1
|
Lu CW, Lin TY, Pan WJ, Chiu KM, Lee MY, Wang SJ. Cynarin protects against seizures and neuronal death in a rat model of kainic acid-induced seizures. Food Funct 2025; 16:3048-3063. [PMID: 40138216 DOI: 10.1039/d4fo05464d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The potential therapeutic value of cynarin, a phenolic compound derived from artichoke, in treating epilepsy has not yet been reported. The present study evaluated the effects of cynarin on a kainic acid (KA)-induced seizure rat model and its potential mechanism. Cynarin was administered through oral gavage at a dosage of 10 mg kg-1 daily for 7 days before the induction of seizures with KA (15 mg kg-1) via intraperitoneal injection. The results showed that pretreatment with cynarin effectively attenuated the KA-induced seizure score and electroencephalogram (EEG) changes and prevented neuronal loss and glial cell activation in the hippocampi of KA-treated rats. In addition, pretreatment with cynarin dramatically prevented the aberrant levels of high mobility group box 1 (HMGB1), toll-like receptor-4 (TLR4), p-IκB, p65-NFκB, interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor (TNF-α) induced by KA administration in hippocampal tissues. Additionally, KA substantially increased hippocampal glutamate levels and decreased cerebral blood flow, which were significantly alleviated by pretreatment with cynarin. The observed effects of cynarin were comparable to those of the antiepileptic drug carbamazepine (CBZ). Furthermore, there was no significant difference in the serum AST, ALT, creatinine, or bilirubin levels between the cynarin-treated rats and the control rats. Cynarin has a neuroprotective effect on a rat model of seizures induced by KA, reducing seizures, gliosis, inflammatory cytokines, and glutamate elevation and increasing cerebral blood flow. Thus, cynarin has therapeutic potential for preventing epilepsy.
Collapse
Affiliation(s)
- Cheng-Wei Lu
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Wun-Jing Pan
- Ph.D. Program in Pharmaceutical Biotechnology, School of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Center, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Yi Lee
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei 22060, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan 24205.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| |
Collapse
|
2
|
Zhang B, Yu J, Bao L, Feng D, Qin Y, Fan D, Hong X, Chen Y. Cynarin inhibits microglia-induced pyroptosis and neuroinflammation via Nrf2/ROS/NLRP3 axis after spinal cord injury. Inflamm Res 2024; 73:1981-1994. [PMID: 39340662 DOI: 10.1007/s00011-024-01945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) elicits excess neuroinflammation and resident microglial pyroptosis, leading further terrible neurological collapse and locomotor dysfunction. However, the current clinical therapy is useless and a feasible treatment is urgent to be explored. Cynarin is a natural component in artichoke playing anti-inflammatory and anti-aging roles in hepatoprotection and cardioprotection, but it is unclear that the pharmacologic action and underlying mechanism of Cynarin in neuropathy. METHODS Using the SCI mouse model and the BV2 cell line, we here investigated whether Cynarin reduces neuroinflammation and pyroptosis to promote neurological recovery after SCI. RESULTS Our results showed that treatment with Cynarin reduces the level of neuroinflammation and microglial pyroptosis. Moreover, the mice treated with Cynarin exhibited lower level of reactive oxygen species (ROS) and cell death, less damage of neurohistology and better locomotor improvement of hindlimbs than the untreated mice and the nuclear factor erythroid 2-related factor 2 (Nrf2)-inhibited mice. Mechanically, Cynarin inhibited the assembly of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome by Nrf2-dependent expression to attenuate microglial pyroptosis and neuroinflammation. CONCLUSIONS To sum up, the current study suggested that administration of Cynarin is a promising compound for anti-neuroinflammation and anti-pyroptosis after SCI. It may be an efficient Nrf2 activator and a NLRP3 inhibitor for microglia in neuropathies.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Orthopedics, Shuyang Hospital of Traditional Chinese Medicine, Clinical College of Yangzhou University Medical College, No. 28 Shanghai Middle Road, Shuyang, Suqian, Jiangsu, China.
| | - Jiasheng Yu
- Department of Orthopedics, Shuyang Hospital of Traditional Chinese Medicine, Clinical College of Yangzhou University Medical College, No. 28 Shanghai Middle Road, Shuyang, Suqian, Jiangsu, China
| | - Lei Bao
- Department of Orthopedics, Shuyang Hospital of Traditional Chinese Medicine, Clinical College of Yangzhou University Medical College, No. 28 Shanghai Middle Road, Shuyang, Suqian, Jiangsu, China
| | - Dongqian Feng
- Department of Orthopedics, Shuyang Hospital of Traditional Chinese Medicine, Clinical College of Yangzhou University Medical College, No. 28 Shanghai Middle Road, Shuyang, Suqian, Jiangsu, China
| | - Yong Qin
- Department of Orthopedics, Shuyang Hospital of Traditional Chinese Medicine, Clinical College of Yangzhou University Medical College, No. 28 Shanghai Middle Road, Shuyang, Suqian, Jiangsu, China
| | - Daobo Fan
- Department of Orthopedics, Shuyang Hospital of Traditional Chinese Medicine, Clinical College of Yangzhou University Medical College, No. 28 Shanghai Middle Road, Shuyang, Suqian, Jiangsu, China
| | - Xin Hong
- Spine Center, Zhongda Hospital of Southeast University, Nanjing, China
| | - Yongyi Chen
- Department of Anesthesiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Hsu YC, Yang CY. Assessment of Ethanolic Extraction of Chlorogenic Acid, Cynarin, and Polyphenols from Burdock ( Arctium lappa L.) Roots Under Ultrasound. Molecules 2024; 29:5115. [PMID: 39519756 PMCID: PMC11547627 DOI: 10.3390/molecules29215115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The bioactive compounds in burdock (Arctium lappa L.) roots, including chlorogenic acid (CGA) and cynarin, are valuable for use in nutraceutical foods. The ultrasound-assisted extraction of bioactive substances from dried burdock root powder (DBR) was investigated with 95% ethanol to reduce the impact of polysaccharide inulin on the extraction of free CGA and cynarin. The ethanolic extraction of CGA and cynarin was evaluated under ultrasound (300 W) at 40 kHz (U40) and 120 kHz (U120) with shaking at 120 rpm (S120) for comparison. Using a 1/30 (g/mL-solvent) solid-to-liquid ratio at 30 °C in 120 min, amounts of CGA and cynarin with U40 were as high as 818.74 μg/g-DBR and 173.68 μg/g-DBR, respectively, being much higher than those with U120 and S120. Total phenolic content, total flavonoid content, and antioxidant activity of the extract using U40 were significantly better than using U120 and S120. For U40 and U120, CGA increased with a decreasing solid-to-liquid ratio, while cynarin showed a decrease with a decreasing solid-to-liquid ratio using U120. Moreover, no observable degradations of free CGA and cynarin in ethanol were detected. By combining ultrasound and ethanol, the extracts with high-content CGA and cynarin from burdock roots were effectively achieved for use in health foods.
Collapse
Affiliation(s)
| | - Chun-Yao Yang
- Department of Food Science, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang District, New Taipei City 242062, Taiwan;
| |
Collapse
|
4
|
Tian Y, He X, Li R, Wu Y, Ren Q, Hou Y. Recent advances in the treatment of gout with NLRP3 inflammasome inhibitors. Bioorg Med Chem 2024; 112:117874. [PMID: 39167977 DOI: 10.1016/j.bmc.2024.117874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Gout is an autoinflammatory disorder characterized by the accumulation of monosodium urate crystals in joints and other tissues, representing the predominant type of inflammatory arthritis with a notable prevalence and propensity for severe outcomes. The NLRP3 inflammasome, a member of the pyrin domain-containing NOD-like receptor family, exerts a substantial impact on both innate and adaptive immune responses and serves as a pivotal factor in the pathogenesis of gout. In recent years, there has been significant academic and industrial interest in the development of NLRP3-targeted small molecule inhibitors as a promising therapeutic approach for gout. To assess the advancements in NLRP3 inflammasome inhibitors for gout treatment, this review offers a comprehensive analysis and evaluation of current clinical candidates and other inhibitors targeting NLRP3 inflammasome from a chemical structure standpoint, with the goal of identifying more efficacious options for clinical management of gout.
Collapse
Affiliation(s)
- Ye Tian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaofang He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Ruping Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yanxin Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Qiang Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Yusen Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
5
|
Shi Y, Liu J, Guan S, Wang S, Yu C, Yu Y, Li B, Zhang Y, Yang W, Wang Z. Syn-COM: A Multi-Level Predictive Synergy Framework for Innovative Drug Combinations. Pharmaceuticals (Basel) 2024; 17:1230. [PMID: 39338392 PMCID: PMC11434649 DOI: 10.3390/ph17091230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Drug prediction and treatment using bioinformatics and large-scale modeling have emerged as pivotal research areas. This study proposes a novel multi-level collaboration framework named Syn-COM for feature extraction and data integration of diseases and drugs. The framework aims to explore optimal drug combinations and interactions by integrating molecular virtuality, similarity clustering, overlap area, and network distance. It uniquely combines the characteristics of Chinese herbal medicine with clinical experience and innovatively assesses drug interaction and correlation through a synergy matrix. Gouty arthritis (GA) was used as a case study to validate the framework's reliability, leading to the identification of an effective drug combination for GA treatment, comprising Tamaricis Cacumen (Si = 0.73), Cuscutae Semen (Si = 0.68), Artemisiae Annuae Herba (Si = 0.62), Schizonepetae Herba (Si = 0.73), Gleditsiae Spina (Si = 0.89), Prunellae Spica (Si = 0.75), and Achyranthis Bidentatae Radix (Si = 0.62). The efficacy of the identified drug combination was confirmed through animal experiments and traditional Chinese medicine (TCM) component analysis. Results demonstrated significant reductions in the blood inflammatory factors IL1A, IL6, and uric acid, as well as downregulation of TGFB1, PTGS2, and MMP3 expression (p < 0.05), along with improvements in ankle joint swelling in GA mice. This drug combination notably enhances therapeutic outcomes in GA by targeting key genes, underscoring the potential of integrating traditional medicine with modern bioinformatics for effective disease treatment.
Collapse
Affiliation(s)
- Yinli Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuang Guan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Sicun Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chengcheng Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yingying Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Weibin Yang
- Graduate School of China Academy of Chinese Medical Sciences, Beijing 100027, China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
6
|
Hufnagel M, Rademaekers A, Weisert A, Häberlein H, Franken S. Pharmacological profile of dicaffeoylquinic acids and their role in the treatment of respiratory diseases. Front Pharmacol 2024; 15:1371613. [PMID: 39239645 PMCID: PMC11374715 DOI: 10.3389/fphar.2024.1371613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Dicaffeoylquinic acids (DCQAs) are polyphenolic compounds found in various medicinal plants such as Echinacea species and Hedera helix, whose multi-constituent extracts are used worldwide to treat respiratory diseases. Besides triterpenes, saponins, alkamides, and other constituents, DCQAs are an important group of substances for the pharmacological activity of plant-derived extracts. Therefore, the pharmacological properties of DCQAs have been studied over the last decades, suggesting antioxidative, anti-inflammatory, antimicrobial, hypoglycaemic, cardiovascular protective, neuroprotective, and hepatoprotective effects. However, the beneficial pharmacological profile of DCQAs has not yet been linked to their use in treating respiratory diseases such as acute or even chronic bronchitis. The aim of this review was to assess the potential of DCQAs for respiratory indications based on published in vitro and in vivo pharmacological and pre-clinical data, with particular focus on antioxidative, anti-inflammatory, and respiratory-related effects such as antitussive or antispasmodic properties. A respective literature search revealed a large number of publications on the six DCQA isoforms. Based on this search, a focus was placed on 1,3-, 3,4-, 3,5-, and 4,5-DCQA, as the publications focused mainly on these isomers. Based on the available pre-clinical data, DCQAs trigger cellular mechanisms that are important in the treatment of respiratory diseases such as decreasing NF-κB activation, reducing oxidative stress, or activating the Nrf2 pathway. Taken together, these data suggest an essential role for DCQAs within herbal medicines used for the treatment of respiratory diseases and highlights the need for the identifications of DCQAs as lead substances within such extracts.
Collapse
Affiliation(s)
| | | | - Anika Weisert
- Engelhard Arzneimittel GmbH & Co. KG, Niederdorfelden, Germany
| | - Hanns Häberlein
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Sebastian Franken
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Sun XM, Wu X, Wei MG, Zhu LZ, Wu WH, Zhou XY, Qi LW, Liu Q. CPS1 augments hepatic glucagon response through CaMKII/FOXO1 pathway. Front Pharmacol 2024; 15:1437738. [PMID: 39193349 PMCID: PMC11347310 DOI: 10.3389/fphar.2024.1437738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction: Elevated glucagon levels are a characteristic feature of type 2 diabetes. This abnormal increase in glucagon can lead to an accelerated rate of gluconeogenesis. Glucagon also stimulates hepatic metabolism of amino acids, particularly promoting the formation of urea. The specific role of carbamoyl phosphate synthetase 1 (CPS1), a rate-limiting enzyme in the urea cycle, in the development versus the persistence of glucagon-induced hyperglycemia has not been previously established. Methods: The study employed both in vivo and in vitro approaches to assess the impact of CPS1 modulation on glucagon response. CPS1 was knockdown or overexpression to evaluate its influence on hepatic gluconeogenesis. In addition, an in-silico strategy was employed to identify a potential CPS1 inhibitor. Results: Knockdown of CPS1 significantly reduced the glucagon response both in vivo and in vitro. Conversely, overexpression of CPS1 resulted in an overactive hepatic gluconeogenic response. Mechanistically, CPS1 induced the release of calcium ions from the endoplasmic reticulum, which in turn triggered the phosphorylation of CaMKII. The activation of CaMKII then facilitated the dephosphorylation and nuclear translocation of FOXO1, culminating in the enhancement of hepatic gluconeogenesis. Furthermore, cynarin, a natural CPS1 inhibitor derived from the artichoke plant, had the capacity to attenuate the hepatic glucagon response in a CPS1-dependent manner. Discussion: CPS1 played a pivotal role in mediating glucagon-induced hepatic gluconeogenesis. The discovery of cynarin as a natural inhibitor of CPS1 suggested its potential as a therapeutic agent for diabetes treatment.
Collapse
Affiliation(s)
- Xiao-Meng Sun
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Xin Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Meng-Guang Wei
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Li-Zeng Zhu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Wen-hui Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Xin-Yue Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Lian-Wen Qi
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Qun Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
Zhang S, Li D, Fan M, Yuan J, Xie C, Yuan H, Xie H, Gao H. Mechanism of Reactive Oxygen Species-Guided Immune Responses in Gouty Arthritis and Potential Therapeutic Targets. Biomolecules 2024; 14:978. [PMID: 39199366 PMCID: PMC11353092 DOI: 10.3390/biom14080978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Gouty arthritis (GA) is an inflammatory disease caused by monosodium urate (MSU) crystals deposited in the joint tissues causing severe pain. The disease can recur frequently and tends to form tophus in the joints. Current therapeutic drugs for the acute phase of GA have many side effects and limitations, are unable to prevent recurrent GA attacks and tophus formation, and overall efficacy is unsatisfactory. Therefore, we need to advance research on the microscopic mechanism of GA and seek safer and more effective drugs through relevant targets to block the GA disease process. Current research shows that the pathogenesis of GA is closely related to NLRP3 inflammation, oxidative stress, MAPK, NET, autophagy, and Ferroptosis. However, after synthesizing and sorting out the above mechanisms, it is found that the presence of ROS is throughout almost the entire spectrum of micro-mechanisms of the gout disease process, which combines multiple immune responses to form a large network diagram of complex and tight connections involved in the GA disease process. Current studies have shown that inflammation, oxidative stress, cell necrosis, and pathological signs of GA in GA joint tissues can be effectively suppressed by modulating ROS network-related targets. In this article, on the one hand, we investigated the generative mechanism of ROS network generation and its association with GA. On the other hand, we explored the potential of related targets for the treatment of gout and the prevention of tophus formation, which can provide effective reference ideas for the development of highly effective drugs for the treatment of GA.
Collapse
Affiliation(s)
- Sai Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Daocheng Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Mingyuan Fan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Jiushu Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Haipo Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| |
Collapse
|
9
|
He L, Peng Y, Ding M. Analysis of the effectiveness and safety of Jiedu Xiezhuo Yishen Tang in the treatment of gouty arthritis: An observational study. Medicine (Baltimore) 2024; 103:e38582. [PMID: 38968509 PMCID: PMC11224804 DOI: 10.1097/md.0000000000038582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/23/2024] [Indexed: 07/07/2024] Open
Abstract
This study is for exploring the effectiveness and security of Jiedu Xiezhuo Yishen Tang in the treatment of gouty arthritis. This retrospective study collected 100 patients with gouty arthritis between February 2022 and February 2023. According to the different treatment methods, the data of patients were divided into control group and experimental group. The control group received routine treatment with benzbromarone, while the experimental group received additional treatment with Xuedu Xiezhuo Yishen Tang on the basis of the control group. The evaluation indicators for the effectiveness of treatment include serum levels of 8-hydroxydeoxyguanosine, 3-NT, interleukin-6, interleukin-10, interleukin-1β, tumor necrosis factor-α, C-reactive protein, erythrocyte sedimentation rate, urea nitrogen, creatinine, evaluation of knee joint function and pain level, traditional Chinese medicine syndrome score, and safety evaluation. After treatment, the overall treatment effect of the experimental group reached 98%, while the control group was 78%. After treatment, the differences in various indicators possessed statistical significance (SS) (P < .05). In the Lysholm score, the improvement in the experimental group was markedly more excellent than the control group, and the difference possessed SS (P < .05). In the NRS score, the experimental group's NRS score decreased from 8.39 to 1.08 before and after treatment, while the control group only decreased to 3.61. In addition, both groups of patients showed significant improvement in the joint score in the Traditional Chinese medicine syndrome sub-items. The experimental group was able to effectively improve symptoms such as joint pain, joint redness and swelling, joint fever, and limited joint mobility. After treatment, the incidence of adverse reactions in the experimental group was only 8%, while the incidence of adverse reactions in the control group was 24%. After statistical analysis of the incidence of adverse reactions during treatment among the participants, it was found that the difference possessed SS (P < .001). The combination treatment of Jiedu Xiezhuo Yishen Tang and benbromarone can effectively improve oxidative stress response and significantly reduce blood uric acid levels. Meanwhile, this combination therapy can effectively inhibit inflammatory reactions, significantly alleviate knee joint pain, and promote the recovery of knee joint function. This treatment regimen has lower toxic side effects and higher safety.
Collapse
Affiliation(s)
- Ling He
- Rehabilitation Department, Wuhan Fifth Hospital, Wuhan, Hubei, China
| | - Yan Peng
- Rehabilitation Department, Wuhan Fifth Hospital, Wuhan, Hubei, China
| | - Mingqiao Ding
- Rehabilitation Department, Wuhan Fifth Hospital, Wuhan, Hubei, China
| |
Collapse
|
10
|
Xiao N, Xie Z, He Z, Xu Y, Zhen S, Wei Y, Zhang X, Shen J, Wang J, Tian Y, Zuo J, Peng J, Li Z. Pathogenesis of gout: Exploring more therapeutic target. Int J Rheum Dis 2024; 27:e15147. [PMID: 38644732 DOI: 10.1111/1756-185x.15147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/23/2024]
Abstract
Gout is a chronic metabolic and immune disease, and its specific pathogenesis is still unclear. When the serum uric acid exceeds its saturation in the blood or tissue fluid, it is converted to monosodium urate crystals, which lead to acute arthritis of varying degrees, urinary stones, or irreversible peripheral joint damage, and in severe cases, impairment of vital organ function. Gout flare is a clinically significant state of acute inflammation in gout. The current treatment is mostly anti-inflammatory analgesics, which have numerous side effects with limited treatment methods. Gout pathogenesis involves many aspects. Therefore, exploring gout pathogenesis from multiple perspectives is conducive to identifying more therapeutic targets and providing safer and more effective alternative treatment options for patients with gout flare. Thus, this article is of great significance for further exploring the pathogenesis of gout. The author summarizes the pathogenesis of gout from four aspects: signaling pathways, inflammatory factors, intestinal flora, and programmed cell death, focusing on exploring more new therapeutic targets.
Collapse
Affiliation(s)
- Niqin Xiao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhiyan He
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yundong Xu
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Shuyu Zhen
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyu Zhang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiayan Shen
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jian Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yadan Tian
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinlian Zuo
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiangyun Peng
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zhaofu Li
- Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
11
|
Guo Z, Ye G, Tang C, Xiong H. Exploring effect of herbal monomers in treating gouty arthritis based on nuclear factor-kappa B signaling: A review. Medicine (Baltimore) 2024; 103:e37089. [PMID: 38306549 PMCID: PMC10843426 DOI: 10.1097/md.0000000000037089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024] Open
Abstract
Gouty arthritis (GA) is an inflammatory disease caused by disorders of the purine metabolism. Although increasing number of drugs have been used to treat GA with the deepening of relevant research, GA still cannot be cured by simple drug therapy. The nuclear factor-kappa B (NF-κB) signaling pathway plays a key role in the pathogenesis of GA. A considerable number of Chinese herbal medicines have emerged as new drugs for the treatment of GA. This article collected relevant research on traditional Chinese medicine monomers in the treatment of GA using NF-κB, GA, etc. as keywords; and conducted a systematic search of relevant published articles using the PubMed database. In this study, we analyzed the therapeutic effects of traditional Chinese medicine monomers on GA in the existing literature through in vivo and in vitro experiments using animal and cell models. Based on this review, we believe that traditional Chinese medicine monomers that can treat GA through the NF-κB signaling pathway are potential new drug development targets. This study provides research ideas for the development and application of new drugs for GA.
Collapse
Affiliation(s)
- Zhanghao Guo
- Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Guisheng Ye
- Department of Ophthalmology, The First Hospital of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Chengjian Tang
- Department of Ophthalmology, The First Hospital of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Hui Xiong
- Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
12
|
Chen S, Tang S, Zhang C, Li Y. Cynarin ameliorates dextran sulfate sodium-induced acute colitis in mice through the STAT3/NF-κB pathway. Immunopharmacol Immunotoxicol 2024; 46:107-116. [PMID: 37937889 DOI: 10.1080/08923973.2023.2281281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVE Cynarin is a derivative of hydroxycinnamic acid presented in various medicinal plants, such as Cynara scolymus L. and Onopordum illyricum L. To date, the antioxidant and antihypertensive activities of cynarin have been reported. However, whether cynarin has a therapeutic impact on ulcerative colitis (UC) is unclear. Therefore, the aim of this study was to explore the potential effect of cynarin on dextran sulfate sodium (DSS)-induced acute colitis in vivo and on lipopolysaccharide (LPS)/interferon-γ (IFN-γ)-induced RAW264.7 and J774A.1 cellular inflammation model in vitro. METHODS AND RESULTS In this study, we investigated that cynarin alleviated clinical symptoms in animal models, including disease activity index (DAI) and histological damage. Furthermore, cynarin can attenuate colon inflammation through decreasing the proportion of neutrophils in peripheral blood, reducing the infiltration of neutrophils, and macrophages in colon tissue, inhibiting the release of pro-inflammatory cytokines and suppressing the expression of STAT3 and p65. In cellular inflammation models, cynarin inhibited the expression of M1 macrophage markers, such as TNF-α, IL-1β, and iNOS. Besides, cynarin suppressed the expression of STAT3 and p65 as well as the phosphorylation of STAT3, p65. Cynarin inhibited the polarization of RAW264.7 and J774A.1 cells toward M1 and alleviated LPS/IFN-γ-induced cellular inflammation. CONCLUSION Considering these results, we conclude that cynarin mitigates experimental UC partially through inhibiting the STAT3/NF-кB signaling pathways and macrophage polarization toward M1. Accordingly, cynarin might be a potential and effective therapy for UC.
Collapse
Affiliation(s)
- Shumin Chen
- Department of Basic Medicine, Zhangzhou Health Vocational College/Collaborative Innovation Center for Translation Medical Testing and Application Technology, Zhangzhou, PR China
| | - Shaoshuai Tang
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College of Jimei University, Xiamen, PR China
| | - Chunbin Zhang
- Department of Medical Technology, Zhangzhou Health Vocational College/Collaborative Innovation Center for Translation Medical Testing and Application Technology, Zhangzhou, PR China
| | - Yuanyue Li
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College of Jimei University, Xiamen, PR China
| |
Collapse
|
13
|
Zhang P, Rong K, Guo J, Cui L, Kong K, Zhao C, Yang H, Xu H, Qin A, Ma P, Yang X, Zhao J. Cynarin alleviates intervertebral disc degeneration via protecting nucleus pulposus cells from ferroptosis. Biomed Pharmacother 2023; 165:115252. [PMID: 37536034 DOI: 10.1016/j.biopha.2023.115252] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) leads to a series of degenerative spine diseases. Clinical treatment of IVDD is mainly surgery, lacking effective drugs to alleviate intervertebral disc degeneration. In this study, we analysed the mRNA sequencing dataset of human degenerative intervertebral disc tissues and revealed the participation of ferroptosis in IVDD. Furthermore, we confirmed that TNF-α, an important cytokine in IVDD, induces ferroptosis in nucleus pulposus cells. Subsequently, a ferroptosis inhibitors screening strategy using multiple ferroptosis indicators was developed. Through the screen of various natural compounds, cynarin, a natural product enriched in Artichoke, was discovered to inhibit ferroptosis of nucleus pulposus cells. Cynarin can dose-dependently inhibit the catabolism of nucleus pulposus cells, increase the expression of key ferroptosis-inhibiting genes (GPX4 and NRF2), inhibit the increment of cellular Fe2+, lipid peroxides, and reactive oxygen species. It can also prevent mitochondria shrinkage, reduce mitochondria cristae density in ferroptosis, and prevent IVDD in the rat model. In conclusion, cynarin is a potential candidate for the drug development for IVDD.
Collapse
Affiliation(s)
- Pu Zhang
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kewei Rong
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jiadong Guo
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lei Cui
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530000, China
| | - Keyu Kong
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chen Zhao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Huan Yang
- The Second Clinical Medical College of Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Peixiang Ma
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Xiao Yang
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Jie Zhao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
14
|
Gao Y, Xu X, Zhang X. Targeting different phenotypes of macrophages: A potential strategy for natural products to treat inflammatory bone and joint diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154952. [PMID: 37506402 DOI: 10.1016/j.phymed.2023.154952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Macrophages, a key class of immune cells, have a dual role in inflammatory responses, switching between anti-inflammatory M2 and pro-inflammatory M1 subtypes depending on the specific environment. Greater numbers of M1 macrophages correlate with increased production of inflammatory chemicals, decreased osteogenic potential, and eventually bone and joint disorders. Therefore, reversing M1 macrophages polarization is advantageous for lowering inflammatory factors. To better treat inflammatory bone disorders in the future, it may be helpful to gain insight into the specific mechanisms and natural products that modulate macrophage polarization. OBJECTIVE This review examines the impact of programmed cell death and different cells in the bone microenvironment on macrophage polarization, as well as the effects of natural products on the various phenotypes of macrophages, in order to suggest some possibilities for the treatment of inflammatory osteoarthritic disorders. METHODS Using 'macrophage polarization,' 'M1 macrophage' 'M2 macrophage' 'osteoporosis,' 'osteonecrosis of femoral head,' 'osteolysis,' 'gouty arthritis,' 'collagen-induced arthritis,' 'freund's adjuvant-induced arthritis,' 'adjuvant arthritis,' and 'rheumatoid arthritis' as search terms, the relevant literature was searched using the PubMed, the Cochrane Library and Web of Science databases. RESULTS Targeting macrophages through different signaling pathways has become a key mechanism for the treatment of inflammatory bone and joint diseases, including HIF-1α, NF-κB, AKT/mTOR, JAK1/2-STAT1, NF-κB, JNK, ERK, p-38α/β, p38/MAPK, PI3K/AKT, AMPK, AMPK/Sirt1, STAT TLR4/NF-κB, TLR4/NLRP3, NAMPT pathway, as well as the programmed cell death autophagy, pyroptosis and ERS. CONCLUSION As a result of a search of databases, we have summarized the available experimental and clinical evidence supporting herbal products as potential treatment agents for inflammatory osteoarthropathy. In this paper, we outline the various modulatory effects of natural substances targeting macrophages in various diseases, which may provide insight into drug options and directions for future clinical trials. In spite of this, more mechanistic studies on natural substances, as well as pharmacological, toxicological, and clinical studies are required.
Collapse
Affiliation(s)
- Yuhe Gao
- Graduate School, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, Heilongjiang 150040, China
| | - Xilin Xu
- The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150000, China.
| | - Xiaofeng Zhang
- Teaching and Research Section of Orthopedics and Traumatology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150000, China.
| |
Collapse
|
15
|
Liu YR, Wang JQ, Li J. Role of NLRP3 in the pathogenesis and treatment of gout arthritis. Front Immunol 2023; 14:1137822. [PMID: 37051231 PMCID: PMC10083392 DOI: 10.3389/fimmu.2023.1137822] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Gout arthritis (GA) is a common and curable type of inflammatory arthritis that has been attributed to a combination of genetic, environmental and metabolic factors. Chronic deposition of monosodium urate (MSU) crystals in articular and periarticular spaces as well as subsequent activation of innate immune system in the condition of persistent hyperuricemia are the core mechanisms of GA. As is well known, drugs for GA therapy primarily consists of rapidly acting anti-inflammatory agents and life-long uric acid lowering agents, and their therapeutic outcomes are far from satisfactory. Although MSU crystals in articular cartilage detected by arthrosonography or in synovial fluid found by polarization microscopy are conclusive proofs for GA, the exact molecular mechanism of NLRP3 inflammasome activation in the course of GA still remains mysterious, severely restricting the early diagnosis and therapy of GA. On the one hand, the activation of Nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome requires nuclear factor kappa B (NF-κB)-dependent transcriptional enhancement of NLRP3, precursor (pro)-caspase-1 and pro-IL-1β, as well as the assembly of NLRP3 inflammasome complex and sustained release of inflammatory mediators and cytokines such as IL-1β, IL-18 and caspase-1. On the other hand, NLRP3 inflammasome activated by MSU crystals is particularly relevant to the initiation and progression of GA, and thus may represent a prospective diagnostic biomarker and therapeutic target. As a result, pharmacological inhibition of the assembly and activation of NLRP3 inflammasome may also be a promising avenue for GA therapy. Herein, we first introduced the functional role of NLRP3 inflammasome activation and relevant biological mechanisms in GA based on currently available evidence. Then, we systematically reviewed therapeutic strategies for targeting NLRP3 by potentially effective agents such as natural products, novel compounds and noncoding RNAs (ncRNAs) in the treatment of MSU-induced GA mouse models. In conclusion, our present review may have significant implications for the pathogenesis, diagnosis and therapy of GA.
Collapse
Affiliation(s)
- Ya-ru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Grade 3 Pharmaceutical Chemistry Laboratory, State Administration of Traditional Chinese Medicine, Hefei, China
- *Correspondence: Ya-ru Liu, ; Jun Li,
| | - Jie-quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People’s Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Ya-ru Liu, ; Jun Li,
| |
Collapse
|
16
|
Jiang S, Wang W, Ke J, Huang S, Wang J, Luo C, Li X, Zhang K, Liu H, Zheng W, Zhang J, Peng C. A mechanically tough and ultra-swellable microneedle for acute gout arthritis. Biomater Sci 2023; 11:1714-1724. [PMID: 36629000 DOI: 10.1039/d2bm01937j] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acute gout arthritis (AGA) remains the fundamental research focus in the entire medical field. Hydrogel microneedles (HMNs) loaded with therapeutic molecules such as colchicine (Col) have been developed as a new tool for the management of AGA in a minimally invasive manner. However, the incompatible mechanical and swelling properties of HMNs limited the diffusion of the drug from the HMN system, which remains a challenge for practical use. Here, a mechanically tough (11.53 N per needle) and super-swelling (2708%) hydrogel microneedle (HMNs) composed of a uniform network structure was developed using a UV-responsive crosslinker through in situ photopolymerization for percutaneous delivery of Col. Such HMNs and Col loaded HMNs (Col-HMNs) present excellent biocompatibility. Moreover, Col-HMNs present considerable anti-inflammatory effects in vivo through down-regulated inflammatory responses such as related cytokines IL-1β, IL-6, and TNF-α. These results demonstrated that the mechanically tough and super-swelling HMNs could be a promising tool for effective Col delivery to relieve AGA.
Collapse
Affiliation(s)
- Suping Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Wen Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Jiming Ke
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Shan Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Jie Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Chengxi Luo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Xiaoxia Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Kaili Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Huanhuan Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China. .,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Heifei, Anhui, 230012, China.,Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Wensheng Zheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China. .,Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiwen Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China. .,Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China. .,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Heifei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.,Institute of TCM Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China.
| |
Collapse
|
17
|
Tosun F, Göger F, İşcan G, Kürkçüoğlu M, Kuran FK, Miski M. Biological Activities of the Fruit Essential Oil, Fruit, and Root Extracts of Ferula drudeana Korovin, the Putative Anatolian Ecotype of the Silphion Plant. PLANTS (BASEL, SWITZERLAND) 2023; 12:830. [PMID: 36840178 PMCID: PMC9959981 DOI: 10.3390/plants12040830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
In the present study, preliminary phytochemical investigations were performed on the fruit essential oil and antioxidant-rich methanolic extracts of the fruits and roots of Ferula drudeana, the putative Anatolian ecotype of the Silphion plant, to corroborate its medicinal plant potential and identify its unique characteristics amongst other Ferula species. The essential oil from the fruits of the endemic species Ferula drudeana collected from Aksaray was analyzed by GC and GC/MS. The main components of the oil were determined as shyobunone (44.2%) and 6-epishyobunone (12.6%). The essential oil of the fruits and various solvent extracts of the fruits and roots of F. drudeana were evaluated for their antibacterial and anticandidal activity using microbroth dilution methods. The essential oil of the fruits, methanol, and methylene chloride extracts of the fruits and roots showed weak to moderate inhibitory activity against all tested microorganisms with MIC values of 78-2000 µg/mL. However, the petroleum ether extract of the roots showed remarkable inhibitory activity against Candida krusei and Candida utilis with MIC values of 19.5 and 9.75 µg/mL, respectively. Furthermore, all the samples were tested for their antioxidant activities using DPPH• TLC spot testing, online HPLC-ABTS screening, and DPPH/ABTS radical scavenging activity assessment assays. Methanolic extracts of the fruits and roots showed strong antioxidant activity in both systems.
Collapse
Affiliation(s)
- Fatma Tosun
- Department of Pharmacognosy, School of Pharmacy, İstanbul Medipol University, İstanbul 34083, Turkey
| | - Fatih Göger
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey
| | - Gökalp İşcan
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Mine Kürkçüoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Fadıl Kaan Kuran
- Department of Pharmacognosy, Faculty of Pharmacy, İstanbul University, İstanbul 34116, Turkey
| | - Mahmut Miski
- Department of Pharmacognosy, Faculty of Pharmacy, İstanbul University, İstanbul 34116, Turkey
| |
Collapse
|