1
|
Loera-Lopez AL, Lord MN, Noble EE. Astrocytes of the hippocampus and responses to periprandial neuroendocrine hormones. Physiol Behav 2025; 295:114913. [PMID: 40209869 DOI: 10.1016/j.physbeh.2025.114913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/15/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
Astrocytes have risen as stars in the field of energy homeostasis and neurocognitive function, acting as a bridge of communication between the periphery and the brain, providing metabolic support, signaling via gliotransmitters, and altering synaptic communication. Dietary factors and energy state have a profound influence on hippocampal function, and the hippocampus is critical for appropriate behavioral responses associated with feeding and internal hunger cues (being in the fasted or full state), but how the hippocampus senses periprandial status and is impacted by diet is largely unknown. Periprandial hormones act within the hippocampus to modulate processes involved in hippocampal-dependent learning and memory function and astrocytes likely play an important role in modulating this signaling. In addition to periprandial hormones, astrocytes are positioned to respond to changes in circulating nutrients like glucose. Here, we review literature investigating how astrocytes mediate changes in hippocampal function, highlighting astrocyte location, morphology, and function in the context of integrating glucose metabolism, neuroendocrine hormone action, and/or cognitive function in the hippocampus. Specifically, we discuss research findings on the effects of insulin, ghrelin, leptin, and GLP-1 on glucose homeostasis, neural activity, astrocyte function, and behavior in the hippocampus. Because obesogenic diets impact neuroendocrine hormones, astrocytes, and cognitive function, we also discuss the effects of diet and diet-induced obesity on these parameters.
Collapse
Affiliation(s)
- Ana L Loera-Lopez
- Neuroscience Graduate Program, University of Georgia, Athens, GA, 30606, USA; Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA
| | - Magen N Lord
- Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA
| | - Emily E Noble
- Neuroscience Graduate Program, University of Georgia, Athens, GA, 30606, USA; Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA.
| |
Collapse
|
2
|
Sokolowski K, Erwin L, Liu J, Authier S, McMaster O, Pressly B, Bolon B, Delatte MS. Identifying and Understanding Seizure Liability in Drug Development. Int J Toxicol 2025; 44:99-124. [PMID: 39763346 DOI: 10.1177/10915818241307851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Seizures are complex electrophysiological disturbances affecting one or more populations of brain neurons. Seizures following test article (TA) exposure pose significant challenges in drug development. This paper considers the diverse neurological manifestations, mechanisms, and functional and structural assessments needed to investigate TA-related seizure liabilities, with a particular focus on nonclinical species. Accurate discrimination of seizures from convulsions (irregular involuntary body and/or limb movements) and the nuanced presentation of different seizure types (partial vs. general) and phases (prodromal, ictal, and postictal) are essential for discerning their clinical implications. In nonclinical safety testing, the most direct evaluation method to confirm existence of seizures is electroencephalography (EEG) while clinical endpoints (e.g., functional observational batteries [FOB], comprehensive neurological examinations) and neuropathological findings (e.g., neuronal necrosis in tissue sections, raised biomarker levels in cerebrospinal fluid or serum) can indicate a seizure liability and provide additional guidance to identify the origin, frequency, and severity of seizures needed to align nonclinical effects with clinical relevance. In general, the regulatory perspective is that seizures identified in nonclinical species as well as potential risk management strategies (e.g., safety margin considerations, dosing paradigms, and clinical monitoring) translate effectively for purposes of clinical risk assessment.
Collapse
Affiliation(s)
- Katie Sokolowski
- Safety Assessment, Denali Therapeutics, South San Francisco, CA, USA
| | - Laura Erwin
- Dunn Regulatory Associated, LLC, Cambridge, MA, USA
| | - Judy Liu
- Brown University, Providence, RI, USA
| | | | - Owen McMaster
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Brandon Pressly
- Safety Assessment, Denali Therapeutics, South San Francisco, CA, USA
| | | | | |
Collapse
|
3
|
Quan Z, Wang S, Xie H, Zhang J, Duan R, Li M, Zhang J. ROS Regulation in CNS Disorder Therapy: Unveiling the Dual Roles of Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410031. [PMID: 39676433 DOI: 10.1002/smll.202410031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/01/2024] [Indexed: 12/17/2024]
Abstract
The treatment of brain diseases has always been the focus of attention. Due to the presence of the blood-brain barrier (BBB), most small molecule drugs are difficult to reach the brain, leading to undesirable therapeutic outcomes. Recently, nanomedicines that can cross the BBB and precisely target lesion sites have emerged as thrilling tools to enhance the early diagnosis and treat various intractable brain disorders. Extensive research has shown that reactive oxygen species (ROS) play a crucial role in the occurrence and progression of brain diseases, including brain tumors and neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease, stroke, or traumatic brain injury, making ROS a potential therapeutic target. In this review, on the structure and function of BBB as well as the mechanisms are first elaborated through which nanomedicine traverses it. Then, recent studies on ROS production are summarized through photodynamic therapy (PDT), chemodynamic therapy (CDT), and sonodynamic therapy (SDT) for treating brain tumors, and ROS depletion for treating NDDs. This provides valuable guidance for the future design of ROS-targeted nanomedicines for brain disease treatment. The ongoing challenges and future perspectives in developing nanomedicine-based ROS management for brain diseases are also discussed and outlined.
Collapse
Affiliation(s)
- Zhengyang Quan
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Sa Wang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Huanhuan Xie
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jiayi Zhang
- International department, Beijing 101 Middle School, Beijing, 100091, P. R. China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Menglin Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jinfeng Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
4
|
Wang Y, Che H, Qu L, Lu X, Dong M, Sun B, Guan H. The role of nanomaterials in revolutionizing ischemic stroke treatment: Current trends and future prospects. iScience 2024; 27:111373. [PMID: 39669428 PMCID: PMC11634991 DOI: 10.1016/j.isci.2024.111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
Ischemic stroke has a high disability rate, which leads to irreversible neuronal death. The efficacy of conventional stroke treatments, including thrombolytic and neuroprotective therapies, is constrained by a number of factors, including safety concerns and inefficient drug delivery. The advent of nanomaterials has created new avenues for stroke therapy, facilitating enhanced pharmacokinetic behavior of drugs, effective drug accumulation at the target site, augmented therapeutic efficacy, and concomitant reduction in side effects. Therefore, this paper pioneers a research approach that summarized the development trend and clinical value of nanomaterials in the field of ischemic stroke through bibliometric analysis. This review provides an overview of the pathophysiological mechanisms of stroke and examines the current research trends in the use of nanomaterials in stroke management. It encompasses a multitude of domains, including targeted drug delivery systems, biosensors for the sensitive detection of biomarkers, and neuroprotective nanotechnologies capable of traversing the blood-brain barrier. Moreover, we investigate the challenges that nanomaterials encounter in the clinical translation context, including those pertaining to biocompatibility and long-term safety. These results have provided the clinical value and limitations of nanomaterials in the diagnosis and treatment of ischemic stroke from double perspectives, thereby offering new avenues for the further development of innovative nanotherapeutic tools.
Collapse
Affiliation(s)
- Yong Wang
- Stroke Center, Department of Neurology, Yanbian University Hospital, Yanji 133002, China
| | - Huiying Che
- Department of General Practice, Yanbian University Hospital, Yanji 133002, China
| | - Linzhuo Qu
- Stroke Center, Department of Neurology, Yanbian University Hospital, Yanji 133002, China
| | - Xin Lu
- Stroke Center, Department of Neurology, Yanbian University Hospital, Yanji 133002, China
| | - Mingzhen Dong
- Stroke Center, Department of Neurology, Yanbian University Hospital, Yanji 133002, China
| | - Bo Sun
- Stroke Center, Department of Neurology, Yanbian University Hospital, Yanji 133002, China
| | - Hongjian Guan
- Stroke Center, Department of Neurology, Yanbian University Hospital, Yanji 133002, China
| |
Collapse
|
5
|
Kazemeini S, Nadeem-Tariq A, Shih R, Rafanan J, Ghani N, Vida TA. From Plaques to Pathways in Alzheimer's Disease: The Mitochondrial-Neurovascular-Metabolic Hypothesis. Int J Mol Sci 2024; 25:11720. [PMID: 39519272 PMCID: PMC11546801 DOI: 10.3390/ijms252111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) presents a public health challenge due to its progressive neurodegeneration, cognitive decline, and memory loss. The amyloid cascade hypothesis, which postulates that the accumulation of amyloid-beta (Aβ) peptides initiates a cascade leading to AD, has dominated research and therapeutic strategies. The failure of recent Aβ-targeted therapies to yield conclusive benefits necessitates further exploration of AD pathology. This review proposes the Mitochondrial-Neurovascular-Metabolic (MNM) hypothesis, which integrates mitochondrial dysfunction, impaired neurovascular regulation, and systemic metabolic disturbances as interrelated contributors to AD pathogenesis. Mitochondrial dysfunction, a hallmark of AD, leads to oxidative stress and bioenergetic failure. Concurrently, the breakdown of the blood-brain barrier (BBB) and impaired cerebral blood flow, which characterize neurovascular dysregulation, accelerate neurodegeneration. Metabolic disturbances such as glucose hypometabolism and insulin resistance further impair neuronal function and survival. This hypothesis highlights the interconnectedness of these pathways and suggests that therapeutic strategies targeting mitochondrial health, neurovascular integrity, and metabolic regulation may offer more effective interventions. The MNM hypothesis addresses these multifaceted aspects of AD, providing a comprehensive framework for understanding disease progression and developing novel therapeutic approaches. This approach paves the way for developing innovative therapeutic strategies that could significantly improve outcomes for millions affected worldwide.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (S.K.); (A.N.-T.); (R.S.); (J.R.); (N.G.)
| |
Collapse
|
6
|
Gong K, Li Y, Rong J, Song J, Ren F. Transcranial Doppler ultrasound in evaluating cerebral blood flow abnormalities in major depressive disorder. Medicine (Baltimore) 2024; 103:e39889. [PMID: 39432650 PMCID: PMC11495716 DOI: 10.1097/md.0000000000039889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/11/2024] [Indexed: 10/23/2024] Open
Abstract
Previous research has shown that blood flow abnormalities affect major depressive disorder (MDD) from multiple perspectives. Therefore, this study aims to investigate the relationship between middle cerebral artery (MCA) blood flow velocity parameters and clinical symptom scores (Hamilton Depression Rating Scale [HAMD] and Montgomery-Åsberg Depression Rating Scale [MADRS]) in patients with MDD. We compared the MCA blood flow velocity parameters, including peak systolic velocity (MCA-PSV), end-diastolic velocity (MCA-EDV), and mean velocity (MCA-MV), between 50 MDD patients and 50 control subjects. Additionally, we analyzed the correlation between these parameters and HAMD and MADRS scores. Hemodynamic parameters such as pulsatility index and resistance index were also compared between the 2 groups. MCA-PSV, MCA-EDV, and MCA-MV were significantly lower in MDD patients compared to the control group, while pulsatility index and resistance index were significantly higher. Correlation analysis revealed that MCA-PSV, MCA-EDV, and MCA-MV were significantly negatively correlated with HAMD and MADRS scores in MDD patients, indicating that cerebral blood flow velocity decreases as depressive symptoms worsen. Furthermore, regression analysis confirmed the negative relationship between blood flow velocity parameters and clinical symptom scores. The results of this study suggest that the reduction in cerebral blood flow velocity in MDD patients may be associated with the severity of depressive symptoms. This finding provides new insights into the pathophysiological mechanisms of MDD and offers a potential theoretical basis for developing depression treatment strategies based on cerebral blood flow velocity parameters.
Collapse
Affiliation(s)
- Kailin Gong
- Department of Physical Diagnosis, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuting Li
- Department of Psychiatry, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junfei Rong
- Jiangsu Prison Administration Jiangbei Hospital Outpatient Department, Nanjing, Jiangsu, China
| | - Jiajia Song
- Department of Physical Diagnosis, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fangfang Ren
- Department of Psychiatry, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Tsurudome Y, Takahata Y, Morita N, Yamauchi S, Iyoda T, Horiguchi M, Ushijima K. Increased SPARC in brain microvessels of ob/ob mice accelerates molecular transport into the brain accompany with albumin. Life Sci 2024; 355:122990. [PMID: 39154812 DOI: 10.1016/j.lfs.2024.122990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Cytotoxic metabolites originating from the peripheral circulation can induce central nervous system complications associated with diabetes. Since a large proportion of these metabolites bind to plasma albumin, mechanisms for transporting albumin-metabolite complexes into the brain exist under diabetic conditions. Secreted protein acidic and rich in cysteine (SPARC) is one of the vesicular transport receptors responsible for albumin transport. This study aimed to investigate the changes in SPARC expression and cellular albumin transfer under high-glucose conditions and evaluate the permeability of molecules with high protein-bound properties to the brain tissue. Glucose (30 mM) increased SPARC expression, and intracellular albumin accumulation in NIH3T3 cells. In addition, these changes were observed in the brain of ob/ob mice. Brain microvessels function as a physiological barrier to limit the penetration of molecules from the peripheral blood circulation into the brain by forming tight junctions. Although protein expression of molecules involved in tight junction formation and cell adhesion was increased in the brain microvessels of ob/ob mice, molecular transfer into the brain through cellular junctions was not enhanced. However, Evans blue dye injected into the peripheral vein and endogenous advanced glycation end-products, exerted a high protein-binding property and accumulated in their brains. These observations indicate that peripheral molecules with high protein-binding properties invade the brain tissue and bind to albumin through transcytosis mediated by SPARC.
Collapse
Affiliation(s)
- Yuya Tsurudome
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Yumi Takahata
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Nao Morita
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Soma Yamauchi
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Takuya Iyoda
- Department of Patho-Biochemistry, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Michiko Horiguchi
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan; Department of Pharmaceutical Engineering, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Kentaro Ushijima
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan.
| |
Collapse
|
8
|
Peerapen P, Boonmark W, Chantarasaka S, Thongboonkerd V. Trigonelline prevents high-glucose-induced endothelial-to-mesenchymal transition, oxidative stress, mitochondrial dysfunction, and impaired angiogenic activity in human endothelial EA.hy926 cells. Biomed Pharmacother 2024; 179:117320. [PMID: 39191024 DOI: 10.1016/j.biopha.2024.117320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Trigonelline (TRIG) is a natural compound in an alkaloid family found in diverse plants. This compound exerts anti-inflammatory, anti-allergic, anti-oxidative and anti-fibrotic activities in several disease models. However, its beneficial role in endothelial injury, especially induced by diabetes, is unclear. We, therefore, evaluated the effects of TRIG on the cellular proteome of human endothelial (EA.hy926) cells followed by functional validation in high-glucose (HG)-induced endothelial deteriorations. Label-free quantification using nanoLC-ESI-Qq-TOF MS/MS revealed 40 downregulated and 29 upregulated proteins induced by TRIG. Functional enrichment analysis using DAVID and REVIGO tools suggested the involvement of these altered proteins in several biological processes and molecular functions, particularly cell-cell adhesion, ATP metabolic process, cell redox homeostasis, cadherin binding, and ATP hydrolysis activity. Experimental validation showed that HG triggered endothelial-to-mesenchymal transition (EndMT) (as demonstrated by increased spindle index and mesenchymal markers, i.e., fibronectin and vimentin, and decreased endothelial markers, i.e., PECAM-1 and VE-cadherin), increased oxidized proteins, and reduced intracellular ATP, active mitochondria, endothelial tube/mesh formation and VEGF secretion. However, TRIG successfully abolished all these defects induced by HG. These data indicate that TRIG prevents HG-induced EndMT, oxidative stress, mitochondrial dysfunction, and impaired angiogenic activity in human endothelial cells.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suwichaya Chantarasaka
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
9
|
Filiz Y, Esposito A, De Maria C, Vozzi G, Yesil-Celiktas O. A comprehensive review on organ-on-chips as powerful preclinical models to study tissue barriers. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:042001. [PMID: 39655848 DOI: 10.1088/2516-1091/ad776c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 09/04/2024] [Indexed: 12/18/2024]
Abstract
In the preclinical stage of drug development, 2D and 3D cell cultures under static conditions followed by animal models are utilized. However, these models are insufficient to recapitulate the complexity of human physiology. With the developing organ-on-chip (OoC) technology in recent years, human physiology and pathophysiology can be modeled better than traditional models. In this review, the need for OoC platforms is discussed and evaluated from both biological and engineering perspectives. The cellular and extracellular matrix components are discussed from a biological perspective, whereas the technical aspects such as the intricate working principles of these systems, the pivotal role played by flow dynamics and sensor integration within OoCs are elucidated from an engineering perspective. Combining these two perspectives, bioengineering applications are critically discussed with a focus on tissue barriers such as blood-brain barrier, ocular barrier, nasal barrier, pulmonary barrier and gastrointestinal barrier, featuring recent examples from the literature. Furthermore, this review offers insights into the practical utility of OoC platforms for modeling tissue barriers, showcasing their potential and drawbacks while providing future projections for innovative technologies.
Collapse
Affiliation(s)
- Yagmur Filiz
- Department of Development and Regeneration, Faculty of Medicine, KU Leuven, 8500 Kortrijk, Belgium
| | - Alessio Esposito
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Carmelo De Maria
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Giovanni Vozzi
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
- EgeSAM-Ege University Translational Pulmonary Research Center, Bornova, Izmir, Turkey
- ODTÜ MEMS Center, Ankara, Turkey
| |
Collapse
|
10
|
Xu ZY, Fu SX, Zhao HC, Wang YM, Liu Y, Ma JY, Yu Y, Zhang JL, Han ZP, Zheng MX. Dynamic changes in key factors of the blood-brain barrier in early diabetic mice. J Neuropathol Exp Neurol 2024; 83:763-771. [PMID: 38874450 DOI: 10.1093/jnen/nlae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Chronic hyperglycemia can result in damage to the hippocampus and dysfunction of the blood-brain barrier (BBB), potentially leading to neurological disorders. This study examined the histological structure of the hippocampus and the expression of critical genes associated with the BBB at 2 early stage time points in a streptozotocin-induced diabetes mellitus (DM) mouse model. Routine histology revealed vascular congestion and dilation of Virchow-Robin spaces in the hippocampal CA1 region of the DM group. Neuronal alterations included rounding and swelling and reduction in Nissl bodies and increased apoptosis. Compared to the control group, TJP1 mRNA expression in the DM group was significantly lower (P < .05 or P < .01), while mRNA levels of JAM3, TJP3, CLDN5, CLDN3, and OCLN initially increased and then decreased. At 7, 14, and 21 days, mRNA levels of the receptor for advanced glycation end products (AGER) were greater in the DM group than in the control group (P < .05 or P < .01). These findings indicate that early-stage diabetes may cause structural and functional impairments in hippocampal CA1 in mice. These abnormalities may parallel alterations in the expression of key BBB tight junction molecules and elevated AGER expression in early DM patients.
Collapse
Affiliation(s)
- Zhi-Yong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Shu-Xian Fu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hui-Chao Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yin-Min Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yan Liu
- The 83rd Army Group Hospital of the Chinese People's Liberation Army, Xinxiang, China
| | - Jin-You Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jia-Le Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhan-Peng Han
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Ming-Xue Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
11
|
D’Aversa E, Salvatori F, Vaccarezza M, Antonica B, Grisafi M, Singh AV, Secchiero P, Zauli G, Tisato V, Gemmati D. circRNAs as Epigenetic Regulators of Integrity in Blood-Brain Barrier Architecture: Mechanisms and Therapeutic Strategies in Multiple Sclerosis. Cells 2024; 13:1316. [PMID: 39195206 PMCID: PMC11352526 DOI: 10.3390/cells13161316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease leading to progressive demyelination and neuronal loss, with extensive neurological symptoms. As one of the most widespread neurodegenerative disorders, with an age onset of about 30 years, it turns out to be a socio-health and economic issue, thus necessitating therapeutic interventions currently unavailable. Loss of integrity in the blood-brain barrier (BBB) is one of the distinct MS hallmarks. Brain homeostasis is ensured by an endothelial cell-based monolayer at the interface between the central nervous system (CNS) and systemic bloodstream, acting as a selective barrier. MS results in enhanced barrier permeability, mainly due to the breakdown of tight (TJs) and adherens junctions (AJs) between endothelial cells. Specifically, proinflammatory mediator release causes failure in cytoplasmic exposure of junctions, resulting in compromised BBB integrity that enables blood cells to cross the barrier, establishing iron deposition and neuronal impairment. Cells with a compromised cytoskeletal protein network, fiber reorganization, and discontinuous junction structure can occur, resulting in BBB dysfunction. Recent investigations on spatial transcriptomics have proven circularRNAs (circRNAs) to be powerful multi-functional molecules able to epigenetically regulate transcription and structurally support proteins. In the present review, we provide an overview of the recent role ascribed to circRNAs in maintaining BBB integrity/permeability via cytoskeletal stability. Increased knowledge of the mechanisms responsible for impairment and circRNA's role in driving BBB damage and dysfunction might be helpful for the recognition of novel therapeutic targets to overcome BBB damage and unrestrained neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta D’Aversa
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Bianca Antonica
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Miriana Grisafi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 11462, Saudi Arabia
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
12
|
Głowacka P, Oszajca K, Pudlarz A, Szemraj J, Witusik-Perkowska M. Postbiotics as Molecules Targeting Cellular Events of Aging Brain-The Role in Pathogenesis, Prophylaxis and Treatment of Neurodegenerative Diseases. Nutrients 2024; 16:2244. [PMID: 39064687 PMCID: PMC11279795 DOI: 10.3390/nu16142244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is the most prominent risk factor for neurodegeneration occurrence. The most common neurodegenerative diseases (NDs), Alzheimer's (AD) and Parkinson's (PD) diseases, are characterized by the incidence of proteinopathy, abnormal activation of glial cells, oxidative stress, neuroinflammation, impaired autophagy and cellular senescence excessive for the patient's age. Moreover, mitochondrial disfunction, epigenetic alterations and neurogenesis inhibition, together with increased blood-brain barrier permeability and gut dysbiosis, have been linked to ND pathogenesis. Since NDs still lack curative treatment, recent research has sought therapeutic options in restoring gut microbiota and supplementing probiotic bacteria-derived metabolites with beneficial action to the host-so called postbiotics. The current review focuses on literature explaining cellular mechanisms involved in ND pathogenesis and research addressing the impact that postbiotics as a whole mixture and particular metabolites, such as short-chain fatty acids (SCFAs), lactate, polyamines, polyphenols, tryptophan metabolites, exopolysaccharides and bacterial extracellular vesicles, have on the ageing-associated processes underlying ND occurrence. The review also discusses the issue of implementing postbiotics into ND prophylaxis and therapy, depicting them as compounds addressing senescence-triggered dysfunctions that are worth translating from bench to pharmaceutical market in response to "silver consumers" demands.
Collapse
Affiliation(s)
- Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
- International Doctoral School, Medical University of Lodz, 90-419 Lodz, Poland
| | - Katarzyna Oszajca
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Agnieszka Pudlarz
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Monika Witusik-Perkowska
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| |
Collapse
|
13
|
Wang J, Wang Y, Zhong L, Yan F, Zheng H. Nanoscale contrast agents: A promising tool for ultrasound imaging and therapy. Adv Drug Deliv Rev 2024; 207:115200. [PMID: 38364906 DOI: 10.1016/j.addr.2024.115200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/31/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Nanoscale contrast agents have emerged as a versatile platform in the field of biomedical research, offering great potential for ultrasound imaging and therapy. Various kinds of nanoscale contrast agents have been extensively investigated in preclinical experiments to satisfy diverse biomedical applications. This paper provides a comprehensive review of the structure and composition of various nanoscale contrast agents, as well as their preparation and functionalization, encompassing both chemosynthetic and biosynthetic strategies. Subsequently, we delve into recent advances in the utilization of nanoscale contrast agents in various biomedical applications, including ultrasound molecular imaging, ultrasound-mediated drug delivery, and cell acoustic manipulation. Finally, the challenges and prospects of nanoscale contrast agents are also discussed to promote the development of this innovative nanoplatform in the field of biomedicine.
Collapse
Affiliation(s)
- Jieqiong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 201206, China
| | - Yuanyuan Wang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lin Zhong
- School of public health, Nanchang University, Nanchang, Jiangxi, 330019, China
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Hairong Zheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Schwinghamer K, Line S, Tesar DB, Miller DW, Sreedhara A, Siahaan TJ. Selective Uptake of Macromolecules to the Brain in Microfluidics and Animal Models Using the HAVN1 Peptide as a Blood-Brain Barrier Modulator. Mol Pharm 2024; 21:1639-1652. [PMID: 38395041 PMCID: PMC10984760 DOI: 10.1021/acs.molpharmaceut.3c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Monoclonal antibodies (mAbs) possess favorable pharmacokinetic properties, high binding specificity and affinity, and minimal off-target effects, making them promising therapeutic agents for central nervous system (CNS) disorders. However, their development as effective therapeutic and diagnostic agents for brain disorders is hindered by their limited ability to efficiently penetrate the blood-brain barrier (BBB). Therefore, it is crucial to develop efficient delivery methods that enhance the penetration of antibodies into the brain. Previous studies have demonstrated the potential of cadherin-derived peptides (i.e., ADTC5, HAVN1 peptides) as BBB modulators (BBBMs) to increase paracellular porosities for penetration of molecules across the BBB. Here, we test the effectiveness of the leading BBBM peptide, HAVN1 (Cyclo(1,6)SHAVSS), in enhancing the permeation of various monoclonal antibodies through the BBB using both in vitro and in vivo systems. In vitro, HAVN1 has been shown to increase the permeability of fluorescently labeled macromolecules, such as a 70 kDa dextran, 50 kDa Fab1, and 150 kDa mAb1, by 4- to 9-fold in a three-dimensional blood-brain barrier (3D-BBB) microfluidics model using a human BBB endothelial cell line (i.e., hCMEC/D3). HAVN1 was selective in modulating the BBB endothelial cell, compared to the pulmonary vascular endothelial (PVE) cell barrier. Co-administration of HAVN1 significantly improved brain depositions of mAb1, mAb2, and Fab1 in C57BL/6 mice after 15 min in the systemic circulation. Furthermore, HAVN1 still significantly enhanced brain deposition of mAb2 when it was administered 24 h after the administration of the mAb. Lastly, we observed that multiple doses of HAVN1 may have a cumulative effect on the brain deposition of mAb2 within a 24-h period. These findings offer promising insights into optimizing HAVN1 and mAb dosing regimens to control or modulate mAb brain deposition for achieving desired mAb dose in the brain to provide its therapeutic effects.
Collapse
Affiliation(s)
- Kelly Schwinghamer
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Ave., Lawrence, KS 66047, USA
| | - Stacey Line
- Department of Pharmacology and Therapeutics, University of Manitoba, 753 McDermot Avenue Winnipeg, MB, R3E 0T6, Canada
| | - Devin B. Tesar
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Donald W. Miller
- Department of Pharmacology and Therapeutics, University of Manitoba, 753 McDermot Avenue Winnipeg, MB, R3E 0T6, Canada
| | - Alavattam Sreedhara
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Ave., Lawrence, KS 66047, USA
| |
Collapse
|
15
|
Chen N, Wan X, Wang M, Li Y, Wang X, Zeng L, Zhou J, Zhang Y, Cheng S, Shen Y. Cross-talk between Vimentin and autophagy regulates blood-testis barrier disruption induced by cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123625. [PMID: 38401636 DOI: 10.1016/j.envpol.2024.123625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The blood-testis barrier (BTB) plays a vital role in mammalian spermatogenesis by separating the seminiferous epithelium into an adluminal and a basal compartment. Cadmium (Cd) is a toxic heavy metal that is widely present in the environment. We observed that Cd can induce BTB disruption, leading to apoptosis of testicular cells. However, the molecular mechanisms contributing to BTB injury induced by Cd have not yet been fully clarified. Vimentin (Vim) is an important desmosome-like junction protein that mediates robust adhesion in the BTB. In this study, we investigated how Vim responds to Cd. We found that Cd treatment led to a significant decrease in Vim expression, accompanied by a marked increase in LC3-II expression and a higer number of autophagosomes. Interestingly, we also observed that Cd-induced autophagy was associated with decreased Vim activity and enhanced apoptosis of testicular cells. To further investigate the role of autophagy in Vim regulation under Cd exposure, we treated cells with an autophagy inhibitor called 3-MA. We found that 3-MA treatment enhanced Vim expression and improved the disruption of the BTB under Cd exposure. Additionally, the inhibition of Vim confirmed the role of autophagy in modulating Vim expression. These results reveal a previously unknown regulatory mechanism of Cd involving the interplay between a heavy metal and a protein.
Collapse
Affiliation(s)
- Na Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Xiaoyan Wan
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, PR China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China
| | - Yamin Li
- Department of Woman's Health Care, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Xiaofei Wang
- Center for Reproductive Medicine, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, Hubei, PR China
| | - Ling Zeng
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, PR China
| | - Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Shun Cheng
- College of Zhixing, Hubei University, Wuhan, 430011, PR China
| | - Yi Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China.
| |
Collapse
|
16
|
Chen Y, Li Y, Luo J, Li Z, Huang Y, Cai J, Jiang D, Zhang D, Jian J, Qiang J, Wang B. A novel study of brain microvascular endothelial cells induced by astrocyte conditioned medium for constructing blood brain barrier model in vitro: A promising tool for meningitis of teleost. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109401. [PMID: 38266792 DOI: 10.1016/j.fsi.2024.109401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
The blood-brain barrier (BBB) is mainly composed of specialized endothelial cells, which can resist harmful substances, transport nutrients, and maintain the stability of the brain environment. In this study, an endothelial cell line from tilapia (Oreochromis niloticus) named TVEC-01 was successfully established. During the earlier establishment phase of the cell line, the TVEC-01 cells were persistently exposed to an astrocyte-conditioned medium (ACM). TVEC-01 cells were identified as an endothelial cell line. TVEC-01 cells retained the multiple functions of endothelial cells and were capable of performing various experiments in vitro. Furthermore, TVEC-01 cells efficiently expressed BBB-related tight junctions and key efflux transporters. From the results of the qRT-PCR, we found that the TVEC-01 cell line did not gradually lose BBB characteristics after persistent and repetitive passages, which was different from the vast majority of immortalized endothelial cells. The results showed that ACM induced up-regulation of the expression levels of multiple BBB-related genes in TVEC-01 cells. We confirmed that Streptococcus agalactiae was capable of invading the TVEC-01 cells and initiating a series of immune responses, which provided a theoretical basis for S. agalactiae to break through the BBB of teleost through the transcellular traversal pathway. In summary, we have successfully constructed an endothelial cell line of teleost, named TVEC-01, which can be used in many experiments in vitro and even for constructing BBB in vitro. Moreover, it was confirmed that S. agalactiae broke through the BBB of teleost through the transcellular traversal pathway and caused meningitis.
Collapse
Affiliation(s)
- Yanghui Chen
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Yuan Li
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Junliang Luo
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Zixin Li
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Yu Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Jia Cai
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Dongneng Jiang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Defeng Zhang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, Jiangsu, China
| | - Bei Wang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China.
| |
Collapse
|
17
|
Park J, Ghanim R, Rahematpura A, Gerage C, Abramson A. Electromechanical convective drug delivery devices for overcoming diffusion barriers. J Control Release 2024; 366:650-667. [PMID: 38190971 PMCID: PMC10922834 DOI: 10.1016/j.jconrel.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Drug delivery systems which rely on diffusion for mass transport, such as hydrogels and nanoparticles, have enhanced drug targeting and extended delivery profiles to improve health outcomes for patients suffering from diseases including cancer and diabetes. However, diffusion-dependent systems often fail to provide >0.01-1% drug bioavailability when transporting macromolecules across poorly permeable physiological tissues such as the skin, solid tumors, the blood-brain barrier, and the gastrointestinal walls. Convection-enabling robotic ingestibles, wearables, and implantables physically interact with tissue walls to improve bioavailability in these settings by multiple orders of magnitude through convective mass transfer, the process of moving drug molecules via bulk fluid flow. In this Review, we compare diffusive and convective drug delivery systems, highlight engineering techniques that enhance the efficacy of convective devices, and provide examples of synergies between the two methods of drug transport.
Collapse
Affiliation(s)
- Jihoon Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ramy Ghanim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Adwik Rahematpura
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Caroline Gerage
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alex Abramson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
18
|
Stanca S, Rossetti M, Bokulic Panichi L, Bongioanni P. The Cellular Dysfunction of the Brain-Blood Barrier from Endothelial Cells to Astrocytes: The Pathway towards Neurotransmitter Impairment in Schizophrenia. Int J Mol Sci 2024; 25:1250. [PMID: 38279249 PMCID: PMC10816922 DOI: 10.3390/ijms25021250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Schizophrenia (SCZ) is an articulated psychiatric syndrome characterized by a combination of genetic, epigenetic, and environmental factors. Our intention is to present a pathogenetic model combining SCZ alterations and the main cellular actors of the blood-brain barrier (BBB): endothelial cells (ECs), pericytes, and astrocytes. The homeostasis of the BBB is preserved by the neurovascular unit which is constituted by ECs, astrocytes and microglia, neurons, and the extracellular matrix. The role of the BBB is strictly linked to its ability to preserve the biochemical integrity of brain parenchyma integrity. In SCZ, there is an increased BBB permeability, demonstrated by elevated levels of albumin and immunoglobulins in the cerebrospinal fluid, and this is the result of an intrinsic endothelial impairment. Increased BBB permeability would lead to enhanced concentrations of neurotoxic and neuroactive molecules in the brain. The pathogenetic involvement of astrocytes in SCZ reverberates its consequences on BBB, together with the impact on its permeability and selectivity represented by the EC and pericyte damage occurring in the psychotic picture. Understanding the strict interaction between ECs and astrocytes, and its consequent impact on cognition, is diriment not only for comprehension of neurotransmitter dyshomeostasis in SCZ, but also for focusing on other potential therapeutic targets.
Collapse
Affiliation(s)
- Stefano Stanca
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Martina Rossetti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Leona Bokulic Panichi
- NeuroCare Onlus, 56100 Pisa, Italy
- Neuroscience Department, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| | - Paolo Bongioanni
- NeuroCare Onlus, 56100 Pisa, Italy
- Neuroscience Department, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| |
Collapse
|
19
|
Feng YL. A New Frontier in Phytotherapy: Harnessing the Therapeutic Power of Medicinal Herb-derived miRNAs. Curr Pharm Des 2024; 30:3009-3017. [PMID: 39162273 DOI: 10.2174/0113816128310724240730072626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 08/21/2024]
Abstract
Medicinal herbs have been utilized in the treatment of various pathologic conditions, including neoplasms, organ fibrosis, and diabetes mellitus. However, the precise pharmacological actions of plant miRNAs in animals remain to be fully elucidated, particularly in terms of their therapeutic efficacy and mechanism of action. In this review, some important miRNAs from foods and medicinal herbs are presented. Plant miRNAs exhibit a range of pharmacological properties, such as anti-cancer, anti-fibrosis, anti-viral, anti-inflammatory effects, and neuromodulation, among others. These results have not only demonstrated a cross-species regulatory effect, but also suggested that the miRNAs from medicinal herbs are their bioactive components. This shows a promising prospect for plant miRNAs to be used as drugs. Here, the pharmacological properties of plant miRNAs and their underlying mechanisms have been highlighted, which can provide new insights for clarifying the therapeutic mechanisms of medicinal herbs and suggest a new way for developing therapeutic drugs.
Collapse
Affiliation(s)
- Ya-Long Feng
- Department of Life Science, Xianyang Normal University, No.43 Wenlin Road, Xianyang 712000, Shaanxi, China
| |
Collapse
|
20
|
Strawn M, Safranski TJ, Behura SK. Does DNA methylation in the fetal brain leave an epigenetic memory in the blood? Gene 2023; 887:147788. [PMID: 37696423 DOI: 10.1016/j.gene.2023.147788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Epigenetic memory is an emerging concept that refers to the process in which epigenetic changes occurring early-in life can lead to long-term programs of gene regulation in time and space. By leveraging neural network regression modeling of DNA methylation data in pigs, we show that specific methylations in the adult blood can reliably predict methylation changes that occurred in the fetal brain. Genes associated with these methylations represented known markers of specific cell types of blood including bone marrow hematopoietic progenitor cells, and ependymal and oligodendrocyte cells of brain. This suggested that methylation changes that occurred in the developing brain were maintained as an epigenetic memory in the blood through the adult life.
Collapse
Affiliation(s)
- Monica Strawn
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Timothy J Safranski
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, United States; MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, United States; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
21
|
Alkhalifa AE, Al-Ghraiybah NF, Odum J, Shunnarah JG, Austin N, Kaddoumi A. Blood-Brain Barrier Breakdown in Alzheimer's Disease: Mechanisms and Targeted Strategies. Int J Mol Sci 2023; 24:16288. [PMID: 38003477 PMCID: PMC10671257 DOI: 10.3390/ijms242216288] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The blood-brain barrier (BBB) is a unique and selective feature of the central nervous system's vasculature. BBB dysfunction has been observed as an early sign of Alzheimer's Disease (AD) before the onset of dementia or neurodegeneration. The intricate relationship between the BBB and the pathogenesis of AD, especially in the context of neurovascular coupling and the overlap of pathophysiology in neurodegenerative and cerebrovascular diseases, underscores the urgency to understand the BBB's role more deeply. Preserving or restoring the BBB function emerges as a potentially promising strategy for mitigating the progression and severity of AD. Molecular and genetic changes, such as the isoform ε4 of apolipoprotein E (ApoEε4), a significant genetic risk factor and a promoter of the BBB dysfunction, have been shown to mediate the BBB disruption. Additionally, receptors and transporters like the low-density lipoprotein receptor-related protein 1 (LRP1), P-glycoprotein (P-gp), and the receptor for advanced glycation end products (RAGEs) have been implicated in AD's pathogenesis. In this comprehensive review, we endeavor to shed light on the intricate pathogenic and therapeutic connections between AD and the BBB. We also delve into the latest developments and pioneering strategies targeting the BBB for therapeutic interventions, addressing its potential as a barrier and a carrier. By providing an integrative perspective, we anticipate paving the way for future research and treatments focused on exploiting the BBB's role in AD pathogenesis and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL 36849, USA; (A.E.A.); (N.F.A.-G.); (J.O.); (J.G.S.); (N.A.)
| |
Collapse
|
22
|
Gao HM, Chen H, Cui GY, Hu JX. Damage mechanism and therapy progress of the blood-brain barrier after ischemic stroke. Cell Biosci 2023; 13:196. [PMID: 37915036 PMCID: PMC10619327 DOI: 10.1186/s13578-023-01126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/04/2023] [Indexed: 11/03/2023] Open
Abstract
The blood-brain barrier (BBB) serves as a defensive line protecting the central nervous system, while also maintaining micro-environment homeostasis and inhibiting harmful materials from the peripheral blood. However, the BBB's unique physiological functions and properties make drug delivery challenging for patients with central nervous system diseases. In this article, we briefly describe the cell structure basis and mechanism of action of the BBB, as well as related functional proteins involved. Additionally, we discuss the various mechanisms of BBB damage following the onset of an ischemic stroke, and lastly, we mention several therapeutic strategies accounting for impairment mechanisms. We hope to provide innovative ideas for drug delivery research via the BBB.
Collapse
Affiliation(s)
- Hui-Min Gao
- Institute of Stroke Research, Xuzhou Medical University, Jiangsu, China
| | - Hao Chen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Gui-Yun Cui
- Institute of Stroke Research, Xuzhou Medical University, Jiangsu, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Jin-Xia Hu
- Institute of Stroke Research, Xuzhou Medical University, Jiangsu, China.
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China.
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China.
| |
Collapse
|
23
|
Tincu (Iurciuc) CE, Andrițoiu CV, Popa M, Ochiuz L. Recent Advancements and Strategies for Overcoming the Blood-Brain Barrier Using Albumin-Based Drug Delivery Systems to Treat Brain Cancer, with a Focus on Glioblastoma. Polymers (Basel) 2023; 15:3969. [PMID: 37836018 PMCID: PMC10575401 DOI: 10.3390/polym15193969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant tumor, and the most prevalent primary malignant tumor affecting the brain and central nervous system. Recent research indicates that the genetic profile of GBM makes it resistant to drugs and radiation. However, the main obstacle in treating GBM is transporting drugs through the blood-brain barrier (BBB). Albumin is a versatile biomaterial for the synthesis of nanoparticles. The efficiency of albumin-based delivery systems is determined by their ability to improve tumor targeting and accumulation. In this review, we will discuss the prevalence of human glioblastoma and the currently adopted treatment, as well as the structure and some essential functions of the BBB, to transport drugs through this barrier. We will also mention some aspects related to the blood-tumor brain barrier (BTBB) that lead to poor treatment efficacy. The properties and structure of serum albumin were highlighted, such as its role in targeting brain tumors, as well as the progress made until now regarding the techniques for obtaining albumin nanoparticles and their functionalization, in order to overcome the BBB and treat cancer, especially human glioblastoma. The albumin drug delivery nanosystems mentioned in this paper have improved properties and can overcome the BBB to target brain tumors.
Collapse
Affiliation(s)
- Camelia-Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| | - Călin Vasile Andrițoiu
- Apitherapy Medical Center, Balanesti, Nr. 336-337, 217036 Gorj, Romania;
- Specialization of Nutrition and Dietetics, Faculty of Pharmacy, Vasile Goldis Western University of Arad, Liviu Rebreanu Street, 86, 310045 Arad, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11, Pacurari Street, 700511 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| |
Collapse
|
24
|
Radabaugh HL, Ferguson AR, Bramlett HM, Dietrich WD. Increasing Rigor of Preclinical Research to Maximize Opportunities for Translation. Neurotherapeutics 2023; 20:1433-1445. [PMID: 37525025 PMCID: PMC10684440 DOI: 10.1007/s13311-023-01400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 08/02/2023] Open
Abstract
The use of animal models in pre-clinical research has significantly broadened our understanding of the pathologies that underlie traumatic brain injury (TBI)-induced damage and deficits. However, despite numerous pre-clinical studies reporting the identification of promising neurotherapeutics, translation of these therapies to clinical application has so far eluded the TBI research field. A concerted effort to address this lack of translatability is long overdue. Given the inherent heterogeneity of TBI and the replication crisis that continues to plague biomedical research, this is a complex task that will require a multifaceted approach centered around rigor and reproducibility. Here, we discuss the role of three primary focus areas for better aligning pre-clinical research with clinical TBI management. These focus areas are (1) reporting and standardization of protocols, (2) replication of prior knowledge including the confirmation of expected pharmacodynamics, and (3) the broad application of open science through inter-center collaboration and data sharing. We further discuss current efforts that are establishing the core framework needed for successfully addressing the translatability crisis of TBI.
Collapse
Affiliation(s)
- Hannah L Radabaugh
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Adam R Ferguson
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
25
|
Lei Y, Sun Y, Wu W, Liu H, Wang X, Shu Y, Fang S. Influenza H7N9 virus disrupts the monolayer human brain microvascular endothelial cells barrier in vitro. Virol J 2023; 20:219. [PMID: 37773164 PMCID: PMC10541704 DOI: 10.1186/s12985-023-02163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/16/2023] [Indexed: 10/01/2023] Open
Abstract
Influenza H7N9 virus causes human infections with about 40% case fatality rate. The severe cases usually present with pneumonia; however, some present with central nervous system complications. Pneumonia syndrome is attributed to the cytokine storm after infection with H7N9, but the pathogenic mechanism of central nervous system complications has not been clarified. This study used immortalized human brain microvascular endothelial cells hCMEC/D3 to simulate the blood-brain barrier. It demonstrated that H7N9 virus could infect brain microvascular endothelial cells and compromise the blood-brain barrier integrity and permeability by down-regulating the expression of cell junction-related proteins, including claudin-5, occludin, and vascular endothelial (VE)-cadherin. These results suggested that H7N9 could infect the blood-brain barrier in vitro and affect its functions, which could be a potential mechanism for the pathogenesis of H7N9 viral encephalopathy.
Collapse
Affiliation(s)
- Yuxuan Lei
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Ying Sun
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Weihua Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Hui Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xin Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Shisong Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
26
|
Pansieri J, Hadley G, Lockhart A, Pisa M, DeLuca GC. Regional contribution of vascular dysfunction in white matter dementia: clinical and neuropathological insights. Front Neurol 2023; 14:1199491. [PMID: 37396778 PMCID: PMC10313211 DOI: 10.3389/fneur.2023.1199491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
The maintenance of adequate blood supply and vascular integrity is fundamental to ensure cerebral function. A wide range of studies report vascular dysfunction in white matter dementias, a group of cerebral disorders characterized by substantial white matter damage in the brain leading to cognitive impairment. Despite recent advances in imaging, the contribution of vascular-specific regional alterations in white matter dementia has been not extensively reviewed. First, we present an overview of the main components of the vascular system involved in the maintenance of brain function, modulation of cerebral blood flow and integrity of the blood-brain barrier in the healthy brain and during aging. Second, we review the regional contribution of cerebral blood flow and blood-brain barrier disturbances in the pathogenesis of three distinct conditions: the archetypal white matter predominant neurocognitive dementia that is vascular dementia, a neuroinflammatory predominant disease (multiple sclerosis) and a neurodegenerative predominant disease (Alzheimer's). Finally, we then examine the shared landscape of vascular dysfunction in white matter dementia. By emphasizing the involvement of vascular dysfunction in the white matter, we put forward a hypothetical map of vascular dysfunction during disease-specific progression to guide future research aimed to improve diagnostics and facilitate the development of tailored therapies.
Collapse
|
27
|
Mármol I, Abizanda-Campo S, Ayuso JM, Ochoa I, Oliván S. Towards Novel Biomimetic In Vitro Models of the Blood-Brain Barrier for Drug Permeability Evaluation. Bioengineering (Basel) 2023; 10:bioengineering10050572. [PMID: 37237642 DOI: 10.3390/bioengineering10050572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Current available animal and in vitro cell-based models for studying brain-related pathologies and drug evaluation face several limitations since they are unable to reproduce the unique architecture and physiology of the human blood-brain barrier. Because of that, promising preclinical drug candidates often fail in clinical trials due to their inability to penetrate the blood-brain barrier (BBB). Therefore, novel models that allow us to successfully predict drug permeability through the BBB would accelerate the implementation of much-needed therapies for glioblastoma, Alzheimer's disease, and further disorders. In line with this, organ-on-chip models of the BBB are an interesting alternative to traditional models. These microfluidic models provide the necessary support to recreate the architecture of the BBB and mimic the fluidic conditions of the cerebral microvasculature. Herein, the most recent advances in organ-on-chip models for the BBB are reviewed, focusing on their potential to provide robust and reliable data regarding drug candidate ability to reach the brain parenchyma. We point out recent achievements and challenges to overcome in order to advance in more biomimetic in vitro experimental models based on OOO technology. The minimum requirements that should be met to be considered biomimetic (cellular types, fluid flow, and tissular architecture), and consequently, a solid alternative to in vitro traditional models or animals.
Collapse
Affiliation(s)
- Inés Mármol
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Sara Abizanda-Campo
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
- Department of Dermatology, Department of Biomedical Engineering, and Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jose M Ayuso
- Department of Dermatology, Department of Biomedical Engineering, and Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain
- CIBER Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sara Oliván
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
28
|
Sun W, Feng Y, Li H, He X, Lu Y, Shan Z, Teng W, Li J. The effects of maternal anti-alpha-enolase antibody expression on the brain development in offspring. Clin Exp Immunol 2022; 210:187-198. [PMID: 36149061 PMCID: PMC9750830 DOI: 10.1093/cei/uxac086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 01/25/2023] Open
Abstract
Anti-alpha-enolase autoantibodies have not only been found to play an important role in autoimmune diseases but also cause neurological damage in adults. In this study, a pregnant mouse model with high serum alpha-enolase (ENO1)-specific antibody (ENO1Ab) was established by immunization with ENO1 protein to explore the effects of maternal circulatory ENO1Ab on the brain development in offspring. The pups showed impaired learning and memory abilities with obviously thinner tight junctions in the brain tissue. IgG deposits colocalized with both ENO1 protein and complement 3 (C3), and the membrane attack complex was obviously detectable in the brain tissues of pups from dams with high serum ENO1Ab expression. Our findings suggest that highly expressed ENO1Ab in the maternal circulation can pass through the blood-placenta-barrier and the compromised blood-brain barrier into the brain tissues of offspring and may cause neurological development impairment mainly through complement-dependent cytotoxicity.
Collapse
Affiliation(s)
- Wei Sun
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang110001, PR China
| | - Yan Feng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang110001, PR China
| | - Hui Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang110001, PR China
| | - Xiaoqing He
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang110001, PR China
| | - Yihan Lu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang110001, PR China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang110001, PR China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang110001, PR China
| | - Jing Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang110001, PR China
| |
Collapse
|
29
|
Alarcan H, Al Ojaimi Y, Lanznaster D, Escoffre JM, Corcia P, Vourc'h P, Andres CR, Veyrat-Durebex C, Blasco H. Taking Advantages of Blood–Brain or Spinal Cord Barrier Alterations or Restoring Them to Optimize Therapy in ALS? J Pers Med 2022; 12:jpm12071071. [PMID: 35887567 PMCID: PMC9319288 DOI: 10.3390/jpm12071071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that still lacks an efficient therapy. The barriers between the central nervous system (CNS) and the blood represent a major limiting factor to the development of drugs for CNS diseases, including ALS. Alterations of the blood–brain barrier (BBB) or blood–spinal cord barrier (BSCB) have been reported in this disease but still require further investigations. Interestingly, these alterations might be involved in the complex etiology and pathogenesis of ALS. Moreover, they can have potential consequences on the diffusion of candidate drugs across the brain. The development of techniques to bypass these barriers is continuously evolving and might open the door for personalized medical approaches. Therefore, identifying robust and non-invasive markers of BBB and BSCB alterations can help distinguish different subgroups of patients, such as those in whom barrier disruption can negatively affect the delivery of drugs to their CNS targets. The restoration of CNS barriers using innovative therapies could consequently present the advantage of both alleviating the disease progression and optimizing the safety and efficiency of ALS-specific therapies.
Collapse
Affiliation(s)
- Hugo Alarcan
- Laboratoire de Biochimie et Biologie Moleculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Yara Al Ojaimi
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Debora Lanznaster
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Jean-Michel Escoffre
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Philippe Corcia
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
- Service de Neurologie, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
| | - Patrick Vourc'h
- Laboratoire de Biochimie et Biologie Moleculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Christian R Andres
- Laboratoire de Biochimie et Biologie Moleculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Charlotte Veyrat-Durebex
- Laboratoire de Biochimie et Biologie Moleculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Hélène Blasco
- Laboratoire de Biochimie et Biologie Moleculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| |
Collapse
|
30
|
Parnova RG. Critical Role of Endothelial Lysophosphatidylcholine Transporter Mfsd2a in Maintaining Blood–Brain Barrier Integrity and Delivering Omega 3 PUFA to the Brain. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
CfDNA Measurement as a Diagnostic Tool for the Detection of Brain Somatic Mutations in Refractory Epilepsy. Int J Mol Sci 2022; 23:ijms23094879. [PMID: 35563270 PMCID: PMC9102996 DOI: 10.3390/ijms23094879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Epilepsy is a neurological disorder that affects more than 50 million people. Its etiology is unknown in approximately 60% of cases, although the existence of a genetic factor is estimated in about 75% of these individuals. Hundreds of genes involved in epilepsy are known, and their number is increasing progressively, especially with next-generation sequencing techniques. However, there are still many cases in which the results of these molecular studies do not fully explain the phenotype of the patients. Somatic mutations specific to brain tissue could contribute to the phenotypic spectrum of epilepsy. Undetectable in the genomic DNA of blood cells, these alterations can be identified in cell-free DNA (cfDNA). We aim to review the current literature regarding the detection of somatic variants in cfDNA to diagnose refractory epilepsy, highlighting novel research directions and suggesting further studies.
Collapse
|
32
|
Wang P, Wu Y, Chen W, Zhang M, Qin J. Malignant Melanoma-Derived Exosomes Induce Endothelial Damage and Glial Activation on a Human BBB Chip Model. BIOSENSORS 2022; 12:89. [PMID: 35200349 PMCID: PMC8869810 DOI: 10.3390/bios12020089] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 01/16/2023]
Abstract
Malignant melanoma is a type of highly aggressive tumor, which has a strong ability to metastasize to brain, and 60-70% of patients die from the spread of the tumor into the central nervous system. Exosomes are a type of nano-sized vesicle secreted by most living cells, and accumulated studies have reported that they play crucial roles in brain tumor metastasis, such as breast cancer and lung cancer. However, it is unclear whether exosomes also participate in the brain metastasis of malignant melanoma. Here, we established a human blood-brain barrier (BBB) model by co-culturing human brain microvascular endothelial cells, astrocytes and microglial cells under a biomimetic condition, and used this model to explore the potential roles of exosomes derived from malignant melanoma in modulating BBB integrity. Our findings showed that malignant melanoma-derived exosomes disrupted BBB integrity and induced glial activation on the BBB chip. Transcriptome analyses revealed dys-regulation of autophagy and immune responses following tumor exosome treatment. These studies indicated malignant melanoma cells might modulate BBB integrity via exosomes, and verified the feasibility of a BBB chip as an ideal platform for studies of brain metastasis of tumors in vitro.
Collapse
Affiliation(s)
- Peng Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (P.W.); (Y.W.); (W.C.); (M.Z.)
| | - Yunsong Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (P.W.); (Y.W.); (W.C.); (M.Z.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 116023, China
| | - Wenwen Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (P.W.); (Y.W.); (W.C.); (M.Z.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 116023, China
| | - Min Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (P.W.); (Y.W.); (W.C.); (M.Z.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 116023, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (P.W.); (Y.W.); (W.C.); (M.Z.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 116023, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100864, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
33
|
Mehrabian A, Mashreghi M, Dadpour S, Badiee A, Arabi L, Hoda Alavizadeh S, Alia Moosavian S, Reza Jaafari M. Nanocarriers Call the Last Shot in the Treatment of Brain Cancers. Technol Cancer Res Treat 2022; 21:15330338221080974. [PMID: 35253549 PMCID: PMC8905056 DOI: 10.1177/15330338221080974] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our brain is protected by physio-biological barriers. The blood–brain barrier (BBB) main mechanism of protection relates to the abundance of tight junctions (TJs) and efflux pumps. Although BBB is crucial for healthy brain protection against toxins, it also leads to failure in a devastating disease like brain cancer. Recently, nanocarriers have been shown to pass through the BBB and improve patients’ survival rates, thus becoming promising treatment strategies. Among nanocarriers, inorganic nanocarriers, solid lipid nanoparticles, liposomes, polymers, micelles, and dendrimers have reached clinical trials after delivering promising results in preclinical investigations. The size of these nanocarriers is between 10 and 1000 nm and is modified by surface attachment of proteins, peptides, antibodies, or surfactants. Multiple research groups have reported transcellular entrance as the main mechanism allowing for these nanocarriers to cross BBB. Transport proteins and transcellular lipophilic pathways exist in BBB for small and lipophilic molecules. Nanocarriers cannot enter via the paracellular route, which is limited to water-soluble agents due to the TJs and their small pore size. There are currently several nanocarriers in clinical trials for the treatment of brain cancer. This article reviews challenges as well as fitting attributes of nanocarriers for brain tumor treatment in preclinical and clinical studies.
Collapse
Affiliation(s)
- Amin Mehrabian
- School of Pharmacy, Biotechnology Research Center, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Mohammad Mashreghi
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Dadpour
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Student Research Committee, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Alia Moosavian
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- School of Pharmacy, Biotechnology Research Center, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Blood-Brain Barrier in Brain Tumors: Biology and Clinical Relevance. Int J Mol Sci 2021; 22:ijms222312654. [PMID: 34884457 PMCID: PMC8657947 DOI: 10.3390/ijms222312654] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The presence of barriers, such as the blood–brain barrier (BBB) and brain–tumor barrier (BTB), limits the penetration of antineoplastic drugs into the brain, resulting in poor response to treatments. Many techniques have been developed to overcome the presence of these barriers, including direct injections of substances by intranasal or intrathecal routes, chemical modification of drugs or constituents of BBB, inhibition of efflux pumps, physical disruption of BBB by radiofrequency electromagnetic radiation (EMP), laser-induced thermal therapy (LITT), focused ultrasounds (FUS) combined with microbubbles and convection enhanced delivery (CED). However, most of these strategies have been tested only in preclinical models or in phase 1–2 trials, and none of them have been approved for treatment of brain tumors yet. Concerning the treatment of brain metastases, many molecules have been developed in the last years with a better penetration across BBB (new generation tyrosine kinase inhibitors like osimertinib for non-small-cell lung carcinoma and neratinib/tucatinib for breast cancer), resulting in better progression-free survival and overall survival compared to older molecules. Promising studies concerning neural stem cells, CAR-T (chimeric antigen receptors) strategies and immunotherapy with checkpoint inhibitors are ongoing.
Collapse
|
35
|
Bayir E, Sendemir A. Role of Intermediate Filaments in Blood-Brain Barrier in Health and Disease. Cells 2021; 10:cells10061400. [PMID: 34198868 PMCID: PMC8226756 DOI: 10.3390/cells10061400] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
The blood–brain barrier (BBB) is a highly selective cellular monolayer unique to the microvasculature of the central nervous system (CNS), and it mediates the communication of the CNS with the rest of the body by regulating the passage of molecules into the CNS microenvironment. Limitation of passage of substances through the BBB is mainly due to tight junctions (TJ) and adherens junctions (AJ) between brain microvascular endothelial cells. The importance of actin filaments and microtubules in establishing and maintaining TJs and AJs has been indicated; however, recent studies have shown that intermediate filaments are also important in the formation and function of cell–cell junctions. The most common intermediate filament protein in endothelial cells is vimentin. Vimentin plays a role in blood–brain barrier permeability in both cell–cell and cell–matrix interactions by affecting the actin and microtubule reorganization and by binding directly to VE-cadherin or integrin proteins. The BBB permeability increases due to the formation of stress fibers and the disruption of VE–cadherin interactions between two neighboring cells in various diseases, disrupting the fiber network of intermediate filament vimentin in different ways. Intermediate filaments may be long ignored key targets in regulation of BBB permeability in health and disease.
Collapse
Affiliation(s)
- Ece Bayir
- Ege University Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, 35100 Izmir, Turkey;
| | - Aylin Sendemir
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
- Department of Biomedical Technologies, Graduate School of Natural and Applied Science, Ege University, 35100 Izmir, Turkey
- Correspondence: ; Tel.: +90-232-3114817
| |
Collapse
|
36
|
Walter FR, Santa-Maria AR, Mészáros M, Veszelka S, Dér A, Deli MA. Surface charge, glycocalyx, and blood-brain barrier function. Tissue Barriers 2021; 9:1904773. [PMID: 34003072 DOI: 10.1080/21688370.2021.1904773] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The negative surface charge of brain microvessel endothelial cells is derived from the special composition of their membrane lipids and the thick endothelial surface glycocalyx. They are important elements of the unique defense systems of the blood-brain barrier. The tissue-specific properties, components, function and charge of the brain endothelial glycocalyx have only been studied in detail in the past 15 years. This review highlights the importance of the negative surface charge in the permeability of macromolecules and nanoparticles as well as in drug interactions. We discuss surface charge and glycoxalyx changes in pathologies related to the brain microvasculature and protective measures against glycocalyx shedding and damage. We present biophysical techniques, including a microfluidic chip device, to measure surface charge of living brain endothelial cells and imaging methods for visualization of surface charge and glycocalyx.
Collapse
Affiliation(s)
- Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Ana R Santa-Maria
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Mária Mészáros
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - András Dér
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| |
Collapse
|