1
|
Roscoe SA, Allen SP, McDermott CJ, Stavroulakis T. Mapping the Evidence for Measuring Energy Expenditure and Indicating Hypermetabolism in Motor Neuron Disease: A Scoping Review. Nutr Rev 2025; 83:943-960. [PMID: 39375842 PMCID: PMC11986331 DOI: 10.1093/nutrit/nuae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
OBJECTIVE To map the international methods used to measure energy expenditure of adults living with motor neuron disease (MND) and to highlight discrepancies when indicating hypermetabolism in the MND literature. BACKGROUND A decline in the nutritional status of patients is associated with exacerbated weight loss and shortened survival. Assessments of energy expenditure, using a variety of methods, are important to ensure an adequate energy intake to prevent malnutrition-associated weight loss. Assessments of energy expenditure are also commonly used to indicate hypermetabolism in MND, although these approaches may not be optimal. METHODS A protocol based on the Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for Scoping Reviews Guidelines was developed. Three electronic databases (Medline [Ovid], CINAHL [EBSCO], and Web of Science) were exhaustively searched. Identified publications were systematically screened according to predefined PICOS eligibility criteria. The primary outcome was the identification of methods used to measure energy expenditure in MND. The secondary outcome was the identification of applications of energy expenditure assessments to indicate hypermetabolism in MND. RESULTS Thirty-two observational primary research publications were identified. Thirteen (40.6%) were longitudinal in design, with data on repeated measurements of energy expenditure presented in 3 (9.4%). Thirteen (40.6%) were case-control studies, of which 11 use a matched control group. Pulmonary function was used to assess eligibility in 10 publications. Energy expenditure was measured using indirect calorimetry (IC) in 31 studies. Discrepancies in the durations of fasted, measurement, and washout periods were observed. Of all included publications, 50% used assessments of resting energy expenditure to identify hypermetabolism. Bioelectrical impedance analysis was used to assess body composition alongside energy expenditure in 93.8% of publications. CONCLUSIONS Resting energy expenditure is most frequently measured using an open-circuit IC system. However, there is a lack of a standardized, validated protocol for the conduct and reporting of IC and metabolic status in patients with MND.
Collapse
Affiliation(s)
- Sarah A Roscoe
- Division of Neuroscience, School of Medicine and Population Health, Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, United Kingdom
| | - Scott P Allen
- Division of Neuroscience, School of Medicine and Population Health, Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, United Kingdom
| | - Christopher J McDermott
- Division of Neuroscience, School of Medicine and Population Health, Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, United Kingdom
| | - Theocharis Stavroulakis
- Division of Neuroscience, School of Medicine and Population Health, Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, United Kingdom
| |
Collapse
|
2
|
Garg G, Trisal A, Singh AK. Unlocking the therapeutic potential of gut microbiota for preventing and treating aging-related neurological disorders. Neuroscience 2025; 572:190-203. [PMID: 40073931 DOI: 10.1016/j.neuroscience.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Billions of microorganisms inhabit the human gut and maintain overall health. Recent research has revealed the intricate interaction between the brain and gut microbiota through the microbiota-gut-brain axis (MGBA) and its effect on neurodegenerative disorders (NDDs). Alterations in the gut microbiota, known as gut dysbiosis, are linked to the development and progression of several NDDs. Studies suggest that the gut microbiota may be a viable target for improving cognitive health and reducing hallmarks of brain aging. Numerous pathways including hypothalamic-pituitary-adrenal axis stimulation, neurotransmitter release disruption, system-wide inflammation, and increased intestinal and blood-brain barrier permeability connect gut dysbiosis to neurological conditions. Metabolites produced by the gut microbiota influence neural processes that affect brain function. Clinical interventions depend on the capacity to understand the equilibrium between beneficial and detrimental gut microbiota, as it affects both neurodegeneration and neuroprotection. The importance of the gut microbiota and its metabolites during brain aging and the development of neurological disorders is summarized in this review. Moreover, we explored the possible therapeutic effects of the gut microbiota on age-related NDDs. Highlighting various pathways that connect the gut and the brain, this review identifies several important domains where gut microbiota-based interventions could offer possible solutions for age-related NDDs. Furthermore, prebiotics and probiotics are discussed as effective alternatives for mitigating indirect causes of gut dysbiosis. These therapeutic interventions are poised to play a significant role in improving dysbiosis and NDDs, paving the way for further research.
Collapse
Affiliation(s)
- Geetika Garg
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Anchal Trisal
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576 104, India.
| |
Collapse
|
3
|
Cuffaro F, Lamminpää I, Niccolai E, Amedei A. Nutritional and Microbiota-Based Approaches in Amyotrophic Lateral Sclerosis: From Prevention to Treatment. Nutrients 2024; 17:102. [PMID: 39796536 PMCID: PMC11722677 DOI: 10.3390/nu17010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Metabolic alterations, including hypermetabolism, lipid imbalances, and glucose dysregulation, are pivotal contributors to the onset and progression of Amyotrophic Lateral Sclerosis (ALS). These changes exacerbate systemic energy deficits, heighten oxidative stress, and fuel neuroinflammation. Simultaneously, gastrointestinal dysfunction and gut microbiota (GM) dysbiosis intensify disease pathology by driving immune dysregulation, compromising the intestinal barrier, and altering gut-brain axis (GBA) signaling, and lastly advancing neurodegeneration. Therapeutic and preventive strategies focused on nutrition offer promising opportunities to address these interconnected pathophysiological mechanisms. Diets enriched with antioxidants, omega-3 fatty acids, and anti-inflammatory compounds-such as the Mediterranean diet-have shown potential in reducing oxidative stress and systemic inflammation. Additionally, microbiota-targeted approaches, including probiotics, prebiotics, postbiotics, and fecal microbiota transplantation, are emerging as innovative tools to restore microbial balance, strengthen gut integrity, and optimize GBA function. This review highlights the critical need for personalized strategies integrating immunonutrition and microbiota modulation to slow ALS progression, improve quality of life, and develop preventive measures for neurodegenerative and neuroinflammatory diseases. Future research should prioritize comprehensive dietary and microbiota-based interventions to uncover their therapeutic potential and establish evidence-based guidelines for managing ALS and related disorders.
Collapse
Affiliation(s)
- Francesca Cuffaro
- Division of Interdisciplinary Internal Medicine, Careggi University Hospital of Florence, 50134 Florence, Italy;
| | - Ingrid Lamminpää
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (I.L.); (A.A.)
| | - Elena Niccolai
- Division of Interdisciplinary Internal Medicine, Careggi University Hospital of Florence, 50134 Florence, Italy;
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (I.L.); (A.A.)
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (I.L.); (A.A.)
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Firenze, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
4
|
Cheng J, Williams JP, Zhou L, Wang PC, Sun LN, Li RH, An JX. Ozone rectal insufflation mitigates chronic rapid eye movement sleep deprivation-induced cognitive impairment through inflammation alleviation and gut microbiota regulation in mice. Med Gas Res 2024; 14:213-224. [PMID: 39073330 DOI: 10.4103/mgr.medgasres-d-23-00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/20/2023] [Indexed: 07/30/2024] Open
Abstract
A range of sleep disorders has the potential to adversely affect cognitive function. This study was undertaken with the objective of investigating the effects of ozone rectal insufflation (O3-RI) on cognitive dysfunction induced by chronic REM sleep deprivation, as well as elucidating possible underlying mechanisms. O3-RI ameliorated cognitive dysfunction in chronic REM sleep deprived mice, improved the neuronal damage in the hippocampus region and decreased neuronal loss. Administration of O3-RI may protect against chronic REM sleep deprivation induced cognitive dysfunction by reversing the abnormal expression of Occludin and leucine-rich repeat and pyrin domain-containing protein 3 inflammasome as well as interleukin-1β in the hippocampus and colon tissues. Moreover, the microbiota diversity and composition of sleep deprivation mice were significantly affected by O3-RI intervention, as evidenced by the reversal of the Firmicutes/Bacteroidetes abundance ratio and the relative abundance of the Bacteroides genus. In particular, the relative abundance of the Bacteroides genus demonstrated a pronounced correlation with cognitive impairment and inflammation. Our findings suggested that O3-RI can improve cognitive dysfunction in sleep deprivation mice, and its mechanisms may be related to regulating gut microbiota and alleviating inflammation and damage in the hippocampus and colon.
Collapse
Affiliation(s)
- Jie Cheng
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - John P Williams
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Li Zhou
- Institute for lnnoration Diagnosis & Treatment in Anesthesiology, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Peng-Cheng Wang
- Institute for lnnoration Diagnosis & Treatment in Anesthesiology, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Li-Na Sun
- Institute for lnnoration Diagnosis & Treatment in Anesthesiology, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Rui-Hua Li
- Institute for lnnoration Diagnosis & Treatment in Anesthesiology, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Jian-Xiong An
- Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for lnnoration Diagnosis & Treatment in Anesthesiology, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
- Center of Anesthesiology, Pain and Sleep Medicine, Rapid Anti-depression, The Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, China
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Tang W, Wang Q, Sun M, Liu C, Huang Y, Zhou M, Zhang X, Meng Z, Zhang J. The gut microbiota-oligodendrocyte axis: A promising pathway for modulating oligodendrocyte homeostasis and demyelination-associated disorders. Life Sci 2024; 354:122952. [PMID: 39127317 DOI: 10.1016/j.lfs.2024.122952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The bidirectional regulation between the gut microbiota and brain, known as gut-brain axis, has received significant attention. The myelin sheath, produced by oligodendrocytes or Schwann cells, is essential for efficient nervous signal transmission and the maintenance of brain function. Growing evidence shows that both oligodendrogenesis and myelination are modulated by gut microbiota and its metabolites, and when dysbiosis occurs, changes in the microbiota composition and/or associated metabolites may impact developmental myelination and the occurrence of neurodevelopmental disabilities. Although the link between the microbiota and demyelinating disease such as multiple sclerosis has been extensively studied, our knowledge about the role of the microbiota in other myelin-related disorders, such as neurodegenerative diseases, is limited. Mechanistically, the microbiota-oligodendrocyte axis is primarily mediated by factors such as inflammation, the vagus nerve, endocrine hormones, and microbiota metabolites as evidenced by metagenomics, metabolomics, vagotomy, and morphological and molecular approaches. Treatments targeting this axis include probiotics, prebiotics, microbial metabolites, herbal bioactive compounds, and specific dietary management. In addition to the commonly used approaches, viral vector-mediated tracing and gene manipulation, integrated multiomics and multicenter clinical trials will greatly promote the mechanistic and interventional studies and ultimately, the development of new preventive and therapeutic strategies against gut-oligodendrocyte axis-mediated brain impairments. Interestingly, recent findings showed that microbiota dysbiosis can be induced by hippocampal myelin damage and is reversible by myelin-targeted drugs, which provides new insights into understanding how hippocampus-based functional impairment (such as in neurodegenerative Alzheimer's disease) regulates the peripheral homeostasis of microbiota and associated systemic disorders.
Collapse
Affiliation(s)
- Wen Tang
- Department of Gastroenterology, Chongqing Western Hospital, Chongqing 400052, China
| | - Qi Wang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Mingguang Sun
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China; Department of Neurology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing University of Chinese Medicine, Beijing 100853, China
| | - Chang''e Liu
- Department of Nutrition, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Yonghua Huang
- Department of Neurology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Maohu Zhou
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Xuan Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Zhaoyou Meng
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
6
|
Kaul M, Mukherjee D, Weiner HL, Cox LM. Gut microbiota immune cross-talk in amyotrophic lateral sclerosis. Neurotherapeutics 2024; 21:e00469. [PMID: 39510899 PMCID: PMC11585889 DOI: 10.1016/j.neurot.2024.e00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of motor neurons. While there has been significant progress in defining the genetic contributions to ALS, greater than 90 % of cases are sporadic, which suggests an environmental component. The gut microbiota is altered in ALS and is an ecological factor that contributes to disease by modulating immunologic, metabolic, and neuronal signaling. Depleting the microbiome worsens disease in the SOD1 ALS animal model, while it ameliorates disease in the C9orf72 model of ALS, indicating critical subtype-specific interactions. Furthermore, administering beneficial microbiota or microbial metabolites can slow disease progression in animal models. This review discusses the current state of microbiome research in ALS, including interactions with different ALS subtypes, evidence in animal models and human studies, key immunologic and metabolomic mediators, and a path toward microbiome-based therapies for ALS.
Collapse
Affiliation(s)
- Megha Kaul
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Debanjan Mukherjee
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA.
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Pribac M, Motataianu A, Andone S, Mardale E, Nemeth S. Bridging the Gap: Harnessing Plant Bioactive Molecules to Target Gut Microbiome Dysfunctions in Amyotrophic Lateral Sclerosis. Curr Issues Mol Biol 2024; 46:4471-4488. [PMID: 38785539 PMCID: PMC11120375 DOI: 10.3390/cimb46050271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
The correlation between neurodegenerative diseases and the gut microbiome is increasingly evident, with amyotrophic lateral sclerosis (ALS) being particularly notable for its severity and lack of therapeutic options. The gut microbiota, implicated in the pathogenesis and development of ALS, plays a crucial role in the disease. Bioactive plant molecules, specifically volatile compounds in essential oils, offer a promising therapeutic avenue due to their anti-inflammatory properties and gut-modulating effects. Our narrative review aimed to identify microbiota-associated bacteria in ALS and analyze the benefits of administering bioactive plant molecules as much-needed therapeutic options in the management of this disease. A comprehensive search of PubMed database articles published before December 2023, encompassing research on cell, human, and animal ALS models, was conducted. After selecting, analyzing, and discussing key articles, bacteria linked to ALS pathogenesis and physiopathology were identified. Notably, positively highlighted bacteria included Akkermansia muciniphila (Verrucomicrobia phylum), Faecalibacterium prausnitzii, and Butyrivibrio spp. (Firmicutes phylum). Conversely, members of the Escherichia coli spp. (Proteobacteria phylum) and Ruminococcus spp. (Firmicutes phylum) stood out negatively in respect to ALS development. These bacteria were associated with molecular changes linked to ALS pathogenesis and evolution. Bioactive plant molecules can be directly associated with improvements in the microbiome, due to their role in reducing inflammation and oxidative stress, emerging as one of the most promising natural agents for enriching present-day ALS treatments.
Collapse
Affiliation(s)
- Mirela Pribac
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Anca Motataianu
- Ist Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Sebastian Andone
- Ist Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | | | - Sebastian Nemeth
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
8
|
Holdom CJ, Janse van Mantgem MR, He J, Howe SL, McCombe PA, Fan D, van den Berg LH, Henderson RD, van Eijk R, Steyn FJ, Ngo ST. Variation in Resting Metabolic Rate Affects Identification of Metabolic Change in Geographically Distinct Cohorts of Patients With ALS. Neurology 2024; 102:e208117. [PMID: 38350046 DOI: 10.1212/wnl.0000000000208117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/16/2023] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Altered metabolism is observed in amyotrophic lateral sclerosis (ALS). However, without a standardized methodology to define metabolic changes, our understanding of factors contributing to and the clinical significance of altered metabolism in ALS is limited. METHODS We aimed to determine how geographic variation in metabolic rates influences estimates and accuracy of predicted resting energy expenditure (REE) in patients with ALS and controls, while validating the effectiveness of cohort-specific approaches in predicting altered metabolic rate in ALS. Participants from 3 geographically distinct sites across Australia, China, and the Netherlands underwent REE assessments, and we considered 22 unique equations for estimating REE. Analyses evaluated equation performance and the influence of demographics on metabolic status. Comparisons were made using standardized and local reference values to identify metabolic alterations. RESULTS 606 participants were included from Australia (patients with ALS: 140, controls: 154), the Netherlands (patients with ALS: 79, controls: 37) and China (patients with ALS: 67, controls: 129). Measured REE was variable across geographic cohorts, with fat-free mass contributing to this variation across all patients (p = 0.002 to p < 0.001). Of the 22 predication equations assessed, the Sabounchi Structure 4 (S4) equation performed relatively well across all control cohorts. Use of prediction thresholds generated using data from Australian controls generally increased the prevalence of hypermetabolism in Chinese (55%, [43%-67%]) and Dutch (44%, [33%-55%]) cases when compared with Australian cases (30%, [22%-38%]). Adjustment of prediction thresholds to consider geographically distinct characteristics from matched control cohorts resulted in a decrease in the proportion of hypermetabolic cases in Chinese and Dutch cohorts (25%-31% vs 55% and 20%-34% vs 43%-44%, respectively), and increased prevalence of hypometabolism in Dutch cases with ALS (1% to 8%-10%). DISCUSSION The identification of hypermetabolism in ALS is influenced by the formulae and demographic-specific prediction thresholds used for defining alterations in metabolic rate. A consensus approach is needed for identification of metabolic changes in ALS and will facilitate improved understanding of the cause and clinical significance of this in ALS.
Collapse
Affiliation(s)
- Cory J Holdom
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| | - Mark R Janse van Mantgem
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| | - Ji He
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| | - Stephanie L Howe
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| | - Pamela A McCombe
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| | - Dongsheng Fan
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| | - Leonard H van den Berg
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| | - Robert D Henderson
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| | - Ruben van Eijk
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| | - Frederik J Steyn
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| | - Shyuan T Ngo
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| |
Collapse
|
9
|
Noor Eddin A, Alfuwais M, Noor Eddin R, Alkattan K, Yaqinuddin A. Gut-Modulating Agents and Amyotrophic Lateral Sclerosis: Current Evidence and Future Perspectives. Nutrients 2024; 16:590. [PMID: 38474719 DOI: 10.3390/nu16050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a highly fatal neurodegenerative disorder characterized by the progressive wasting and paralysis of voluntary muscle. Despite extensive research, the etiology of ALS remains elusive, and effective treatment options are limited. However, recent evidence implicates gut dysbiosis and gut-brain axis (GBA) dysfunction in ALS pathogenesis. Alterations to the composition and diversity of microbial communities within the gut flora have been consistently observed in ALS patients. These changes are often correlated with disease progression and patient outcome, suggesting that GBA modulation may have therapeutic potential. Indeed, targeting the gut microbiota has been shown to be neuroprotective in several animal models, alleviating motor symptoms and mitigating disease progression. However, the translation of these findings to human patients is challenging due to the complexity of ALS pathology and the varying diversity of gut microbiota. This review comprehensively summarizes the current literature on ALS-related gut dysbiosis, focusing on the implications of GBA dysfunction. It delineates three main mechanisms by which dysbiosis contributes to ALS pathology: compromised intestinal barrier integrity, metabolic dysfunction, and immune dysregulation. It also examines preclinical evidence on the therapeutic potential of gut-microbiota-modulating agents (categorized as prebiotics, probiotics, and postbiotics) in ALS.
Collapse
Affiliation(s)
- Ahmed Noor Eddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mohammed Alfuwais
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Reena Noor Eddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
10
|
Lee A, Henderson R, Aylward J, McCombe P. Gut Symptoms, Gut Dysbiosis and Gut-Derived Toxins in ALS. Int J Mol Sci 2024; 25:1871. [PMID: 38339149 PMCID: PMC10856138 DOI: 10.3390/ijms25031871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Many pathogenetic mechanisms have been proposed for amyotrophic lateral sclerosis (ALS). Recently, there have been emerging suggestions of a possible role for the gut microbiota. Gut microbiota have a range of functions and could influence ALS by several mechanisms. Here, we review the possible role of gut-derived neurotoxins/excitotoxins. We review the evidence of gut symptoms and gut dysbiosis in ALS. We then examine a possible role for gut-derived toxins by reviewing the evidence that these molecules are toxic to the central nervous system, evidence of their association with ALS, the existence of biochemical pathways by which these molecules could be produced by the gut microbiota and existence of mechanisms of transport from the gut to the blood and brain. We then present evidence that there are increased levels of these toxins in the blood of some ALS patients. We review the effects of therapies that attempt to alter the gut microbiota or ameliorate the biochemical effects of gut toxins. It is possible that gut dysbiosis contributes to elevated levels of toxins and that these could potentially contribute to ALS pathogenesis, but more work is required.
Collapse
Affiliation(s)
- Aven Lee
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
| | - Robert Henderson
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
- Department of Neurology, Royal Brisbane & Women’s Hospital, Brisbane, QLD 4029, Australia
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| | - James Aylward
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| | - Pamela McCombe
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
- Department of Neurology, Royal Brisbane & Women’s Hospital, Brisbane, QLD 4029, Australia
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| |
Collapse
|
11
|
Guo K, Figueroa-Romero C, Noureldein MH, Murdock BJ, Savelieff MG, Hur J, Goutman SA, Feldman EL. Gut microbiome correlates with plasma lipids in amyotrophic lateral sclerosis. Brain 2024; 147:665-679. [PMID: 37721161 PMCID: PMC10834248 DOI: 10.1093/brain/awad306] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex, fatal neurodegenerative disease. Disease pathophysiology is incompletely understood but evidence suggests gut dysbiosis occurs in ALS, linked to impaired gastrointestinal integrity, immune system dysregulation and altered metabolism. Gut microbiome and plasma metabolome have been separately investigated in ALS, but little is known about gut microbe-plasma metabolite correlations, which could identify robust disease biomarkers and potentially shed mechanistic insight. Here, gut microbiome changes were longitudinally profiled in ALS and correlated to plasma metabolome. Gut microbial structure at the phylum level differed in ALS versus control participants, with differential abundance of several distinct genera. Unsupervised clustering of microbe and metabolite levels identified modules, which differed significantly in ALS versus control participants. Network analysis found several prominent amplicon sequence variants strongly linked to a group of metabolites, primarily lipids. Similarly, identifying the features that contributed most to case versus control separation pinpointed several bacteria correlated to metabolites, predominantly lipids. Mendelian randomization indicated possible causality from specific lipids related to fatty acid and acylcarnitine metabolism. Overall, the results suggest ALS cases and controls differ in their gut microbiome, which correlates with plasma metabolites, particularly lipids, through specific genera. These findings have the potential to identify robust disease biomarkers and shed mechanistic insight into ALS.
Collapse
Affiliation(s)
- Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Claudia Figueroa-Romero
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mohamed H Noureldein
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin J Murdock
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masha G Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Ojeda J, Vergara M, Ávila A, Henríquez JP, Fehlings M, Vidal PM. Impaired communication at the neuromotor axis during Degenerative Cervical Myelopathy. Front Cell Neurosci 2024; 17:1316432. [PMID: 38269114 PMCID: PMC10806149 DOI: 10.3389/fncel.2023.1316432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Degenerative Cervical Myelopathy (DCM) is a progressive neurological condition characterized by structural alterations in the cervical spine, resulting in compression of the spinal cord. While clinical manifestations of DCM are well-documented, numerous unanswered questions persist at the molecular and cellular levels. In this study, we sought to investigate the neuromotor axis during DCM. We use a clinically relevant mouse model, where after 3 months of DCM induction, the sensorimotor tests revealed a significant reduction in both locomotor activity and muscle strength compared to the control group. Immunohistochemical analyses showed alterations in the gross anatomy of the cervical spinal cord segment after DCM. These changes were concomitant with the loss of motoneurons and a decrease in the number of excitatory synaptic inputs within the spinal cord. Additionally, the DCM group exhibited a reduction in the endplate surface, which correlated with diminished presynaptic axon endings in the supraspinous muscles. Furthermore, the biceps brachii (BB) muscle exhibited signs of atrophy and impaired regenerative capacity, which inversely correlated with the transversal area of remnants of muscle fibers. Additionally, metabolic assessments in BB muscle indicated an increased proportion of oxidative skeletal muscle fibers. In line with the link between neuromotor disorders and gut alterations, DCM mice displayed smaller mucin granules in the mucosa layer without damage to the epithelial barrier in the colon. Notably, a shift in the abundance of microbiota phylum profiles reveals an elevated Firmicutes-to-Bacteroidetes ratio-a consistent hallmark of dysbiosis that correlates with alterations in gut microbiota-derived metabolites. Additionally, treatment with short-chain fatty acids stimulated the differentiation of the motoneuron-like NSC34 cell line. These findings shed light on the multifaceted nature of DCM, resembling a synaptopathy that disrupts cellular communication within the neuromotor axis while concurrently exerting influence on other systems. Notably, the colon emerges as a focal point, experiencing substantial perturbations in both mucosal barrier integrity and the delicate balance of intestinal microbiota.
Collapse
Affiliation(s)
- Jorge Ojeda
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Mayra Vergara
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ariel Ávila
- Developmental Neurobiology Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Juan Pablo Henríquez
- Neuromuscular Studies Lab (NeSt Lab), Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Michael Fehlings
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Spinal Program, University Health Network, Toronto Western Hospital, Toronto, ON, Canada
| | - Pia M. Vidal
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
13
|
Mitra S, Dash R, Nishan AA, Habiba SU, Moon IS. Brain modulation by the gut microbiota: From disease to therapy. J Adv Res 2023; 53:153-173. [PMID: 36496175 PMCID: PMC10658262 DOI: 10.1016/j.jare.2022.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The gut microbiota (GM) and brain are strongly associated, which significantly affects neuronal development and disorders. GM-derived metabolites modulate neuronal function and influence many cascades in age-related neurodegenerative disorders (NDDs). Because of the dual role of GM in neuroprotection and neurodegeneration, understanding the balance between beneficial and harmful bacteria is crucial for applying this approach to clinical therapies. AIM OF THE REVIEW This review briefly discusses the role of the gut-brain relationship in promoting brain and cognitive function. Although a healthy gut environment is helpful for brain function, gut dysbiosis can disrupt the brain's environment and create a vicious cycle of degenerative cascades. The ways in which the GM population can affect brain function and the development of neurodegeneration are also discussed. In the treatment and management of NDDs, the beneficial effects of methods targeting GM populations and their derivatives, including probiotics, prebiotics, and fecal microbial transplantation (FMT) are also highlighted. KEY SCIENTIFIC CONCEPT OF THE REVIEW In this review, we aimed to provide a deeper understanding of the mechanisms of the gut microbe-brain relationship and their twin roles in neurodegeneration progression and therapeutic applications. Here, we attempted to highlight the different pathways connecting the brain and gut, together with the role of GM in neuroprotection and neuronal development. Furthermore, potential roles of GM metabolites in the pathogenesis of brain disorders and in strategies for its treatment are also investigated. By analyzing existing in vitro, in vivo and clinical studies, this review attempts to identify new and promising therapeutic strategies for central nervous system (CNS) disorders. As the connection between the gut microbe-brain relationship and responses to NDD treatments is less studied, this review will provide new insights into the global mechanisms of GM modulation in disease progression, and identify potential future perspectives for developing new therapies to treat NDDs.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Amena Al Nishan
- Department of Medicine, Chittagong Medical College, Chittagong 4203, Bangladesh
| | - Sarmin Ummey Habiba
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
14
|
Goutman SA, Savelieff MG, Jang DG, Hur J, Feldman EL. The amyotrophic lateral sclerosis exposome: recent advances and future directions. Nat Rev Neurol 2023; 19:617-634. [PMID: 37709948 PMCID: PMC11027963 DOI: 10.1038/s41582-023-00867-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease of motor neuron degeneration with typical survival of only 2-5 years from diagnosis. The causes of ALS are multifactorial: known genetic mutations account for only around 70% of cases of familial ALS and 15% of sporadic cases, and heritability estimates range from 8% to 61%, indicating additional causes beyond genetics. Consequently, interest has grown in environmental contributions to ALS risk and progression. The gene-time-environment hypothesis posits that ALS onset occurs through an interaction of genes with environmental exposures during ageing. An alternative hypothesis, the multistep model of ALS, suggests that several hits, at least some of which could be environmental, are required to trigger disease onset, even in the presence of highly penetrant ALS-associated mutations. Studies have sought to characterize the ALS exposome - the lifetime accumulation of environmental exposures that increase disease risk and affect progression. Identifying the full scope of environmental toxicants that enhance ALS risk raises the prospect of preventing disease by eliminating or mitigating exposures. In this Review, we summarize the evidence for an ALS exposome, discussing the strengths and limitations of epidemiological studies that have identified contributions from various sources. We also consider potential mechanisms of exposure-mediated toxicity and suggest future directions for ALS exposome research.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Masha G Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Dae-Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Berlowitz DJ, Mathers S, Hutchinson K, Hogden A, Carey KA, Graco M, Whelan BM, Charania S, Steyn F, Allcroft P, Crook A, Sheers NL. The complexity of multidisciplinary respiratory care in amyotrophic lateral sclerosis. Breathe (Sheff) 2023; 19:220269. [PMID: 37830099 PMCID: PMC10567075 DOI: 10.1183/20734735.0269-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/20/2023] [Indexed: 10/14/2023] Open
Abstract
Motor neurone disease/amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder with no known cure, where death is usually secondary to progressive respiratory failure. Assisting people with ALS through their disease journey is complex and supported by clinics that provide comprehensive multidisciplinary care (MDC). This review aims to apply both a respiratory and a complexity lens to the key roles and areas of practice within the MDC model in ALS. Models of noninvasive ventilation care, and considerations in the provision of palliative therapy, respiratory support, and speech and language therapy are discussed. The impact on people living with ALS of both inequitable funding models and the complexity of clinical care decisions are illustrated using case vignettes. Considerations of the impact of emerging antisense and gene modifying therapies on MDC challenges are also highlighted. The review seeks to illustrate how MDC members contribute to collective decision-making in ALS, how the sum of the parts is greater than any individual care component or health professional, and that the MDC per se adds value to the person living with ALS. Through this approach we hope to support clinicians to navigate the space between what are minimum, guideline-driven, standards of care and what excellent, person-centred ALS care that fully embraces complexity could be. Educational aims To highlight the complexities surrounding respiratory care in ALS.To alert clinicians to the risk that complexity of ALS care may modify the effectiveness of any specific, evidence-based therapy for ALS.To describe the importance of person-centred care and shared decision-making in optimising care in ALS.
Collapse
Affiliation(s)
- David J. Berlowitz
- The University of Melbourne, Parkville, Australia
- Institute for Breathing and Sleep, Heidelberg, Australia
- Department of Physiotherapy, Austin Health, Heidelberg, Australia
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Australia
| | - Susan Mathers
- Calvary Health Care Bethlehem, Caulfield South, Australia
- School of Clinical Sciences, Monash University, Clayton, Australia
| | - Karen Hutchinson
- Australian Institute of Health Innovation, Macquarie University, Sydney, Australia
- Central Coast Local Health District, Gosford, Australia
| | - Anne Hogden
- School of Population Health, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Kate A. Carey
- The University of Melbourne, Parkville, Australia
- Institute for Breathing and Sleep, Heidelberg, Australia
| | - Marnie Graco
- The University of Melbourne, Parkville, Australia
- Institute for Breathing and Sleep, Heidelberg, Australia
| | - Brooke-Mai Whelan
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Salma Charania
- Motor Neurone Disease Association of Queensland, Oxley, Australia
| | - Frederik Steyn
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Peter Allcroft
- Southern Adelaide Palliative Services, Flinders Medical Centre, Bedford Park, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Ashley Crook
- Graduate School of Health, University of Technology Sydney, Chippendale, Australia
- Centre for MND Research and Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Nicole L. Sheers
- The University of Melbourne, Parkville, Australia
- Institute for Breathing and Sleep, Heidelberg, Australia
| |
Collapse
|
16
|
Ludolph A, Dupuis L, Kasarskis E, Steyn F, Ngo S, McDermott C. Nutritional and metabolic factors in amyotrophic lateral sclerosis. Nat Rev Neurol 2023; 19:511-524. [PMID: 37500993 DOI: 10.1038/s41582-023-00845-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease that is classically thought to impact the motor system. Over the past 20 years, research has started to consider the contribution of non-motor symptoms and features of the disease, and how they might affect ALS prognosis. Of the non-motor features of the disease, nutritional status (for example, malnutrition) and metabolic balance (for example, weight loss and hypermetabolism) have been consistently shown to contribute to more rapid disease progression and/or earlier death. Several complex cellular changes observed in ALS, including mitochondrial dysfunction, are also starting to be shown to contribute to bioenergetic failure. The resulting energy depletion in high energy demanding neurons makes them sensitive to apoptosis. Given that nutritional and metabolic stressors at the whole-body and cellular level can impact the capacity to maintain optimal function, these factors present avenues through which we can identify novel targets for treatment in ALS. Several clinical trials are now underway evaluating the effectiveness of modifying energy balance in ALS, making this article timely in reviewing the evidence base for metabolic and nutritional interventions.
Collapse
Affiliation(s)
- Albert Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Site Ulm, Ulm, Germany
| | - Luc Dupuis
- Université de Strasbourg, Inserm, Mécanismes Centraux et Périphériques de la Neurodégénérescence, UMR-S1118, Centre de Recherches en Biomédecine, Strasbourg, France
| | - Edward Kasarskis
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Frederik Steyn
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Shyuan Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
17
|
Bicknell B, Liebert A, Borody T, Herkes G, McLachlan C, Kiat H. Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. Int J Mol Sci 2023; 24:9577. [PMID: 37298527 PMCID: PMC10253993 DOI: 10.3390/ijms24119577] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The human gut microbiome contains the largest number of bacteria in the body and has the potential to greatly influence metabolism, not only locally but also systemically. There is an established link between a healthy, balanced, and diverse microbiome and overall health. When the gut microbiome becomes unbalanced (dysbiosis) through dietary changes, medication use, lifestyle choices, environmental factors, and ageing, this has a profound effect on our health and is linked to many diseases, including lifestyle diseases, metabolic diseases, inflammatory diseases, and neurological diseases. While this link in humans is largely an association of dysbiosis with disease, in animal models, a causative link can be demonstrated. The link between the gut and the brain is particularly important in maintaining brain health, with a strong association between dysbiosis in the gut and neurodegenerative and neurodevelopmental diseases. This link suggests not only that the gut microbiota composition can be used to make an early diagnosis of neurodegenerative and neurodevelopmental diseases but also that modifying the gut microbiome to influence the microbiome-gut-brain axis might present a therapeutic target for diseases that have proved intractable, with the aim of altering the trajectory of neurodegenerative and neurodevelopmental diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, autism spectrum disorder, and attention-deficit hyperactivity disorder, among others. There is also a microbiome-gut-brain link to other potentially reversible neurological diseases, such as migraine, post-operative cognitive dysfunction, and long COVID, which might be considered models of therapy for neurodegenerative disease. The role of traditional methods in altering the microbiome, as well as newer, more novel treatments such as faecal microbiome transplants and photobiomodulation, are discussed.
Collapse
Affiliation(s)
- Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
| | - Ann Liebert
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Thomas Borody
- Centre for Digestive Diseases, Five Dock, NSW 2046, Australia;
| | - Geoffrey Herkes
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Craig McLachlan
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
| | - Hosen Kiat
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
- ANU College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
18
|
Mitra S, Munni YA, Dash R, Sadhu T, Barua L, Islam MA, Chowdhury D, Bhattacharjee D, Mazumder K, Moon IS. Gut Microbiota in Autophagy Regulation: New Therapeutic Perspective in Neurodegeneration. Life (Basel) 2023; 13:life13040957. [PMID: 37109487 PMCID: PMC10144697 DOI: 10.3390/life13040957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Gut microbiota and the brain are related via a complex bidirectional interconnective network. Thus, intestinal homeostasis is a crucial factor for the brain, as it can control the environment of the central nervous system and play a significant role in disease progression. The link between neuropsychological behavior or neurodegeneration and gut dysbiosis is well established, but many involved pathways remain unknown. Accumulating studies showed that metabolites derived from gut microbiota are involved in the autophagy activation of various organs, including the brain, one of the major pathways of the protein clearance system that is essential for protein aggregate clearance. On the other hand, some metabolites are evidenced to disrupt the autophagy process, which can be a modulator of neurodegeneration. However, the detailed mechanism of autophagy regulation by gut microbiota remains elusive, and little research only focused on that. Here we tried to evaluate the crosstalk between gut microbiota metabolites and impaired autophagy of the central nervous system in neurodegeneration and the key to future research regarding gut dysbiosis and compromised autophagy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Toma Sadhu
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chittagong 4000, Bangladesh
| | - Largess Barua
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Md. Ariful Islam
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Dipannita Chowdhury
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Debpriya Bhattacharjee
- Faculty of Environment and Natural Sciences, Brandenburg Technical University Cottbus Senftenberg, D-03013 Cottbus, Germany
| | - Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
19
|
Gamage HKAH, Robinson KJ, Luu L, Paulsen IT, Laird AS. Machado Joseph disease severity is linked with gut microbiota alterations in transgenic mice. Neurobiol Dis 2023; 179:106051. [PMID: 36822548 DOI: 10.1016/j.nbd.2023.106051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Emerging evidence suggests the presence of bidirectional interactions between the central nervous system and gut microbiota that may contribute to the pathogenesis of neurodegenerative diseases. However, the potential role of gut microbes in forms of spinocerebellar ataxia, such as the fatal neurodegenerative disease Machado Joseph disease (MJD), remains unexplored. Here, we examined whether gut microbiota alterations may be an early disease phenotype of MJD. We profiled the gut microbiota of male and female transgenic MJD mice (CMVMJD135) expressing human ATXN3 with expanded CAG repeats (133-143 CAG) at pre-symptomatic, symptomatic and well-established stages of the disease (7, 11 and 15 weeks of age, respectively). We compared these profiles with the gut microbiota of male and female wild-type (WT) littermate control mice at same ages. Correlation network analyses were employed to explore the relevance of microbiota changes to disease progression. The results demontrated distinct sex-dependent effects in disease development whereby male MJD mice displayed earlier motor impairments than female MJD mice. The gut microbiota community structure and composition also demonstrated sex-specific differences between MJD and WT mice. In both male and female MJD mice, the shifts in the microbiota were present by 7 weeks, before the onset of any symptoms. These pre-symptomatic microbial changes correlated with the severity of neurological impairments present at later stages of the disease. Previous efforts towards developing treatments for MJD have failed to yield meaningful outcomes. Our study reports a novel relationship between the gut microbiota and MJD development and severity. Elucidating how gut microbes are involved in MJD pathogenesis may offer new and efficacious treatment strategies for this currently untreatable disease.
Collapse
Affiliation(s)
- Hasinika K A H Gamage
- School of Natural Sciences, Macquarie University, NSW 2109, Australia; ARC Training Centre for Facilitated Advancement of Australia's Bioactives, Macquarie University, NSW 2109, Australia
| | - Katherine J Robinson
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia
| | - Luan Luu
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia
| | - Ian T Paulsen
- School of Natural Sciences, Macquarie University, NSW 2109, Australia; ARC Training Centre for Facilitated Advancement of Australia's Bioactives, Macquarie University, NSW 2109, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, NSW 2109, Australia
| | - Angela S Laird
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
20
|
Chiu LS, Anderton RS. The role of the microbiota-gut-brain axis in long-term neurodegenerative processes following traumatic brain injury. Eur J Neurosci 2023; 57:400-418. [PMID: 36494087 PMCID: PMC10107147 DOI: 10.1111/ejn.15892] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) can be a devastating and debilitating disease to endure. Due to improvements in clinical practice, declining mortality rates have led to research into the long-term consequences of TBI. For example, the incidence and severity of TBI have been associated with an increased susceptibility of developing neurodegenerative disorders, such as Parkinson's or Alzheimer's disease. However, the mechanisms linking this alarming association are yet to be fully understood. Recently, there has been a groundswell of evidence implicating the microbiota-gut-brain axis in the pathogenesis of these diseases. Interestingly, survivors of TBI often report gastrointestinal complaints and animal studies have demonstrated gastrointestinal dysfunction and dysbiosis following injury. Autonomic dysregulation and chronic inflammation appear to be the main driver of these pathologies. Consequently, this review will explore the potential role of the microbiota-gut-brain axis in the development of neurodegenerative diseases following TBI.
Collapse
Affiliation(s)
- Li Shan Chiu
- School of Medicine, The University Notre Dame Australia, Fremantle, Western Australia, Australia
- Ear Science Institute Australia, Nedlands, Western Australia, Australia
| | - Ryan S Anderton
- Institute for Health Research, The University Notre Dame Australia, Fremantle, Western Australia, Australia
| |
Collapse
|
21
|
Gong Z, Ba L, Tang J, Yang Y, Li Z, Liu M, Yang C, Ding F, Zhang M. Gut microbiota links with cognitive impairment in amyotrophic lateral sclerosis: a multi-omics study. J Biomed Res 2022; 37:125-137. [PMID: 36814376 PMCID: PMC10018415 DOI: 10.7555/jbr.36.20220198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recently, cognitive impairments (CI) and behavioral abnormalities in patients with amyotrophic lateral sclerosis (ALS) have been reported. However, the underlying mechanisms have been poorly understood. In the current study, we explored the role of gut microbiota in CI of ALS patients. We collected fecal samples from 35 ALS patients and 35 healthy controls. The cognitive function of the ALS patients was evaluated using the Edinburgh Cognitive and Behavioral ALS Screen. We analyzed these samples by using 16S rRNA gene sequencing as well as both untargeted and targeted (bile acids) metabolite mapping between patients with CI and patients with normal cognition (CN). We found altered gut microbial communities and a lower ratio of Firmicutes/ Bacteroidetes in the CI group, compared with the CN group. In addition, the untargeted metabolite mapping revealed that 26 and 17 metabolites significantly increased and decreased, respectively, in the CI group, compared with the CN group. These metabolites were mapped to the metabolic pathways associated with bile acids. We further found that cholic acid and chenodeoxycholic acid were significantly lower in the CI group than in the CN group. In conclusion, we found that the gut microbiota and its metabolome profile differed between ALS patients with and without CI and that the altered bile acid profile in fecal samples was significantly associated with CI in ALS patients. These results need to be replicated in larger studies in the future.
Collapse
Affiliation(s)
- Zhenxiang Gong
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Li Ba
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiahui Tang
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuan Yang
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zehui Li
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mao Liu
- Department of Neurology, SUNY Downstate Medical Center, NY 11226, United States
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Fengfei Ding
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200433, China
| | - Min Zhang
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
22
|
Krakovski MA, Arora N, Jain S, Glover J, Dombrowski K, Hernandez B, Yadav H, Sarma AK. Diet-microbiome-gut-brain nexus in acute and chronic brain injury. Front Neurosci 2022; 16:1002266. [PMID: 36188471 PMCID: PMC9523267 DOI: 10.3389/fnins.2022.1002266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, appreciation for the gut microbiome and its relationship to human health has emerged as a facilitator of maintaining healthy physiology and a contributor to numerous human diseases. The contribution of the microbiome in modulating the gut-brain axis has gained significant attention in recent years, extensively studied in chronic brain injuries such as Epilepsy and Alzheimer’s Disease. Furthermore, there is growing evidence that gut microbiome also contributes to acute brain injuries like stroke(s) and traumatic brain injury. Microbiome-gut-brain communications are bidirectional and involve metabolite production and modulation of immune and neuronal functions. The microbiome plays two distinct roles: it beneficially modulates immune system and neuronal functions; however, abnormalities in the host’s microbiome also exacerbates neuronal damage or delays the recovery from acute injuries. After brain injury, several inflammatory changes, such as the necrosis and apoptosis of neuronal tissue, propagates downward inflammatory signals to disrupt the microbiome homeostasis; however, microbiome dysbiosis impacts the upward signaling to the brain and interferes with recovery in neuronal functions and brain health. Diet is a superlative modulator of microbiome and is known to impact the gut-brain axis, including its influence on acute and neuronal injuries. In this review, we discussed the differential microbiome changes in both acute and chronic brain injuries, as well as the therapeutic importance of modulation by diets and probiotics. We emphasize the mechanistic studies based on animal models and their translational or clinical relationship by reviewing human studies.
Collapse
Affiliation(s)
| | - Niraj Arora
- Department of Neurology, University of Missouri, Columbia, MO, United States
| | - Shalini Jain
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Jennifer Glover
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Keith Dombrowski
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Beverly Hernandez
- Clinical Nutrition Services, Tampa General Hospital, Tampa, FL, United States
| | - Hariom Yadav
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL, United States
- *Correspondence: Hariom Yadav,
| | - Anand Karthik Sarma
- Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurology, Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
- Anand Karthik Sarma,
| |
Collapse
|
23
|
Guo X, Tang P, Hou C, Chong L, Zhang X, Liu P, Chen L, Liu Y, Zhang L, Li R. Integrated Microbiome and Host Transcriptome Profiles Link Parkinson’s Disease to Blautia Genus: Evidence From Feces, Blood, and Brain. Front Microbiol 2022; 13:875101. [PMID: 35722294 PMCID: PMC9204254 DOI: 10.3389/fmicb.2022.875101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/20/2022] [Indexed: 01/01/2023] Open
Abstract
A link between the gut microbiome and Parkinson’s disease (PD) has been intensively studied, and more than 100 differential genera were identified across the studies. However, the predominant genera contributing to PD remain poorly understood. Inspired by recent advances showing microbiota distribution in the blood and brain, we, here, comprehensively investigated currently available fecal microbiome data (1,914 samples) to identify significantly altered genera, which were further validated by comparison to the results from microbiome analysis of blood (85 samples) and brain (268 samples). Our data showed that the composition of fecal microbiota was different from that of blood and brain. We found that Blautia was the unique genus consistently depleted across feces, blood, and brain samples of PD patients (P < 0.05), despite using rigorous criteria to remove contaminants. Moreover, enrichment analyses revealed that host genes correlated with Blautia genus abundance were mainly involved in mitochondrial function and energy metabolism, and mapped to neurodegenerative diseases (NDDs) and metabolic diseases. A random forest classifier constructed with fecal microbiota data demonstrated that Blautia genus was an important feature contributing to discriminating PD patients from controls [receiver operating characteristic (ROC)-area under curve (AUC) = 0.704, precision-recall curve (PRC)-AUC = 0.787]. Through the integration of microbiome and transcriptome, our study depicted microbial profiles in the feces, blood, and brain of PD patients, and identified Blautia genus as a potential genus linked to PD. Further studies are greatly encouraged to determine the role of Blautia genus in the pathogenesis of PD.
Collapse
Affiliation(s)
- Xingzhi Guo
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Peng Tang
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Chen Hou
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Li Chong
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Xin Zhang
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Peng Liu
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Li Chen
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Yue Liu
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Lina Zhang
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Rui Li
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Rui Li,
| |
Collapse
|
24
|
Masrori P, Beckers J, Gossye H, Van Damme P. The role of inflammation in neurodegeneration: novel insights into the role of the immune system in C9orf72 HRE-mediated ALS/FTD. Mol Neurodegener 2022; 17:22. [PMID: 35303907 PMCID: PMC8932121 DOI: 10.1186/s13024-022-00525-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is an important hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). An inflammatory reaction to neuronal injury is deemed vital for neuronal health and homeostasis. However, a continued activation of the inflammatory response can be detrimental to remaining neurons and aggravate the disease process. Apart from a disease modifying role, some evidence suggests that neuroinflammation may also contribute to the upstream cause of the disease. In this review, we will first focus on the role of neuroinflammation in the pathogenesis of chromosome 9 open reading frame 72 gene (C9orf72) hexanucleotide repeat expansions (HRE)-mediated ALS/FTD (C9-ALS/FTD). Additionally, we will discuss evidence from ex vivo and in vivo studies and finally, we briefly summarize the trials and progress of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Pegah Masrori
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium.,Neurology Department, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.,Department of Neurology, University Hospital Antwerp, 2650, Edegem, Belgium
| | - Jimmy Beckers
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium
| | - Helena Gossye
- Department of Neurology, University Hospital Antwerp, 2650, Edegem, Belgium.,VIB Center for Molecular Neurology, Neurodegenerative Brain Diseases, University of Antwerp, 2000, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, 2000, Antwerp, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium. .,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium. .,Neurology Department, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
25
|
Martin S, Battistini C, Sun J. A Gut Feeling in Amyotrophic Lateral Sclerosis: Microbiome of Mice and Men. Front Cell Infect Microbiol 2022; 12:839526. [PMID: 35360111 PMCID: PMC8963415 DOI: 10.3389/fcimb.2022.839526] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severely debilitating disease characterized by progressive degeneration of motor neurons. ALS etiology and pathophysiology are not well understood. It could be the consequences of complex interactions among host factors, microbiome, and the environmental factors. Recent data suggest the novel roles of intestinal dysfunction and microbiota in ALS etiology and progression. Although microbiome may indeed play a critical role in ALS pathogenesis, studies implicating innate immunity and intestinal changes in early disease pathology are limited. The gastrointestinal symptoms in the ALS patients before their diagnosis are largely ignored in the current medical practice. This review aims to explore existing evidence of gastrointestinal symptoms and progress of microbiome in ALS pathogenesis from human and animal studies. We discuss dietary, metabolites, and possible therapeutic approaches by targeting intestinal function and microbiome. Finally, we evaluate existing evidence and identify gaps in the knowledge for future directions in ALS. It is essential to understanding the microbiome and intestinal pathogenesis that determine when, where, and whether microbiome and metabolites critical to ALS progression. These studies will help us to develop more accurate diagnosis and better treatment not only for this challenging disease, but also for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah Martin
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Carolina Battistini
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
- University of Illinois at Chicago (UIC) Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|
26
|
Sun Y, Bedlack R, Armon C, Beauchamp M, Bertorini T, Bowser R, Bromberg M, Caress J, Carter G, Crayle J, Cudkowicz ME, Glass JD, Jackson C, Lund I, Martin S, Paganoni S, Pattee G, Ratner D, Salmon K, Wicks P. ALSUntangled #64: butyrates. Amyotroph Lateral Scler Frontotemporal Degener 2022; 23:638-643. [PMID: 35225121 DOI: 10.1080/21678421.2022.2045323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ALSUntangled reviews alternative and off-label treatments for people living with amyotrophic lateral sclerosis (PALS). Here we review butyrate and its different chemical forms (butyrates). Butyrates have plausible mechanisms for slowing ALS progression and positive pre-clinical studies. One trial suggests that sodium phenylbutyrate (NaPB) in combination with Tauroursodeoxycholic acid (TUDCA) can slow ALS progression and prolong survival, but the specific contribution of NaPB toward this effect is unclear. Butyrates appear reasonably safe for use in humans. Based on the above information, we support a trial of a butyrate in PALS, but we cannot yet recommend one as a treatment.
Collapse
Affiliation(s)
- Yuyao Sun
- Neurology Department, Duke University, Durham, NC, USA
| | | | - Carmel Armon
- Department of Neurology, Loma Linda University, Loma Linda, CA, USA
| | - Morgan Beauchamp
- Undergraduate, North Carolina State University, Raleigh, NC, USA
| | - Tulio Bertorini
- Neurology Department, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert Bowser
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mark Bromberg
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - James Caress
- Department of Neurology, Baptist Medical Center, Winston Salem, NC, USA
| | - Gregory Carter
- Department of Rehabilitation, Elson S. Floyd College of Medicine, Spokane, WA, USA
| | - Jesse Crayle
- Neurology Department, Washington University, St. Louis, MO, USA
| | | | | | - Carlayne Jackson
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Isaac Lund
- Student, Green Hope High School, Cary, NC, USA
| | - Sarah Martin
- Physical Therapy Program, Duke University, Durham, NC, USA
| | | | - Gary Pattee
- Department of Neurology, Nebraska Medical Center, Omaha, NE, USA
| | - Dylan Ratner
- Student, Longmeadow High School, Longmeadow, MA, USA
| | - Kristiana Salmon
- Department of Neurology, Montreal Neurological Institute, Montreal Canada
| | | |
Collapse
|
27
|
Kim HS, Son J, Lee D, Tsai J, Wang D, Chocron ES, Jeong S, Kittrell P, Murchison CF, Kennedy RE, Tobon A, Jackson CE, Pickering AM. Gut- and oral-dysbiosis differentially impact spinal- and bulbar-onset ALS, predicting ALS severity and potentially determining the location of disease onset. BMC Neurol 2022; 22:62. [PMID: 35189854 PMCID: PMC8862222 DOI: 10.1186/s12883-022-02586-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/04/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Prior studies on the role of gut-microbiome in Amyotrophic Lateral Sclerosis (ALS) pathogenesis have yielded conflicting results. We hypothesized that gut- and oral-microbiome may differentially impact two clinically-distinct ALS subtypes (spinal-onset ALS (sALS) vs. bulbar-onset ALS (bALS), driving disagreement in the field. METHODS ALS patients diagnosed within 12 months and their spouses as healthy controls (n = 150 couples) were screened. For eligible sALS and bALS patients (n = 36) and healthy controls (n = 20), 16S rRNA next-generation sequencing was done in fecal and saliva samples after DNA extractions to examine gut- and oral-microbiome differences. Microbial translocation to blood was measured by blood lipopolysaccharide-binding protein (LBP) and 16S rDNA levels. ALS severity was assessed by Revised ALS Functional Rating Scale (ALSFRS-R). RESULTS sALS patients manifested significant gut-dysbiosis, primarily driven by increased fecal Firmicutes/Bacteroidetes-ratio (F/B-ratio). In contrast, bALS patients displayed significant oral-dysbiosis, primarily driven by decreased oral F/B-ratio. For sALS patients, gut-dysbiosis (a shift in fecal F/B-ratio), but not oral-dysbiosis, was strongly associated with greater microbial translocation to blood (r = 0.8006, P < 0.0001) and more severe symptoms (r = 0.9470, P < 0.0001). In contrast, for bALS patients, oral-dysbiosis (a shift in oral F/B-ratio), but not gut-dysbiosis, was strongly associated with greater microbial translocation to blood (r = 0.9860, P < 0.0001) and greater disease severity (r = 0.9842, P < 0.0001). For both ALS subtypes, greater microbial translocation was associated with more severe symptoms (sALS: r = 0.7924, P < 0.0001; bALS: r = 0.7496, P = 0.0067). Importantly, both sALS and bALS patients displayed comparable oral-motor deficits with associations between oral-dysbiosis and severity of oral-motor deficits in bALS but not sALS. This suggests that oral-dysbiosis is not simply caused by oral/bulbar/respiratory symptoms but represents a pathological driver of bALS. CONCLUSIONS We found increasing gut-dysbiosis with worsening symptoms in sALS patients and increasing oral-dysbiosis with worsening symptoms in bALS patients. Our findings support distinct microbial mechanisms underlying two ALS subtypes, which have been previously grouped together as a single disease. Our study suggests correcting gut-dysbiosis as a therapeutic strategy for sALS patients and correcting oral-dysbiosis as a therapeutic strategy for bALS patients.
Collapse
Affiliation(s)
- Harper S Kim
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
- Medical Scientist Training Program, University of Texas Health San Antonio, San Antonio, TX, USA
| | - John Son
- Department of Anesthesiology, University of California Irvine, Irvine, CA, USA
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Donghwan Lee
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Anesthesiology, Massachusetts General Hospital, Boston, MA, USA
| | - Joy Tsai
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Anesthesiology, Stanford University, Stanford, CA, USA
| | - Danny Wang
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E Sandra Chocron
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Seongwoo Jeong
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Pamela Kittrell
- Department of Neurology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Charles F Murchison
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard E Kennedy
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alejandro Tobon
- Department of Neurology, South Texas Veteran Health Care System, San Antonio, TX, USA
| | - Carlayne E Jackson
- Department of Neurology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Andrew M Pickering
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA.
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
28
|
Sun J, Huang T, Debelius JW, Fang F. Gut microbiome and amyotrophic lateral sclerosis: A systematic review of current evidence. J Intern Med 2021; 290:758-788. [PMID: 34080741 DOI: 10.1111/joim.13336] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), characterized by a loss of motor neurons in the brain and spinal cord, is a relatively rare but currently incurable neurodegenerative disease. The global incidence of ALS is estimated as 1.75 per 100,000 person-years and the global prevalence is estimated as 4.1-8.4 per 100,000 individuals. Contributions from outside the central nervous system to the etiology of ALS have been increasingly recognized. Gut microbiome is one of the most quickly growing fields of research for ALS. In this article, we performed a comprehensive review of the results from existing animal and human studies, to provide an up-to-date summary of the current research on gut microbiome and ALS. In brief, we found relatively consistent results from animal studies, suggesting an altered gut microbiome composition in experimental ALS. Publication bias might however be a concern. Findings from human studies are largely inconclusive. A few animal and human studies demonstrated the usefulness of intervention with microbial-derived metabolites in modulating the disease progression of ALS. We discussed potential methodological concerns in these studies, including study design, statistical power, handling process of biospecimens and sequencing data, as well as statistical methods and interpretation of results. Finally, we made a few proposals for continued microbiome research in ALS, with the aim to provide valid, reproducible, and translatable findings.
Collapse
Affiliation(s)
- Jiangwei Sun
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tingting Huang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Justine W Debelius
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fang Fang
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Niccolai E, Di Pilato V, Nannini G, Baldi S, Russo E, Zucchi E, Martinelli I, Menicatti M, Bartolucci G, Mandrioli J, Amedei A. The Gut Microbiota-Immunity Axis in ALS: A Role in Deciphering Disease Heterogeneity? Biomedicines 2021; 9:753. [PMID: 34209688 PMCID: PMC8301418 DOI: 10.3390/biomedicines9070753] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder with an unknown etiology and no effective treatment, and is characterized by large phenotypic heterogeneity, including variable sites, ages of symptom onset and rates of disease progression. Increasing data support the role of the microbiota-immunity axis in the pathogenesis of neurodegenerative diseases. In the present study, we compared the inflammatory and microbiota profile of ALS patients with different clinical characteristics, with healthy family caregivers. Measuring a panel of 30 inflammatory cytokines in serum and fecal samples, we observed a distinct cytokine profile both at the systemic and intestinal level in patients compared to controls and even in patients with different clinical phenotypes and progression rates. The 16S targeted metagenome analysis revealed slight differences in patients compared to controls as well as in patients with slow progression, marked by the reduction of butyrate-producing bacteria and a decrease of the Firmicutes/Bacteroidetes ratio in ALS. Finally, the short chain fatty acid analysis did not show a different distribution among the groups. If confirmed in a larger number of patients, the inflammatory cytokine profile and the microbial composition could be appropriate biomarker candidates for deciphering ALS heterogeneity.
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (G.N.); (S.B.); (E.R.)
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy;
| | - Giulia Nannini
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (G.N.); (S.B.); (E.R.)
| | - Simone Baldi
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (G.N.); (S.B.); (E.R.)
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (G.N.); (S.B.); (E.R.)
| | - Elisabetta Zucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Ilaria Martinelli
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero Universitaria di Modena, 41125 Modena, Italy;
| | - Marta Menicatti
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50139 Florence, Italy; (M.M.); (G.B.)
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50139 Florence, Italy; (M.M.); (G.B.)
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero Universitaria di Modena, 41125 Modena, Italy;
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (G.N.); (S.B.); (E.R.)
| |
Collapse
|
30
|
Nargeh H, Aliabadi F, Ajami M, Pazoki-Toroudi H. Role of Polyphenols on Gut Microbiota and the Ubiquitin-Proteasome System in Neurodegenerative Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6119-6144. [PMID: 34038102 DOI: 10.1021/acs.jafc.1c00923] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Today, neurodegenerative diseases have become a remarkable public health challenge due to their direct relation with aging. Accordingly, understanding the molecular and cellular mechanisms occurring in the pathogenesis of them is essential. Both protein aggregations as a result of the ubiquitin-proteasome system (UPS) inefficiency and gut microbiota alternation are the main pathogenic hallmarks. Polyphenols upregulating this system may decrease the developing rate of neurodegenerative diseases. Most of the dietary intake of polyphenols is converted into other microbial metabolites, which have completely different biological properties from the original polyphenols and should be thoroughly investigated. Herein, several prevalent neurodegenerative diseases are pinpointed to explain the role of gut microbiota alternations and the role of molecular changes, especially UPS down-regulation in their pathogenesis. Some of the most important polyphenols found in our diet are explained along with their microbial metabolites in the body.
Collapse
Affiliation(s)
- Hanieh Nargeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1417466191, Iran
| | - Fatemeh Aliabadi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Marjan Ajami
- Faculty of Nutrition Sciences & Food Technology, Shahid Beheshti University of Medical Sciences, 7th Floor, Bldg No. 2 SBUMS, Arabi Avenue, Daneshjoo Boulevard, Velenjak, Tehran 19839-63113, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Physiology and Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| |
Collapse
|
31
|
Spichak S, Bastiaanssen TFS, Berding K, Vlckova K, Clarke G, Dinan TG, Cryan JF. Mining microbes for mental health: Determining the role of microbial metabolic pathways in human brain health and disease. Neurosci Biobehav Rev 2021; 125:698-761. [PMID: 33675857 DOI: 10.1016/j.neubiorev.2021.02.044] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
There is increasing knowledge regarding the role of the microbiome in modulating the brain and behaviour. Indeed, the actions of microbial metabolites are key for appropriate gut-brain communication in humans. Among these metabolites, short-chain fatty acids, tryptophan, and bile acid metabolites/pathways show strong preclinical evidence for involvement in various aspects of brain function and behaviour. With the identification of neuroactive gut-brain modules, new predictive tools can be applied to existing datasets. We identified 278 studies relating to the human microbiota-gut-brain axis which included sequencing data. This spanned across psychiatric and neurological disorders with a small number also focused on normal behavioural development. With a consistent bioinformatics pipeline, thirty-five of these datasets were reanalysed from publicly available raw sequencing files and the remainder summarised and collated. Among the reanalysed studies, we uncovered evidence of disease-related alterations in microbial metabolic pathways in Alzheimer's Disease, schizophrenia, anxiety and depression. Amongst studies that could not be reanalysed, many sequencing and technical limitations hindered the discovery of specific biomarkers of microbes or metabolites conserved across studies. Future studies are warranted to confirm our findings. We also propose guidelines for future human microbiome analysis to increase reproducibility and consistency within the field.
Collapse
Affiliation(s)
- Simon Spichak
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Kirsten Berding
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Klara Vlckova
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
32
|
Boddy SL, Giovannelli I, Sassani M, Cooper-Knock J, Snyder MP, Segal E, Elinav E, Barker LA, Shaw PJ, McDermott CJ. The gut microbiome: a key player in the complexity of amyotrophic lateral sclerosis (ALS). BMC Med 2021; 19:13. [PMID: 33468103 PMCID: PMC7816375 DOI: 10.1186/s12916-020-01885-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Much progress has been made in mapping genetic abnormalities linked to amyotrophic lateral sclerosis (ALS), but the majority of cases still present with no known underlying cause. Furthermore, even in families with a shared genetic abnormality there is significant phenotypic variability, suggesting that non-genetic elements may modify pathogenesis. Identification of such disease-modifiers is important as they might represent new therapeutic targets. A growing body of research has begun to shed light on the role played by the gut microbiome in health and disease with a number of studies linking abnormalities to ALS. MAIN BODY The microbiome refers to the genes belonging to the myriad different microorganisms that live within and upon us, collectively known as the microbiota. Most of these microbes are found in the intestines, where they play important roles in digestion and the generation of key metabolites including neurotransmitters. The gut microbiota is an important aspect of the environment in which our bodies operate and inter-individual differences may be key to explaining the different disease outcomes seen in ALS. Work has begun to investigate animal models of the disease, and the gut microbiomes of people living with ALS, revealing changes in the microbial communities of these groups. The current body of knowledge will be summarised in this review. Advances in microbiome sequencing methods will be highlighted, as their improved resolution now enables researchers to further explore differences at a functional level. Proposed mechanisms connecting the gut microbiome to neurodegeneration will also be considered, including direct effects via metabolites released into the host circulation and indirect effects on bioavailability of nutrients and even medications. CONCLUSION Profiling of the gut microbiome has the potential to add an environmental component to rapidly advancing studies of ALS genetics and move research a step further towards personalised medicine for this disease. Moreover, should compelling evidence of upstream neurotoxicity or neuroprotection initiated by gut microbiota emerge, modification of the microbiome will represent a potential new avenue for disease modifying therapies. For an intractable condition with few current therapeutic options, further research into the ALS microbiome is of crucial importance.
Collapse
Affiliation(s)
- Sarah L Boddy
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Ilaria Giovannelli
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Matilde Sassani
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Michael P Snyder
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, USA
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
- Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany
| | - Lynne A Barker
- Centre for Behavioural Science and Applied Psychology, Sheffield Hallam University, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | |
Collapse
|