1
|
Sheikh A, Abourehab MAS, Kesharwani P. The clinical significance of 4D printing. Drug Discov Today 2023; 28:103391. [PMID: 36195204 DOI: 10.1016/j.drudis.2022.103391] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/11/2022] [Accepted: 09/28/2022] [Indexed: 02/02/2023]
Abstract
4D printing is the next step on from 3D printing involving the fourth dimension of 'time'. The programmed 4D-printed objects are capable of changing their shape in response to external stimuli, such as light, heat, or water, differentiating them from 3D-printed static objects. This technique promises new possibilities for cancer treatment, drug delivery, stent development, and tissue engineering. In this review, we focus on the development of 4D-printed objects, their clinical use, and the possibility of 5D printing, which could revolutionize the fields of biomedical engineering and drug delivery.
Collapse
Affiliation(s)
- Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia 61519, Egypt
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Ali B, Atif M, Perviaz M, Irshad A, Abdullah M, Mobeen MA. Catalyst-free synthesis of low-temperature thermally actuated shape memory polyurethanes with modified biobased plasticizers. RSC Adv 2022; 13:506-515. [PMID: 36605674 PMCID: PMC9769378 DOI: 10.1039/d2ra06862a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Recent years have seen research into developing specific application-based materials with particular components. Bio-based polyurethanes (PUs) with self-tightening effect through shape recovery at low temperature have been designed from sesame oil-based plasticizer (HSSO). Without using a catalyst, the produced plasticizer was used to create PU samples. In contrast, orcein-based PU has been created both with and without HSSO. The prepared samples have been analyzed through instrumental as well as chemical analyses for surface chemistry, thermal stability and morphology. The gel content and water absorption capacity of HSSO based PU samples has been observed to be 99.27% and 14.94%, respectively. Shape memory study of the PU samples revealed that HSSO-based PU showed fast shape recovery at 60 °C with shape recovery rate (R r) and shape fixing rate (R f) of 94.44% and 5%, respectively, in 150 seconds, whereas at 36 °C the sample showed 85% R r in 15 minutes with 93.1196 N force and 52.78% R r without force. Low-temperature thermal actuation and high water uptake highlight the prepared samples as suitable candidates for self-tightening structures in textile and biomedical fields.
Collapse
Affiliation(s)
- Basharat Ali
- Chemistry Department, University of Education LahoreVehari Campus, Officers' ColonyVehari-61100PunjabPakistan+92-3024757979
| | - Muhammad Atif
- Chemistry Department, University of Education LahoreVehari Campus, Officers' ColonyVehari-61100PunjabPakistan+92-3024757979
| | - Muhammad Perviaz
- Department of Basic & Applied Chemistry, Faculty of Science & Technology, University of Central PunjabLahorePakistan
| | - Adnan Irshad
- Chemistry Department, University of Education LahoreVehari Campus, Officers' ColonyVehari-61100PunjabPakistan+92-3024757979
| | - Muhammad Abdullah
- Chemistry Department, University of Education LahoreVehari Campus, Officers' ColonyVehari-61100PunjabPakistan+92-3024757979
| | - Muhammad Ahmad Mobeen
- Chemistry Department, University of Education LahoreVehari Campus, Officers' ColonyVehari-61100PunjabPakistan+92-3024757979
| |
Collapse
|
3
|
Lee J, Kang SK. Principles for Controlling the Shape Recovery and Degradation Behavior of Biodegradable Shape-Memory Polymers in Biomedical Applications. MICROMACHINES 2021; 12:757. [PMID: 34199036 PMCID: PMC8305960 DOI: 10.3390/mi12070757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
Polymers with the shape memory effect possess tremendous potential for application in diverse fields, including aerospace, textiles, robotics, and biomedicine, because of their mechanical properties (softness and flexibility) and chemical tunability. Biodegradable shape memory polymers (BSMPs) have unique benefits of long-term biocompatibility and formation of zero-waste byproducts as the final degradable products are resorbed or absorbed via metabolism or enzyme digestion processes. In addition to their application toward the prevention of biofilm formation or internal tissue damage caused by permanent implant materials and the subsequent need for secondary surgery, which causes secondary infections and complications, BSMPs have been highlighted for minimally invasive medical applications. The properties of BSMPs, including high tunability, thermomechanical properties, shape memory performance, and degradation rate, can be achieved by controlling the combination and content of the comonomer and crystallinity. In addition, the biodegradable chemistry and kinetics of BSMPs, which can be controlled by combining several biodegradable polymers with different hydrolysis chemistry products, such as anhydrides, esters, and carbonates, strongly affect the hydrolytic activity and erosion property. A wide range of applications including self-expending stents, wound closure, drug release systems, and tissue repair, suggests that the BSMPs can be applied as actuators on the basis of their shape recovery and degradation ability.
Collapse
Affiliation(s)
- Junsang Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea;
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea;
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
4
|
Melocchi A, Uboldi M, Cerea M, Foppoli A, Maroni A, Moutaharrik S, Palugan L, Zema L, Gazzaniga A. Shape memory materials and 4D printing in pharmaceutics. Adv Drug Deliv Rev 2021; 173:216-237. [PMID: 33774118 DOI: 10.1016/j.addr.2021.03.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Shape memory materials (SMMs), including alloys and polymers, can be programmed into a temporary configuration and then recover the original shape in which they were processed in response to a triggering external stimulus (e.g. change in temperature or pH, contact with water). For this behavior, SMMs are currently raising a lot of attention in the pharmaceutical field where they could bring about important innovations in the current treatments. 4D printing involves processing of SMMs by 3D printing, thus adding shape evolution over time to the already numerous customization possibilities of this new manufacturing technology. SMM-based drug delivery systems (DDSs) proposed in the scientific literature were here reviewed and classified according to the target pursued through the shape recovery process. Administration route, therapeutic goal, temporary and original shape, triggering stimulus, main innovation features and possible room for improvement of the DDSs were especially highlighted.
Collapse
|
5
|
Toh HW, Toong DWY, Ng JCK, Ow V, Lu S, Tan LP, Wong PEH, Venkatraman S, Huang Y, Ang HY. Polymer blends and polymer composites for cardiovascular implants. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110249] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Singh J, Pandey PM, Kaur T, Singh N. A comparative analysis of solvent cast 3D printed carbonyl iron powder reinforced polycaprolactone polymeric stents for intravascular applications. J Biomed Mater Res B Appl Biomater 2021; 109:1344-1359. [PMID: 33410262 DOI: 10.1002/jbm.b.34795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
In the present research, the effectiveness of developed methodology based on solvent cast 3D printing technique was investigated by printing the different geometries of the stents. The carbonyl iron powder (CIP) reinforced polycaprolactone (CIPC) was used to print three pre-existing stent designs such as ABBOTT BVS1.1, PALMAZ-SCHATZ, and ART18Z. The physicochemical behavior was analyzed by X-ray diffraction and scanning electron microscopy. The radial compression test, three-point bending test and stent deployment test were carried out to analyze the mechanical behavior. The degradation behavior of the stents was investigated in static as well as dynamic environment. To investigate the hemocompatible and cytocompatible behaviors of the stents, platelet adhesion test, hemolysis test, protein adsorption, in vitro cell viability test, and live/dead cell viability assay were performed. The results revealed that stents had the adequate mechanical properties to perform the necessary functions in the human coronary. The degradation studies showed slower degradation rate in the dynamic environment in comparison to static environment. in vitro biological analysis indicated that the stents represented excellent resistance to thrombosis, hemocompatible functions as well as cytocompatible nature. The results concluded that PALMAZ-SCHATZ stent represented better mechanical properties, cell viability, blood compatibility, and degradation behavior.
Collapse
Affiliation(s)
- Jasvinder Singh
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Pulak Mohan Pandey
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Tejinder Kaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
7
|
Li Z, Hu J, Ma L, Liu H. Shape memory CTBN/epoxy resin/cyanate ester ternary resin and their carbon fiber reinforced composites. J Appl Polym Sci 2019. [DOI: 10.1002/app.48756] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zhihua Li
- Key Laboratory of Nonferrous Metal Materials Science and Engineering of Ministry of EducationCentral South University Changsha 410083 People's Republic of China
- School of Materials Science and Engineering, Central South University Changsha 410083 People's Republic of China
| | - Jiankang Hu
- Key Laboratory of Nonferrous Metal Materials Science and Engineering of Ministry of EducationCentral South University Changsha 410083 People's Republic of China
- School of Materials Science and Engineering, Central South University Changsha 410083 People's Republic of China
| | - Li Ma
- China Academy of Space Technology Beijing 10080 People's Republic of China
| | - Hongxin Liu
- China Academy of Space Technology Beijing 10080 People's Republic of China
| |
Collapse
|
8
|
Hou R, Wu L, Zhu Y, Wang J, Yang Z, Tu Q, Huang N. Study of functional drug-eluting stent in promoting endothelialization and antiproliferation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:244-260. [PMID: 31626738 DOI: 10.1080/09205063.2019.1683266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Drug-eluting stents have been widely used in the clinic because of their impressive ability to reduce restenosis. However, the conventional biodegradable polymers used for drug-loaded coatings undergo bulk erosion, which can induce internal catalysis, resulting in a high local acidity during the degradation process and unfavorable side-effects. Herein, poly(1,3-trimethylene carbonate), a surface eroding biodegradable polymer, was chosen as a drug-loaded coating for cardiovascular stents. We modified both sides of the stent to simultaneously promote re-endothelialization at the inner layer and reduce restenosis at the outer layer, using a titanium oxide (Ti-O) film as the inner layer and a Ti-O film/drug coating as the outer layer. In vitro and in vivo results indicated that the Ti-O film accelerated endothelial cell growth and re-endothelialization, and the drug coating inhibited platelet adhesion, activation, and aggregation, smooth muscle cell proliferation, and significantly reduced neointimal hyperplasia. Therefore, this novel stent may have potential as a cardiovascular stent to treat patients with coronary artery stenosis.
Collapse
Affiliation(s)
- Ruixia Hou
- Department of Anatomy and Histology and Embryology, Medical School of Ningbo University, Ningbo, China.,Key Laboratory of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Leigang Wu
- Key Laboratory of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yabin Zhu
- Department of Anatomy and Histology and Embryology, Medical School of Ningbo University, Ningbo, China
| | - Jin Wang
- Key Laboratory of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhilu Yang
- Key Laboratory of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qiufen Tu
- Key Laboratory of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Nan Huang
- Key Laboratory of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
9
|
Ahmadi Lakalayeh G, Rahvar M, Haririan E, Karimi R, Ghanbari H. Comparative study of different polymeric coatings for the next-generation magnesium-based biodegradable stents. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1380-1389. [PMID: 28838256 DOI: 10.1080/21691401.2017.1369424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Development of next-generation bioabsorbable stents based on magnesium alloys is gaining lots of attention. However, finding an appropriate coating in order to enhance its corrosion resistance along with preserving other requirements is still a challenge. In this study, three FDA-approved polymers, namely poly(lactic acid), polycaprolactone and poly(lactic-co-glycolic acid), have been investigated as potential coatings for magnesium-based stents to enhance their corrosion resistance, biocompatibility and haemocompatibility. Potentiodynamic and electrochemical impedance spectroscopy results demonstrated that PLA and PLGA coating performed better in improving corrosion resistance in comparison with uncoated and other coated samples. Although all coated and bare samples displayed desirable results of haemocompatibility assays, PLA-coated samples showed better outcome in terms of biocompatibility. The results revealed that PLA can be considered as a potential coating material to enhance the main characteristics of magnesium-based bioabsorbable stents.
Collapse
Affiliation(s)
- Gholamreza Ahmadi Lakalayeh
- a Department of Medical Nanotechnology, Regenerative Nanomedicine Research Group, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mostafa Rahvar
- a Department of Medical Nanotechnology, Regenerative Nanomedicine Research Group, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Esmaeil Haririan
- b Medical Biomaterial Research Center (MBRC) , Tehran University of Medical Sciences , Tehran , Iran
| | - Roya Karimi
- c Tissue Engineering Department, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Hossein Ghanbari
- a Department of Medical Nanotechnology, Regenerative Nanomedicine Research Group, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran.,b Medical Biomaterial Research Center (MBRC) , Tehran University of Medical Sciences , Tehran , Iran.,d Research Center for Advanced Technologies in Cardiovascular Medicine , Tehran Heart Center, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|