1
|
Metelmann S, Thompson A, Donten A, Oke S, Sun S, Borrow R, Xu F, Vivancos R, Decraene V, Pellis L, Hall I. A systematic review to identify research gaps in studies modeling MenB vaccinations against Neisseria infections. PLoS One 2025; 20:e0316184. [PMID: 39746102 PMCID: PMC11694989 DOI: 10.1371/journal.pone.0316184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
The genus Neisseria includes two major human pathogens: N. meningitidis causing bacterial meningitis/septicemia and N. gonorrhoeae causing gonorrhoea. Mathematical models have been used to simulate their transmission and control strategies, and the recent observation of a meningococcal B (MenB) vaccine being partially effective against gonorrhoea has led to an increased modeling interest. Here we conducted a systematic review of the literature, focusing on studies that model vaccination strategies with MenB vaccines against Neisseria incidence and antimicrobial resistance. Using journal, preprint, and grey literature repositories, we identified 52 studies that we reviewed for validity, model approaches and assumptions. Most studies showed a good quality of evidence, and the variety of approaches along with their different modeling angles, was assuring especially for gonorrhoea studies. We identified options for future research, including the combination of both meningococcal and gonococcal infections in studies to have better estimates for vaccine benefits, and the spill over of gonorrhoea infections from the heterosexual to the MSM community and vice versa. Cost-effectiveness studies looking at at-risk and the wider populations can then be used to inform vaccine policies on gonorrhoea, as they have for meningococcal disease.
Collapse
Affiliation(s)
- Soeren Metelmann
- Field Service, UK Health Security Agency, Liverpool, United Kingdom
| | - Alexander Thompson
- School of Health Sciences, Manchester University, Manchester, United Kingdom
| | - Anna Donten
- School of Health Sciences, Manchester University, Manchester, United Kingdom
| | - Segun Oke
- School of Mathematics, Manchester University, Manchester, United Kingdom
| | - Suzy Sun
- Blood Safety, Hepatitis, Sexually Transmitted Infections and HIV Division, UKHSA, London, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Feng Xu
- School of Mathematics, Manchester University, Manchester, United Kingdom
| | - Roberto Vivancos
- Field Service, UK Health Security Agency, Liverpool, United Kingdom
| | - Valerie Decraene
- Field Service, UK Health Security Agency, Liverpool, United Kingdom
| | - Lorenzo Pellis
- School of Mathematics, Manchester University, Manchester, United Kingdom
| | - Ian Hall
- School of Mathematics, Manchester University, Manchester, United Kingdom
| |
Collapse
|
2
|
Modelling the impact of 4CMenB and MenACWY meningococcal combined vaccination strategies including potential 4CMenB cross-protection: An application to England. Vaccine 2020; 38:7558-7568. [DOI: 10.1016/j.vaccine.2020.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 01/23/2023]
|
3
|
Azarian T, Martinez PP, Arnold BJ, Qiu X, Grant LR, Corander J, Fraser C, Croucher NJ, Hammitt LL, Reid R, Santosham M, Weatherholtz RC, Bentley SD, O’Brien KL, Lipsitch M, Hanage WP. Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. PLoS Biol 2020; 18:e3000878. [PMID: 33091022 PMCID: PMC7580979 DOI: 10.1371/journal.pbio.3000878] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/18/2020] [Indexed: 11/30/2022] Open
Abstract
Predicting how pathogen populations will change over time is challenging. Such has been the case with Streptococcus pneumoniae, an important human pathogen, and the pneumococcal conjugate vaccines (PCVs), which target only a fraction of the strains in the population. Here, we use the frequencies of accessory genes to predict changes in the pneumococcal population after vaccination, hypothesizing that these frequencies reflect negative frequency-dependent selection (NFDS) on the gene products. We find that the standardized predicted fitness of a strain, estimated by an NFDS-based model at the time the vaccine is introduced, enables us to predict whether the strain increases or decreases in prevalence following vaccination. Further, we are able to forecast the equilibrium post-vaccine population composition and assess the invasion capacity of emerging lineages. Overall, we provide a method for predicting the impact of an intervention on pneumococcal populations with potential application to other bacterial pathogens in which NFDS is a driving force.
Collapse
Affiliation(s)
- Taj Azarian
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, United States of America
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Pamela P. Martinez
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Brian J. Arnold
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Xueting Qiu
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Lindsay R. Grant
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jukka Corander
- Helsinki Institute for Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Infection Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Christophe Fraser
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Laura L. Hammitt
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Raymond Reid
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Mathuram Santosham
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Robert C. Weatherholtz
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Stephen D. Bentley
- Infection Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | | | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - William P. Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Reid MC, Peebles K, Stansfield SE, Goodreau SM, Abernethy N, Gottlieb GS, Mittler JE, Herbeck JT. Models to predict the public health impact of vaccine resistance: A systematic review. Vaccine 2019; 37:4886-4895. [PMID: 31307874 DOI: 10.1016/j.vaccine.2019.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/12/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022]
Abstract
Pathogen evolution is a potential threat to the long-term benefits provided by public health vaccination campaigns. Mathematical modeling can be a powerful tool to examine the forces responsible for the development of vaccine resistance and to predict its public health implications. We conducted a systematic review of existing literature to understand the construction and application of vaccine resistance models. We identified 26 studies that modeled the public health impact of vaccine resistance for 12 different pathogens. Most models predicted that vaccines would reduce overall disease burden in spite of evolution of vaccine resistance. Relatively few pathogens and populations for which vaccine resistance may be problematic were covered in the reviewed studies, with low- and middle-income countries particularly under-represented. We discuss the key components of model design, as well as patterns of model predictions.
Collapse
Affiliation(s)
- Molly C Reid
- Department of Epidemiology, 1959 NE Pacific Street, Magnuson Health Sciences Center, Room F-262, Seattle, WA 98195, United States; International Clinical Research Center, Department of Global Health, 908 Jefferson St., Seattle, WA 98104, United States.
| | - Kathryn Peebles
- Department of Epidemiology, 1959 NE Pacific Street, Magnuson Health Sciences Center, Room F-262, Seattle, WA 98195, United States; International Clinical Research Center, Department of Global Health, 908 Jefferson St., Seattle, WA 98104, United States.
| | - Sarah E Stansfield
- Department of Epidemiology, 1959 NE Pacific Street, Magnuson Health Sciences Center, Room F-262, Seattle, WA 98195, United States; Department of Anthropologym Denny Hall, University of Washington, Seattle, WA 98195, United States.
| | - Steven M Goodreau
- Department of Epidemiology, 1959 NE Pacific Street, Magnuson Health Sciences Center, Room F-262, Seattle, WA 98195, United States; Department of Anthropologym Denny Hall, University of Washington, Seattle, WA 98195, United States.
| | - Neil Abernethy
- Department of Biomedical Informatics and Medical Education, University of Washington, Box 358047, Seattle, WA 98195, United States; Department of Health Services, 1959 NE Pacific St, Magnuson Health Sciences Center, Room H-680, Seattle, WA 98195-7660, United States.
| | - Geoffrey S Gottlieb
- Division of Allergy and Infectious Diseases & Center for Emerging & Re-Emerging Infectious Diseases, Department of Medicine & Department of Global Health, 750 Republican St., Building E, Seattle, WA 98109, United States.
| | - John E Mittler
- Department of Microbiology, 750 Republican St., Building F, Seattle, WA 98109, United States.
| | - Joshua T Herbeck
- International Clinical Research Center, Department of Global Health, 908 Jefferson St., Seattle, WA 98104, United States.
| |
Collapse
|
5
|
Vyse A, Ellsbury G, Madhava H. Protecting UK adolescents and adults against meningococcal serogroup B disease. Expert Rev Vaccines 2018; 17:229-237. [PMID: 29374982 DOI: 10.1080/14760584.2018.1432360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Meningococcal serogroup B disease (MenB) is endemic in the UK and continues to cause the majority of invasive meningococcal disease. Two broadly protective protein-based MenB vaccines are now licensed and available, both with wide age indications. Whilst the UK recently became the first country to routinely vaccinate infants against MenB, a recommendation has not yet been extended to older age groups who can also now benefit from these vaccines. AREAS COVERED This review summarizes the evidence supporting the rationale for adolescents and adults in the UK to consider MenB vaccination. EXPERT COMMENTARY Although MenB disease is rare, the UK reports one of the highest annual incidence rates within the European region, with over a third of cases occurring in those aged 10+ years. Overall, the case fatality rate following MenB disease in the UK is 4.2% but can be more than twice as high in teenagers and adults than in infants, and survivors are often left with life-changing disabling sequelae. MenB outbreaks are unpredictable and continue to occur in regions where it is endemic. These outbreaks often affect students attending school or university, with living on a campus being an important risk factor. Concerned individuals in this age group should consider MenB vaccination.
Collapse
Affiliation(s)
- Andrew Vyse
- a Vaccine Medical Affairs , Pfizer Limited, Walton Oaks , Surrey , UK
| | - Gillian Ellsbury
- a Vaccine Medical Affairs , Pfizer Limited, Walton Oaks , Surrey , UK
| | - Harish Madhava
- a Vaccine Medical Affairs , Pfizer Limited, Walton Oaks , Surrey , UK
| |
Collapse
|
6
|
Meningococcal carriage in children and young adults in the Philippines: a single group, cross-sectional study. Epidemiol Infect 2016; 145:126-132. [PMID: 27655066 PMCID: PMC9507336 DOI: 10.1017/s0950268816002119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This cross-sectional prevalence study investigates meningococcal carriage for the first time in a Southeast Asian population. Posterior pharyngeal swabs were collected between August 2013 and March 2014 from 937 healthy Filipinos aged 5-24 years attending school or university in Manila. Of these, 35 were found to be carriers giving an overall carriage prevalence of 3·7% [95% confidence interval (CI) 2·6-5·2]. Carriage was associated with age (P < 0·001) and was highest (9·0%, 95% CI 5·5-13·8) in subjects aged 10-14 years, but was comparatively low (<3%) in all other age groups considered. This suggests that an immunization programme in the Philippines designed to reduce carriage acquisition and induce herd immunity may require a vaccine dose before the age of 10 years. Serogroup B was most commonly carried (65·7%, 95% CI 47·8-80·9), with a small number of carriers for serogroups C, Y and W also present. Two individuals (5·7%, 95% CI 0·7-19·2) who were simultaneously carrying multiple serogroups were identified. This exploratory study provides valuable insight into the asymptomatic carriage of Neisseria meningitidis in a healthy subset of the Filipino population and illustrates the importance of generating local carriage data.
Collapse
|