of tumor suppressor genes (S1PR4) was the opposite. In addition, the low-risk group had more favorable immune activation phenotype and higher enrichment of immunotherapy-related biomarkers. The Imvigor210 and two gynecologic tumor cohorts validated a better survival advantage and immune efficacy in the low-risk group. Conclusion This study comprehensively assessed the TIME of CC and constructed an ICSs prognostic model, which provides an effective tool for predicting patient’s prognosis and accurate immunotherapy.
Collapse
Affiliation(s)
- Nana Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Abiyasi Nanding
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xiaocan Jia
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuping Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Chaojun Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingwen Fan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ani Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Guowei Zheng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaxin Ma
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xuezhong Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Xuezhong Shi, ; Yongli Yang,
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Xuezhong Shi, ; Yongli Yang,
| |
Collapse
|
9
|
Liu K, Sun Q, Liu Q, Li H, Zhang W, Sun C. Focus on immune checkpoint PD-1/PD-L1 pathway: New advances of polyphenol phytochemicals in tumor immunotherapy. Biomed Pharmacother 2022; 154:113618. [DOI: 10.1016/j.biopha.2022.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/02/2022] Open
|
10
|
Kalkusova K, Smite S, Darras E, Taborska P, Stakheev D, Vannucci L, Bartunkova J, Smrz D. Mast Cells and Dendritic Cells as Cellular Immune Checkpoints in Immunotherapy of Solid Tumors. Int J Mol Sci 2022; 23:ijms231911080. [PMID: 36232398 PMCID: PMC9569882 DOI: 10.3390/ijms231911080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The immune checkpoint inhibitors have revolutionized cancer immunotherapy. These inhibitors are game changers in many cancers and for many patients, sometimes show unprecedented therapeutic efficacy. However, their therapeutic efficacy is largely limited in many solid tumors where the tumor-controlled immune microenvironment prevents the immune system from efficiently reaching, recognizing, and eliminating cancer cells. The tumor immune microenvironment is largely orchestrated by immune cells through which tumors gain resistance against the immune system. Among these cells are mast cells and dendritic cells. Both cell types possess enormous capabilities to shape the immune microenvironment. These capabilities stage these cells as cellular checkpoints in the immune microenvironment. Regaining control over these cells in the tumor microenvironment can open new avenues for breaking the resistance of solid tumors to immunotherapy. In this review, we will discuss mast cells and dendritic cells in the context of solid tumors and how these immune cells can, alone or in cooperation, modulate the solid tumor resistance to the immune system. We will also discuss how this modulation could be used in novel immunotherapeutic modalities to weaken the solid tumor resistance to the immune system. This weakening could then help other immunotherapeutic modalities engage against these tumors more efficiently.
Collapse
Affiliation(s)
- Katerina Kalkusova
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Sindija Smite
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Elea Darras
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Pavla Taborska
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Dmitry Stakheev
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Luca Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Jirina Bartunkova
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Daniel Smrz
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
- Correspondence: ; Tel.: +420-224-435-968; Fax: +420-224-435-962
| |
Collapse
|
11
|
Guo J, Yang Q, Wei S, Shao J, Zhao T, Guo L, Liu J, Chen J, Wang G. Low expression of PRDM5 predicts poor prognosis of esophageal squamous cell carcinoma. BMC Cancer 2022; 22:745. [PMID: 35799142 PMCID: PMC9264607 DOI: 10.1186/s12885-022-09787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background The role of the PRDM5 in esophageal squamous cell carcinoma (ESCC) has not been revealed. This study investigated the relationship between PRDM5 expression and survival outcome in esophageal squamous cell carcinoma and explored the mechanism in tumor development. Methods In present study, expression of PRDM5 mRNA in esophageal squamous cell carcinoma patients was conducted using the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. The expression of PRDM5 was assessed by immunohistochemical staining. Kaplan-Meier curve and Cox regression analysis was performed to analyze the survival outcome and independent predictive factors. qRT-PCR and Methylation-specific PCR were performed to identify the mRNA level of PRDM5 and Methylation rate. Cibersort algorithm to analyze the relationship between PRDM5 expression and immune cell invasion. Western-blot was performed to confirm the expression of esophageal tumor tissues and adjacent tissues. Results The TCGA database and GEO database show that PRDM5 mRNA level in esophageal squamous cell carcinoma adjacent tissues was higher than that of cancer tissues, and ESCC patients with high expression of PRDM5 mRNA had better overall survival. Tissue microarray showed that the protein level of PRDM5 in the adjacent tissues of patients with ESCC was higher than that in cancer tissues, and the expression level of PRDM5 was significantly correlated with the grade of clinicopathological characteristics (P < 0.001). Patients with high expression of PRDM5 displayed a better OS and DFS. Cox regression analysis showed that PRDM5 was an independent risk factor and prognostic factor for ESCC patients (HR: 2.626, 95%CI: 1.824–3.781; P < 0.001). The protein level of PRDM5 matched with the transcriptional level, whereas the DNA methylation affected the transcriptional level. Cibersort showed that T cells CD4 memory resting, mast cells resting, eosinophils, M2 macrophages and mast cells activated were significantly positively correlated with PRDM5 expression (P < 0.05), while regulatory T cells, monocytes and dendritic cells negatively correlated with PRDM5 expression (P < 0.05). Conclusion PRDM5 can be used as a biomarker to predict the survival of ESCC patients. Furthermore, PRDM5 expression in ESCC cells may affect WNT/β-catenin signaling pathways, thus further affect the ESCC cell proliferation, migration, and invasion capacity. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09787-8.
Collapse
Affiliation(s)
- Jing Guo
- Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Qiuxing Yang
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Sheng Wei
- Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Jingjing Shao
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Tianye Zhao
- Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Liyuan Guo
- Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Jia Liu
- Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Jia Chen
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Gaoren Wang
- Department of Radiation Oncology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China.
| |
Collapse
|
12
|
Laureano RS, Sprooten J, Vanmeerbeerk I, Borras DM, Govaerts J, Naulaerts S, Berneman ZN, Beuselinck B, Bol KF, Borst J, Coosemans A, Datsi A, Fučíková J, Kinget L, Neyns B, Schreibelt G, Smits E, Sorg RV, Spisek R, Thielemans K, Tuyaerts S, De Vleeschouwer S, de Vries IJM, Xiao Y, Garg AD. Trial watch: Dendritic cell (DC)-based immunotherapy for cancer. Oncoimmunology 2022; 11:2096363. [PMID: 35800158 PMCID: PMC9255073 DOI: 10.1080/2162402x.2022.2096363] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/01/2022] [Accepted: 06/28/2022] [Indexed: 12/21/2022] Open
Abstract
Dendritic cell (DC)-based vaccination for cancer treatment has seen considerable development over recent decades. However, this field is currently in a state of flux toward niche-applications, owing to recent paradigm-shifts in immuno-oncology mobilized by T cell-targeting immunotherapies. DC vaccines are typically generated using autologous (patient-derived) DCs exposed to tumor-associated or -specific antigens (TAAs or TSAs), in the presence of immunostimulatory molecules to induce DC maturation, followed by reinfusion into patients. Accordingly, DC vaccines can induce TAA/TSA-specific CD8+/CD4+ T cell responses. Yet, DC vaccination still shows suboptimal anti-tumor efficacy in the clinic. Extensive efforts are ongoing to improve the immunogenicity and efficacy of DC vaccines, often by employing combinatorial chemo-immunotherapy regimens. In this Trial Watch, we summarize the recent preclinical and clinical developments in this field and discuss the ongoing trends and future perspectives of DC-based immunotherapy for oncological indications.
Collapse
Affiliation(s)
- Raquel S Laureano
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeerk
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Daniel M Borras
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Zwi N Berneman
- Department of Haematology, Antwerp University Hospital, Edegem, Belgium
- Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | | | - Kalijn F Bol
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - an Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, Ku Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Jitka Fučíková
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Lisa Kinget
- Department of General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - Bart Neyns
- Department of Medical Oncology, UZ Brussel, Brussels, Belgium
| | - Gerty Schreibelt
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelien Smits
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, Integrated Personalized and Precision Oncology Network, University of Antwerp, Wilrijk, Belgium
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sandra Tuyaerts
- Department of Medical Oncology, UZ Brussel, Brussels, Belgium
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - I Jolanda M de Vries
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yanling Xiao
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Abhishek D Garg
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Yang Y, Wang N, Shi X, Wang Y, Yang C, Fan J, Jia X. Construction of an immune infiltration landscape based on immune-related genes in cervical cancer. Comput Biol Med 2022; 146:105638. [DOI: 10.1016/j.compbiomed.2022.105638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/14/2022]
|