1
|
Bhatia H, Adhikari P, Verma P, Singh YP, Su T, Srivastava G. Early Miocene ventricose bamboo from south Asia with implications for evolutionary ecology and biogeography. iScience 2025; 28:112455. [PMID: 40343278 PMCID: PMC12059718 DOI: 10.1016/j.isci.2025.112455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/20/2025] [Accepted: 04/11/2025] [Indexed: 05/11/2025] Open
Abstract
The evolutionary history of bamboo has remained elusive, primarily due to the scarcity of fossils that exhibit varied morphological traits, often lacking detailed features. In this study, we introduce a remarkable fossil find, a bamboo culm from the early Miocene sediments of the Neyveli lignite mine in India. This fossil is distinguished by its nodal buds and notably ventricose (swollen) nodes-features rarely preserved in the fossil record. This unique specimen stands alone to showcase such specific morphological characteristics and is the earliest known bamboo fossil from southern India. Its discovery is a significant breakthrough in the study of bamboo diversity, offering fresh insights into the morphological evolutionary history of bamboo and lending support to the hypothesis of a Gondwanan origin for Asian bamboos. Furthermore, this fossil is crucial for reconstructing past environments, suggesting that ancient bamboos likely evolved in warm, humid climatic conditions.
Collapse
Affiliation(s)
- Harshita Bhatia
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow 226007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Purushottam Adhikari
- Department of Geology, Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan, Nepal
- Central Department of Geology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Poonam Verma
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow 226007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yogesh Pal Singh
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow 226007, India
| | - Tao Su
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation & Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China
| | - Gaurav Srivastava
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow 226007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Bhanse P, Singh L, Qureshi A. Functional and Genomic Potential of Burkholderia contaminans PB_AQ24 Isolate for Boosting the Growth of Bamboo Seedlings in Heavy Metal Contaminated Soils. Appl Biochem Biotechnol 2025; 197:2437-2456. [PMID: 39754688 DOI: 10.1007/s12010-024-05156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
The present study investigated the genomic and functional potential of Burkholderia contaminans PB_AQ24, a bacterial strain isolated from the municipal solid waste dumpsite, for boosting the growth of Dendrocalamus strictus (Male bamboo) seedlings. The isolated strain exhibited high potency for metal solubilization and ACC (1-Aminocyclopropane-1-carboxylate) deaminase activity. Its genome harbored diverse genes responsible for nitrogen and phosphorus utilization (trpABCDES, iaaH, acdS, pstABCS, phoAUD, pqqABCDE, kdpABC, gln, and nirBD) and also an abundance of heavy metal tolerant genes (ftsH, hptX, iscX-fdx-hscAB-iscAUR, mgtA, corA, and copC). Seeds priming experiments carried out in heavy metal contaminated soils (such as waste dumpsite soil (WDS), fly ash dumpsite soil (FAS) and natural garden soil (NGS control)) augmented with Burkholderia contaminans sp. PB_AQ24 showed 85% sustenance of seedlings in WDS and 80% in FAS. The study thus highlighted the potential features in isolated bacterial strain Burkholderia sp. PB_AQ24 (NCBI accession no. JAQOUG000000000), which could boost the growth of bamboo seedlings in heavy metal contaminated soils and may be applied for restoration and rejuvenation of contaminated sites.
Collapse
Affiliation(s)
- Poonam Bhanse
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Asifa Qureshi
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India.
| |
Collapse
|
3
|
Dave N, Hebbale D. The prospect of bamboo and non-fodder rice husk for sustainable bioethanol production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:9236-9249. [PMID: 40119991 DOI: 10.1007/s11356-025-36271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Due to the rapid industrialization globally, there is a constant increase in demand for energy, which drives up fuel prices and contributes to the depletion of fossil fuels. The rise in the use of fossil fuels results in increasing greenhouse gas emissions contributing to biodiversity loss. Thus, the development of alternative green biofuel (e.g., bioethanol) from renewable and surplus biomass resources has taken center stage as our attention is drawn to environmental concerns and energy security. However, till now, the studies pertaining to the process optimization and techno-economic analysis of bioethanol production using indigenous non-conventional biomass resources are scarcely reported for the industrial application. Henceforth, this study employed Bambusa bambos (BB) culm and non-fodder rice husk (NFRH) as the raw material due to its high holocellulose content (60-70%) for bioethanol production and based on its biomass availability in the agrarian state of Karnataka (India). Thereupon, the statistical design of experiment (DoE) method was applied for the thermo-chemical pretreatment optimization of the collected biomass resources, and the fermentation was performed using osmotolerant Angel™ yeast for the bioethanol production. Overall, the maximum reducing sugar (RS) concentration of 70.7 ± 2.6 g/L under optimal condition of 10% (w/v) loading at 121 °C for 30 min using 0.3 M sulfuric acid and bioethanol concentration of 4.7 ± 0.8 g/L (0.42 g/g RS) with conversion efficiency of 70% was obtained from the indigenous BB biomass, whereas the NFRH biomass yielded the maximal concentration of RS around 91.5 ± 2.2 g/L as per optimized conditions [15% w/v loading at 121 °C for 30 min using 0.5 M sulfuric acid] with 61% saccharification efficiency and bioethanol productivity of 5.3 ± 0.4 g/L (0.10 g/g RS). Conclusively, 61-101 L of bioethanol is estimated from 1 tonne of BB and NFRH biomass resources from the study with net energy ratio of greater than 1.0, low carbon footprint (0.14-1.97 kg carbon dioxide equivalent), bioconversion of 10-40% as per the mass-balance analysis, and production costing of less than 100 ₹/L; hence, this result provides a cost-effective sustainable solution for bioethanol production that can raise farmers income as well as enables the rural development.
Collapse
Affiliation(s)
- Niyam Dave
- Bioethanol Lab, Ankit Engineering Pvt. Ltd, Bengaluru, Karnataka, India
| | - Deepthi Hebbale
- Bioethanol Lab, Ankit Engineering Pvt. Ltd, Bengaluru, Karnataka, India.
- Chanakya University Global Campus, NH - 648, Haraluru -Polanahalli Near Kempegowda International Airport Devanahalli, Bengaluru, 562165, India.
| |
Collapse
|
4
|
Sharma P, Abrol V, Nazir J, Samnotra RK, Gupta SK, Anand S, Biswas JK, Shukla S, Kumar M. Optimizing soil properties, water use efficiency, and crop yield through biochar and organic manure integration in organic soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123673. [PMID: 39673852 DOI: 10.1016/j.jenvman.2024.123673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
Speedy decomposition of organic manure and efficient utilization of rice husk waste are two critical challenges for sustainable environment and soil health management. However, understanding the synergistic effects of rice husk biochar (B) and organic manure (OM) on soil properties and crop growth in subtropical conditions remains unclear. A field study was conducted to investigate the impact of sole and combined application of rice husk biochar (0 t ha-1, 3 t ha-1), farmyard manure (FYM), and vermicompost (VC) on soil aggregation, aggregate-associated carbon, water use efficiency (WUE), economic benefits, and yield of radish crop in sandy clay loam organic soil. Biochar application enhanced the macroaggregate stability and aggregate associated C contents. Soil moisture, infiltration rate (IR) and WUE were significantly improved by 9.2%, 20.8% and 13.6%, respectively, with addition of biochar, which might be related to improved aggregate-associated carbon and water retention in the soil. Similarly, improved soil properties, WUE were noticed in the treatment receiving combination of FYM + VC over the control. 16% and 30.9% higher radish yield was observed with biochar and FYM + VC amended treatments compared without B0 and manure OM0, respectively. The integrated use of biochar (3 t ha-1) and OM (FYM + VC) resulted in highest economic benefits of net return (₹ 138,325 ha-1) and B:C (1:5) ratio and least in control plots. These results indicate that adding biochar in organic management practices considerably improved the soil properties, WUE which resulted in increased organic radish production.
Collapse
Affiliation(s)
- Peeyush Sharma
- Division of Soil Science & Ag-Chem, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, 180009, India
| | - Vikas Abrol
- Division of Soil Science & Ag-Chem, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, 180009, India.
| | - Jasiya Nazir
- Division of Soil Science & Ag-Chem, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, 180009, India
| | - R K Samnotra
- Division of Vegetable Science and Floriculture Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, 180009, India
| | - Sushil Kumar Gupta
- Directorate of Research, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu-180009, India
| | - Shrdha Anand
- Department of Chemistry, GDC Kathua-184104, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies & International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Smriti Shukla
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Manish Kumar
- Amity Institute of Environmental Sciences (AIES), Amity University Uttar Pradesh (AUUP), Noida, India.
| |
Collapse
|
5
|
Timko MT, Woodard TM, Graham AE, Bennett JA, Krueger R, Panahi A, Rahbar N, Walters J, Dunn D. Thinking globally, acting locally in the 21 st century: Bamboo to bioproducts and cleaned mine sites. iScience 2024; 27:110763. [PMID: 39381743 PMCID: PMC11458977 DOI: 10.1016/j.isci.2024.110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Current solutions to global challenges place tension between global benefits and local impacts. The result is increasing opposition to implementation of beneficial climate policies. Prioritizing investment in projects with tangible local benefits that also contribute to global climate change can resolve this tension and make local communities' partners instead of antagonists to change; the approach advocated is a new take on "thinking globally, acting locally". This approach is a departure from the usual strategy of focusing resources on solutions perceived to have the largest potential global impact, without regards to local concerns. Reclamation of polluted mine sites by using fast growing bamboo to remove heavy metals provides a case study to show what is possible. Effective implementation of thinking globally while acting locally will require increased coordination between different types of researchers, new educational models, and greater stakeholder participation in problem identification and solution development.
Collapse
Affiliation(s)
- Michael T. Timko
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Timothy M. Woodard
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Aubrey E. Graham
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Department of Chemistry & Biology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Department of Social Science & Policy Studies, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Julian A. Bennett
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Department of Social Science & Policy Studies, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Department of Civil, Environmental, & Architectural Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Robert Krueger
- Department of Social Science & Policy Studies, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Institute of Science & Technology for Development, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Aidin Panahi
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Nima Rahbar
- Department of Civil, Environmental, & Architectural Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - James Walters
- Avos Bioenergy, 3187 Danmark Dr, West Friendship, MD 21794, USA
| | - Darnell Dunn
- School of Business, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| |
Collapse
|
6
|
Trivedi K, Marvaniya K, Dobariya P, Pathak KC, Patel K, Sutariya B, Sharma A, Kushwaha S. Assessment and characterization of solid and hazardous waste from inorganic chemical industry: Potential for energy recovery and environmental sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122036. [PMID: 39094419 DOI: 10.1016/j.jenvman.2024.122036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/21/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Rapid global urbanization and economic growth have significantly increased solid waste volumes, with hazardous waste posing substantial health and environmental risks. Co-processing strategies for industrial solid and hazardous waste as alternative fuels highlight the importance of integrated waste management for energy and material recovery. This study identifies and characterizes solid and hazardous industrial wastes with high calorific values from various industrial processes at Nirma Industries Limited. Nine types of combustible industrial wastes were analyzed: discarded containers (W1), plastic waste (W2), spent ion exchange resins from RO plants (W3), sludge from effluent treatment in soap plants (W4), glycerine foot from soap plants (W5), rock wool puff material (W6), fiber-reinforced plastic waste (W7), spent activated carbon (W8), and spent cartridges from reverse osmosis plants (W9). Physical characterization, proximate and ultimate analysis, heavy metal concentration evaluation, and thermogravimetric analysis were conducted to assess their properties, revealing high calorific values exceeding 2500 kcal/kg. Notably, W1 and W2 exhibited the highest calorific values (∼10,870 kcal/kg), followed by W6 and W8 (∼6000 kcal/kg) and W9 (∼8727 kcal/kg). Safe heavy metal levels are safe, and high calorific values support the prospects of energy recovery and economic and environmental benefits, reducing landfill reliance and enhancing sustainable waste management.
Collapse
Affiliation(s)
- Kalpesh Trivedi
- Department of Environmental Science and Engineering, Marwadi University, Rajkot, 360003, Gujarat, India; Quality Assurance & Environment Department, Nirma Limited, Bhavnagar, 364313, Gujarat, India
| | - Karan Marvaniya
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
| | - Priyanka Dobariya
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
| | - K C Pathak
- Quality Assurance & Environment Department, Nirma Limited, Bhavnagar, 364313, Gujarat, India
| | - Ketan Patel
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
| | - Bhaumik Sutariya
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
| | - Archana Sharma
- Department of Agriculture, Marwadi University, Rajkot, Gujarat, 360003, India.
| | - Shilpi Kushwaha
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India.
| |
Collapse
|
7
|
Bhat AA, Shakeel A, Bhat AH, Alajmi MF, Khan AA, Kumar M. Exploiting fly ash as an ecofriendly pesticide/nematicide on Abesmoschus esculuntus: Insights into soil amendment-induced antioxidant fight against nematode mediated ROS. CHEMOSPHERE 2024; 358:142143. [PMID: 38685319 DOI: 10.1016/j.chemosphere.2024.142143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Conventional pest control measures, such as chemical pesticides and nematicides, have limited efficacy and raise environmental concerns, necessitating sustainable and eco-friendly alternatives for pest management. Therefore, to find a complementary eco-friendly pesticide/nematicide, this study investigated the role of fly ash (FA) in managing a notorious pest, Meloidogyne javanica and its impact on the growth and physiology of Abelmoschus esculentus. Molecular characterization using SSU and LSU rDNA gene markers confirmed the identity of Indian M. javanica as belonging to the same species. Biotic stress induced by nematode infection was significantly alleviated (P < 0.05) by FA application at a 20% w/v, regulating of ROS accumulation (44.1% reduction in superoxide anions and 39.7% reduction in hydrogen peroxide content) in the host plant. Moreover, FA enhanced antioxidant defence enzymes like superoxide dismutase (46.6%) and catalase (112%) to combat nematode induced ROS. Furthermore, the application of FA at a 20% concentration significantly improved the biomass and biochemical attributes of okra. Fly ash also upregulated the activity of the important osmo-protectant proline (11.5 μmol/g FW) to mitigate nematode stress in host cells. Suppression of disease indices like gall index and reproduction factor, combined with in-vitro experiments, revealed that FA exhibits strong nematode mortality capacity and thus can be used as a sustainable and eco-friendly control agent against root-knot nematodes.
Collapse
Affiliation(s)
- Adil Ameen Bhat
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Adnan Shakeel
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Aashaq Hussain Bhat
- Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abrar Ahmed Khan
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University, Noida, India.
| |
Collapse
|
8
|
Chen Z, Du K, Li F, Song W, Boukhair M, Li H, Zhang S. Mussel-inspired laccase-mediated polydopamine graft onto bamboo fibers and its improvement effect on poly(3-hydroxybutyrate) based biocomposite. Int J Biol Macromol 2023; 238:123985. [PMID: 36921826 DOI: 10.1016/j.ijbiomac.2023.123985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 03/14/2023]
Abstract
Bamboo fiber (BF) reinforced polyhydroxybutyrate (PHB) has become popular in developing an eco-friendly and sustainable biocomposite, while the weak interfacial compatibility between them is a major problem to overcome. This work, inspired by mussel super adhesion, creates a facile, highly efficient, and environmentally friendly solution based on in situ laccase-catalysed dopamine polymerization under a naturally acidic environment. The result indicates that a stabilized polydopamine coating is successfully grafted onto the lignin of BF, and it also enhances the thermal stability of the BF and biocomposite. Furthermore, modification of BF via laccase-catalysed polydopamine is superior to the conventional method of polydopamine under alkaline condition, and has outstanding advantages in terms of BF integrity protection. The optimal composition of biocomposite with BF treated by polydopamine under 1 U/ml concentration of laccase shows improvement in the impact strength, tensile strength, tensile modulus, bending strength, and modulus of elastic by 33.85 %, 9.27 %, 31.74 %, 11.76 %, and 12.92 %, respectively, compared to the unmodified counterpart. This work provides an insightful understanding of the mechanism and benefits of laccase-catalysed polydopamine modification of BF in a natural environment. It contributes to the efficient and environmentally friendly utilization of polydopamine for fabricating high-performance lignocellulosic fiber reinforced biocomposites.
Collapse
Affiliation(s)
- Zhenghao Chen
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China; Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164, United States of America
| | - Keke Du
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Fei Li
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Wei Song
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Mustapha Boukhair
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164, United States of America
| | - Shuangbao Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
9
|
Kumar M, Sridharan S, Sawarkar AD, Shakeel A, Anerao P, Mannina G, Sharma P, Pandey A. Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160031. [PMID: 36372172 DOI: 10.1016/j.scitotenv.2022.160031] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceutical and personnel care products (PPCPs) from wastewater are a potential hazard to the human health and wildlife, and their occurrence in wastewater has caught the concern of researchers recently. To deal with PPCPs, various treatment technologies have been evolved such as physical, biological, and chemical methods. Nevertheless, modern and efficient techniques such as advance oxidation processes (AOPs) demand expensive chemicals and energy, which ultimately leads to a high treatment cost. Therefore, integration of chemical techniques with biological processes has been recently suggested to decrease the expenses. Furthermore, combining ozonation with activated carbon (AC) can significantly enhance the removal efficiency. There are some other emerging technologies of lower operational cost like photo-Fenton method and solar radiation-based methods as well as constructed wetland, which are promising. However, feasibility and practicality in pilot-scale have not been estimated for most of these advanced treatment technologies. In this context, the present review work explores the treatment of emerging PPCPs in wastewater, via available conventional, non-conventional, and integrated technologies. Furthermore, this work focused on the state-of-art technologies via an extensive literature search, highlights the limitations and challenges of the prevailing commercial technologies. Finally, this work provides a brief discussion and offers future research directions on technologies needed for treatment of wastewater containing PPCPs, accompanied by techno-economic feasibility assessment.
Collapse
Affiliation(s)
- Manish Kumar
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy.
| | - Srinidhi Sridharan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Ankush D Sawarkar
- Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440 010, India
| | - Adnan Shakeel
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Prathmesh Anerao
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, India; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| |
Collapse
|
10
|
Kumar M, Ambika S, Hassani A, Nidheesh PV. Waste to catalyst: Role of agricultural waste in water and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159762. [PMID: 36306836 DOI: 10.1016/j.scitotenv.2022.159762] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Presently, owing to the rapid development of industrialization and urbanization activities, a huge quantity of wastewater is generated that contain toxic chemical and heavy metals, imposing higher environmental jeopardies and affecting the life of living well-being and the economy of the counties, if not treated appropriately. Subsequently, the advancement in sustainable cost-effective wastewater treatment technology has attracted more attention from policymakers, legislators, and scientific communities. Therefore, the current review intends to highlight the recent development and applications of biochars and/or green nanoparticles (NPs) produced from agricultural waste via green routes in removing the refractory pollutants from water and wastewater. This review also highlights the contemporary application and mechanism of biochar-supported advanced oxidation processes (AOPs) for the removal of organic pollutants in water and wastewater. Although, the fabrication and application of agriculture waste-derived biochar and NPs are considered a greener approach, nevertheless, before scaling up production and application, its toxicological and life-cycle challenges must be taken into account. Furthermore, future efforts should be carried out towards process engineering to enhance the performance of green catalysts to improve the economy of the process.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Selvaraj Ambika
- Faculty, Department of Civil Engineering, Indian Institute of Technology Hyderabad, Telangana, India; Adjunct Faculty, Department of Climate Change, Indian Institute of Technology Hyderabad, Telangana, India; Faculty and Program Coordinator, E-Waste Resources Engineering and Management, Indian Institute of Technology Hyderabad, Telangana, India
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
11
|
Abhishek K, Shrivastava A, Vimal V, Gupta AK, Bhujbal SK, Biswas JK, Singh L, Ghosh P, Pandey A, Sharma P, Kumar M. Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158562. [PMID: 36089037 DOI: 10.1016/j.scitotenv.2022.158562] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Rising global temperature, pollution load, and energy crises are serious problems, recently facing the world. Scientists around the world are ambitious to find eco-friendly and cost-effective routes for resolving these problems. Biochar has emerged as an agent for environmental remediation and has proven to be the effective sorbent to inorganic and organic pollutants in water and soil. Endowed with unique attributes such as porous structure, larger specific surface area (SSA), abundant surface functional groups, better cation exchange capacity (CEC), strong adsorption capacity, high environmental stability, embedded minerals, and micronutrients, biochar is presented as a promising material for environmental management, reduction in greenhouse gases (GHGs) emissions, soil management, and soil fertility enhancement. Therefore, the current review covers the influence of key factors (pyrolysis temperature, retention time, gas flow rate, and reactor design) on the production yield and property of biochar. Furthermore, this review emphasizes the diverse application of biochar such as waste management, construction material, adsorptive removal of petroleum and oil from aqueous media, immobilization of contaminants, carbon sequestration, and their role in climate change mitigation, soil conditioner, along with opportunities and challenges. Finally, this review discusses the evaluation of biochar standardization by different international agencies and their economic perspective.
Collapse
Affiliation(s)
- Kumar Abhishek
- Department of Environment, Forest and Climate Change, Government of Bihar, Patna, India
| | | | - Vineet Vimal
- Institute of Minerals and Materials Technology, Orissa, India
| | - Ajay Kumar Gupta
- Department of Environment, Forest and Climate Change, Government of Bihar, Patna, India
| | - Sachin Krushna Bhujbal
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies & International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, Bihar, India.
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India.
| |
Collapse
|
12
|
Kumar D, Yadav RS, Kadam DM, Ahirwar LL, Dohare AK, Singh G. Development of bamboo- (Bambusa bambos) based bio-fence to protect field crops: Insights from a study in India's Bundelkhand region. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.943226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stray/wild animals can cause serious damages to crops, leading to accusations and counter accusations among villagers. In the Bundelkhand region of India, this problem is more severe due to “Anna Pratha,” that is, letting loose animals to open graze. Protective measures employed by farmers (barbed wire fencing, conventional fencing, etc.) are not fully effective and also require periodical maintenance, which involves additional costs and manpower. This necessitates the evolution of a cost-effective and long-term solution to minimize the problem. The current study seeks to evaluate the potential of thorny bamboo (Bambusa bambos) as a bio-fence creating deterrence to stray/wild animals at the ICAR—IISWC RC, the research farm of Datia, Madhya Pradesh, India. After 21 months of planting, bamboo plants attained the maximum plant height up to 4.47 m with the highest clump spread diameter of 30.50 cm. However, the growth of the bamboo bio-fence to be effective depends on the edaphic and management conditions. The findings revealed that planting bamboo at a distance of 80.00 cm in the continuous trench can be an effective bio-fence to avoid man–animal conflict. Huge crop losses were reported before the establishment of a bio-fence. In 2021–2022 (when bamboo plants turned into a closely spaced thicket, making a bio-fence), only two incidents of the invasion of animals were reported with no crop damage. The initial cost to develop a bamboo bio-fence was estimated at INR 5,796 for a length of 100 m. Therefore, the present study suggests that bamboo bio-fencing is an economical and effective crop protection measure against damage by wild/stray animals.
Collapse
|
13
|
Kumar M, Bolan N, Jasemizad T, Padhye LP, Sridharan S, Singh L, Bolan S, O'Connor J, Zhao H, Shaheen SM, Song H, Siddique KHM, Wang H, Kirkham MB, Rinklebe J. Mobilization of contaminants: Potential for soil remediation and unintended consequences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156373. [PMID: 35649457 DOI: 10.1016/j.scitotenv.2022.156373] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Land treatment has become an essential waste management practice. Therefore, soil becomes a major source of contaminants including organic chemicals and potentially toxic elements (PTEs) which enter the food chain, primarily through leaching to potable water sources, plant uptake, and animal transfer. A range of soil amendments are used to manage the mobility of contaminants and subsequently their bioavailability. Various soil amendments, like desorbing agents, surfactants, and chelating agents, have been applied to increase contaminant mobility and bioavailability. These mobilizing agents are applied to increase the contaminant removal though phytoremediation, bioremediation, and soil washing. However, possible leaching of the mobilized pollutants during soil washing is a major limitation, particularly when there is no active plant uptake. This leads to groundwater contamination and toxicity to plants and soil biota. In this context, the present review provides an overview on various soil amendments used to enhance the bioavailability and mobility of organic and inorganic contaminants, thereby facilitating increased risk when soil is remediated in polluted areas. The unintended consequences of the mobilization methods, when used to remediate polluted sites, are discussed in relation to the leaching of mobilized contaminants when active plant growth is absent. The toxicity of targeted and non-targeted contaminants to microbial communities and higher plants is also discussed. Finally, this review work summarizes the existing research gaps in various contaminant mobilization approaches, and prospects for future research.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia.
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Srinidhi Sridharan
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shiv Bolan
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - James O'Connor
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Haochen Zhao
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia
| | - Hocheol Song
- Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, United States
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India.
| |
Collapse
|
14
|
Bhanse P, Kumar M, Singh L, Awasthi MK, Qureshi A. Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: Opportunities, challenges, and prospects. CHEMOSPHERE 2022; 303:134954. [PMID: 35595111 DOI: 10.1016/j.chemosphere.2022.134954] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 05/02/2023]
Abstract
Soil is considered as a vital natural resource equivalent to air and water which supports growth of the plants and provides habitats to microorganisms. Changes in soil properties, productivity, and, inevitably contamination/stress are the result of urbanisation, industrialization, and long-term use of synthetic fertiliser. Therefore, in the recent scenario, reclamation of contaminated/stressed soils has become a potential challenge. Several customized, such as, physical, chemical, and biological technologies have been deployed so far to restore contaminated land. Among them, microbial-assisted phytoremediation is considered as an economical and greener approach. In recent decades, soil microbes have successfully been used to improve plants' ability to tolerate biotic and abiotic stress and strengthen their phytoremediation capacity. Therefore, in this context, the current review work critically explored the microbial assisted phytoremediation mechanisms to restore different types of stressed soil. The role of plant growth-promoting rhizobacteria (PGPR) and their potential mechanisms that foster plants' growth and also enhance phytoremediation capacity are focussed. Finally, this review has emphasized on the application of advanced tools and techniques to effectively characterize potent soil microbial communities and their significance in boosting the phytoremediation process of stressed soils along with prospects for future research.
Collapse
Affiliation(s)
- Poonam Bhanse
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manish Kumar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China.
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
15
|
Narayanan M, Ma Y. Influences of Biochar on Bioremediation/Phytoremediation Potential of Metal-Contaminated Soils. Front Microbiol 2022; 13:929730. [PMID: 35756072 PMCID: PMC9218714 DOI: 10.3389/fmicb.2022.929730] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
A number of anthropogenic and weathering activities accumulate heavy metals in soils, causing adverse effects on soil characteristics, microbial activity (diversity), agricultural practices, and underground aquifers. Controlling soil heavy metal pollution is difficult due to its persistence in soils, resulting in the deposition and transmission into the food web via agricultural food products, ultimately affecting human health. This review critically explores the potential for remediation of metal-contaminated soils using a biochar-based responsible approach. Plant-based biochar is an auspicious bio-based residue substance that can be used for metal-polluted soil remediation and soil improvement as a sustainable approach. Plants with rapid growth and increased biomass can meet the requirements for phytoremediation in large quantities. Recent research indicates significant progress in understanding the mechanisms of metal accumulation and contaminant movement in plants used for phytoremediation of metal-contaminated soil. Excessive contamination reduces plant biomass and growth, which has substantial hyperaccumulating possibilities and is detrimental to the phytoremediation process. Biochar derived from various plant sources can promote the growth and phytoremediation competence of native or wild plants grown in metal-polluted soil. Carbon-enriched biochar encourages native microbial growth by neutralizing pH and providing nutritional support. Thus, this review critically discusses the influence of plant and agricultural waste-based biochar on plant phytoremediation potential in metal-contaminated soils.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Department of Biotechnology, Division of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Bataillou G, Lee C, Monnier V, Gerges T, Sabac A, Vollaire C, Haddour N. Cedar Wood-Based Biochar: Properties, Characterization, and Applications as Anodes in Microbial Fuel Cell. Appl Biochem Biotechnol 2022; 194:4169-4186. [PMID: 35666383 DOI: 10.1007/s12010-022-03997-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 02/06/2023]
Abstract
In this study, the relationship between pyrolysis temperature of woody biomass and physicochemical properties of derived biochar was investigated for microbial fuel cell (MFC) application. Physical and chemical properties of biochar were characterized for different pyrolysis temperatures. Results showed that biochar obtained at 400 °C was not conductor, while biochars prepared at 600 °C, 700 °C, and 900 °C exhibited decreased electrical resistivity of (7 ± 6) × 103 Ω.m, (1.8 ± 0.2) Ω.m, and (16 ± 3) × 10-3 Ω.m, respectively. Rising pyrolysis temperature from 400 to 700 °C exhibited honeycomb-like macroporous structures of biochar with an increase in the specific surface area from 310 to 484 m2.g-1. However, the production of biochar at 900 °C reduced its specific surface area to 136 m2.g-1 and caused the loss of the ordered honeycomb structure. MFCs using anodes based on biochar prepared at 900 °C produced maximum power densities ((9.9 ± 0.6) mW.m-2) higher than that obtained with biochar pyrolyzed at 700 °C ((5.8 ± 0.1) mW.m-2) and with conventional carbon felt anodes ((1.9 ± 0.2) mW.m-2). SEM images of biochar-based anodes indicated the clogging of macropores in honeycomb structure of biochar prepared at 700 °C by growth of electroactive biofilms, which might impede the supply of substrate and the removal of metabolites from the inside of the electrode. These findings highlight that electrical conductivity of biochar is the major parameter for ensuring efficient anodes in microbial fuel cell application. Schematic representation of cedar wood-based biochar and its application as anode in MFC.
Collapse
Affiliation(s)
- Gregory Bataillou
- UMR5005, Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, 69130, Ecully, France
| | - Carine Lee
- UMR5005, Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, 69130, Ecully, France
| | - Virginie Monnier
- UMR5270, Univ Lyon, ECL, INSA Lyon, CNRS, UCBL, CPE Lyon, INL, 69130, Ecully, France
| | - Tony Gerges
- UMR5005, Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, 69130, Ecully, France
| | - Andrei Sabac
- UMR5005, Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, 69130, Ecully, France
| | - Christian Vollaire
- UMR5005, Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, 69130, Ecully, France
| | - Naoufel Haddour
- UMR5005, Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, 69130, Ecully, France.
| |
Collapse
|
17
|
Katiyar R, Chen CW, Singhania RR, Tsai ML, Saratale GD, Pandey A, Dong CD, Patel AK. Efficient remediation of antibiotic pollutants from the environment by innovative biochar: current updates and prospects. Bioengineered 2022; 13:14730-14748. [PMID: 36098071 PMCID: PMC9481080 DOI: 10.1080/21655979.2022.2108564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The increased antibiotic consumption and their improper management led to serious antibiotic pollution and its exposure to the environment develops multidrug resistance in microbes against antibiotics. The entry rate of antibiotics to the environment is much higher than its exclusion; therefore, efficient removal is a high priority to reduce the harmful impact of antibiotics on human health and the environment. Recent developments in cost-effective and efficient biochar preparation are noticeable for their effective removal. Moreover, biochar engineering advancements enhanced biochar remediation performance several folds more than in its pristine forms. Biochar engineering provides several new interactions and bonding abilities with antibiotic pollutants to increase remediation efficiency. Especially heteroatoms-doping significantly increased catalysis of biochar. The main focus of this review is to underline the crucial role of biochar in the abatement of emerging antibiotic pollutants. A detailed analysis of both native and engineered biochar is provided in this article for antibiotic remediation. There has also been discussion of how biochar properties relate to feedstock, production conditions and manufacturing technologies, and engineering techniques. It is possible to produce biochar with different surface functionalities by varying the feedstock or by modifying the pristine biochar with different chemicals and preparing composites. Subsequently, the interaction of biochar with antibiotic pollutants was compared and reviewed. Depending on the surface functionalities of biochar, they offer different types of interactions e.g., π-π stacking, electrostatic, and H-bonding to adsorb on the biochar surface. This review demonstrates how biochar and related composites have optimized for maximum removal performance by regulating key parameters. Furthermore, future research directions and opportunities for biochar research are discussed.
Collapse
Affiliation(s)
- Ravi Katiyar
- Institute of Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Kaohsiung, 81157, Taiwan
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Kaohsiung, 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Kaohsiung, 81157, Taiwan
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Kaohsiung, 81157, Taiwan
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung city, Kaohsiung, 81157, Taiwan
| | - Ganesh D. Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, South Korea
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, 226 001, India
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Kaohsiung, 81157, Taiwan
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Kaohsiung, 81157, Taiwan
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
- Institute of Aquatic Science and Technology, National Kaohsiung University of Technology, Kaohsiung City, 81157, Taiwan
| |
Collapse
|