1
|
Lima LEBD, Almeida MLGD, Gomes GS, do Nascimento PH, Silva CJOE, da Silva CRD, Tanaka YMR, Romão TP, de Lima TBS, de Araújo ES, de Araújo PLB, Cabral Filho PE, Holanda VN, de Oliveira RN, Figueiredo RCBQD. A phthalimide-triazole derivative obtained by click chemistry exhibits trypanocidal activity, induces autophagy and ameliorates Trypanosoma cruzi infection. Biomed Pharmacother 2025; 186:117963. [PMID: 40101588 DOI: 10.1016/j.biopha.2025.117963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
Chagas disease (CD), caused by Trypanosoma cruzi, remains a leading cause of cardiomyopathy and heart failure in Latin America. Since the 1970s, benznidazole (BNZ) and nifurtimox (NFX) have been the only chemotherapeutic agents used to treat CD. However, their toxicity and low effectiveness in the chronic phase of the disease, make the development of more efficient chemotherapeutics imperative. Here, we investigated the effects of 1,2,3-triazole hybrids, synthesized via click chemistry, containing either phthalimide (FT1, FT2, FT3, FT4) or naphthoquinone (NT1) moieties on T. cruzi and their cytotoxicity on mammalian cells. NT1 and FT1 were the most effective against intracellular parasite with an IC50 = 31.1 and 189.2 µM, respectively. FT1-FT4 showed low cytotoxicity to mammalian cells (CC50 > 754 µM), while NT1 exhibited moderate toxicity (CC50 ≥ 96.1 µM). FT1 demonstrated the highest selectivity towards trypomastigotes and amastigotes with selectivity indexes (SeI) of 6.9 and 6.7, respectively. Ultrastructural analysis of trypomastigotes treated with FT1 revealed mitochondrial alterations, lipid accumulation and Golgi complex disorganization. FT1 also decreased the mitochondrial membrane potential, increased mitochondrial reactive oxygen species (ROS) production, and induced late apoptosis in trypomastigotes. In infected cardiac cells, FT1 treatment led to degradation of amastigotes and Golgi disruption. An increase in autophagosomes in treated host cells and their interaction with intracellular parasites suggest that FT1-induced host cell autophagy may play a role in mitigating the infection and protecting cardiac cells from its deleterious effects.
Collapse
Affiliation(s)
- Lucas Eduardo Bezerra de Lima
- Departamento de Microbiologia, Instituto Aggeu Magalhães, FIOCRUZ-PE, Avenida Prof° Moraes Rego s/n°- Campus da UFPE, Recife, PE 50670420, Brazil
| | - Maria Letícia Gomes de Almeida
- Departamento de Microbiologia, Instituto Aggeu Magalhães, FIOCRUZ-PE, Avenida Prof° Moraes Rego s/n°- Campus da UFPE, Recife, PE 50670420, Brazil
| | - Gleicyane Silva Gomes
- Departamento de Microbiologia, Instituto Aggeu Magalhães, FIOCRUZ-PE, Avenida Prof° Moraes Rego s/n°- Campus da UFPE, Recife, PE 50670420, Brazil
| | - Pedro Henrique do Nascimento
- Departamento de Microbiologia, Instituto Aggeu Magalhães, FIOCRUZ-PE, Avenida Prof° Moraes Rego s/n°- Campus da UFPE, Recife, PE 50670420, Brazil
| | - Carla Jasmine Oliveira E Silva
- Departamento de Química, Laboratório de Síntese de Compostos Bioativos, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros S/N, Recife, PE 52171900, Brazil
| | - Cecilãne Regina Dioclecia da Silva
- Departamento de Química, Laboratório de Síntese de Compostos Bioativos, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros S/N, Recife, PE 52171900, Brazil
| | - Yuri Mouzinho Ramos Tanaka
- Departamento de Entomologia, Instituto Aggeu Magalhães, FIOCRUZ-PE, Avenida Prof° Moraes Rego, s/n°- Campus da UFPE, Recife, PE 50670420, Brazil
| | - Tatiany Patrícia Romão
- Departamento de Entomologia, Instituto Aggeu Magalhães, FIOCRUZ-PE, Avenida Prof° Moraes Rego, s/n°- Campus da UFPE, Recife, PE 50670420, Brazil
| | - Thaíses Brunelle Santana de Lima
- Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Av. Prof. Luiz Freire, 1000, Cidade Universitária, Recife, PE 50740-545, Brazil
| | - Elmo Silvano de Araújo
- Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Av. Prof. Luiz Freire, 1000, Cidade Universitária, Recife, PE 50740-545, Brazil
| | - Patricia Lopes Barros de Araújo
- Departamento de Engenharia Biomédica, Universidade Federal de Pernambuco (UFPE), Av. Jornalista Aníbal Fernandes, Cidade Universitária, Recife, PE 50740-560, Brazil
| | - Paulo Euzébio Cabral Filho
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Avenida Prof° Moraes Rego s/n°, Recife, PE 50670901, Brazil
| | - Vanderlan Nogueira Holanda
- Departmento de Biomedicina, Centro Universitário de Vitória de Santo Antão (UNIVISA), Vitória de Santo Antão, PE 55610-050, Brazil
| | - Ronaldo Nascimento de Oliveira
- Departamento de Química, Laboratório de Síntese de Compostos Bioativos, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros S/N, Recife, PE 52171900, Brazil.
| | | |
Collapse
|
2
|
Chhatbar M, Borkhataria C, Patel O, Raichura K, Pethani T, Parmar G, Mori D, Manek R. Enhancing the solubility and bioavailability of itraconazole through pharmaceutical cocrystallization: A promising strategy for drug formulation. J Pharm Sci 2025; 114:103770. [PMID: 40139531 DOI: 10.1016/j.xphs.2025.103770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Itraconazole, a potent antifungal agent, is classified as a Biopharmaceutics Classification System (BCS) Class II drug, exhibiting high permeability but poor aqueous solubility, which significantly limits its bioavailability and therapeutic efficacy. Conventional solubility enhancement techniques such as salt formation, particle size reduction, and encapsulation have shown limited success due to the drug's non-ionizable nature and pH-dependent solubility. Cocrystallization has emerged as a promising pharmaceutical strategy to address these limitations by modifying the crystal lattice structure through non-covalent interactions with pharmaceutically acceptable co-formers. This study explores the formulation of Itraconazole cocrystals with various co-formers to enhance its solubility, dissolution rate, and micromeritic properties, thereby improving its processability in solid dosage forms. The optimized cocrystal formulation (B16) demonstrated a 2.4-fold increase in solubility in 0.1 N HCl (60.47 ± 2.7 µg/mL) and a 25.77-fold increase in phosphate buffer (pH 6.8, 60.57 ± 5.64 µg/mL) compared to pure Itraconazole. The dissolution rate was also significantly improved, with 40.12% drug release in 120 minutes in acidic medium, compared to 32.65% for pure Itraconazole. Furthermore, pharmacokinetic studies in rats revealed a 2.8-fold increase in AUC (3717.58 ng·h/mL) and a Cmax of 206.86 ng/mL, compared to 88.06 ng/mL for the pure drug. The study further examines the industrial feasibility of cocrystallization as an innovative approach for optimizing poorly soluble drugs in commercial formulations. The results highlight the potential of cocrystal technology in overcoming formulation challenges and advancing the development of more effective and patient-friendly antifungal therapies.
Collapse
Affiliation(s)
- Meet Chhatbar
- B K Mody Government Pharmacy College, Rajkot 360003, Gujarat, India
| | | | - Om Patel
- GMERS Medical College, Vadnagar 384355, Gujarat, India
| | - Komal Raichura
- Department of English, Government Polytechnic, Jamnagar 361009, Gujarat, India
| | - Trupesh Pethani
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Ghanshyam Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth, Pipariya, Vadodara 391760, Gujarat, India
| | - Dhaval Mori
- B K Mody Government Pharmacy College, Rajkot 360003, Gujarat, India
| | - Ravi Manek
- B K Mody Government Pharmacy College, Rajkot 360003, Gujarat, India
| |
Collapse
|
3
|
Grewal T, Nguyen MKL, Buechler C. Cholesterol and Cholesterol-Lowering Medications in COVID-19-An Unresolved Matter. Int J Mol Sci 2024; 25:10489. [PMID: 39408818 PMCID: PMC11477656 DOI: 10.3390/ijms251910489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause coronavirus disease 2019 (COVID-19), a disease with very heterogeneous symptoms. Dyslipidaemia is prevalent in at least 20% of Europeans, and dyslipidaemia before SARS-CoV-2 infection increases the risk for severe COVID-19 and mortality by 139%. Many reports described reduced serum cholesterol levels in virus-infected patients, in particular in those with severe disease. The liver is the major organ for lipid homeostasis and hepatic dysfunction appears to occur in one in five patients infected with SARS-CoV-2. Thus, SARS-CoV-2 infection, COVID-19 disease severity and liver injury may be related to impaired cholesterol homeostasis. These observations prompted efforts to assess the therapeutic opportunities of cholesterol-lowering medications to reduce COVID-19 severity. The majority of studies implicate statins to have beneficial effects on disease severity and outcome in COVID-19. Proprotein convertase subtilisin/kexin type 9 (PCSK9) antibodies have also shown potential to protect against COVID-19. This review describes the relationship between systemic cholesterol levels, liver injury and COVID-19 disease severity. The potential effects of statins and PCSK9 in COVID-19 are summarised. Finally, the relationship between cholesterol and lung function, the first organ to be affected by SARS-CoV-2, is described.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (T.G.); (M.K.L.N.)
| | - Mai Khanh Linh Nguyen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (T.G.); (M.K.L.N.)
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Gu C, Chen Y, Li H, Wang J, Liu S. Considerations when treating influenza infections with oseltamivir. Expert Opin Pharmacother 2024; 25:1301-1316. [PMID: 38995220 DOI: 10.1080/14656566.2024.2376660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Since the coronavirus disease 2019-mandated social distancing policy has been lifted worldwide, the circulation of influenza is expected to resume. Currently, oseltamivir is approved as the first-line agent for influenza prevention and treatment. AREAS COVERED This paper reviews the updated evidence in the pharmacology, resistance mechanisms, clinical pharmacy management, and real-world data on oseltamivir for influenza. EXPERT OPINION Oseltamivir is an oral prodrug of oseltamivir carboxylate, an influenza A and B neuraminidase inhibitor. Recently, the therapeutic efficacy of oseltamivir has been demonstrated in several trials. Oseltamivir is generally well-tolerated but may lead to neuropsychiatric events and bleeding. Oseltamivir-resistant influenza virus has been associated with the H275Y mutation in the influenza A(H1N1)pdm09 virus, while most strains are still sensitive to oseltamivir. Dose adjustment for oseltamivir should be based on creatinine clearance and body weight in pediatric patients with renal failure. According to real-world data from Nanfang Hospital, the annual number of patients prescribed oseltamivir declined from 35,711 in 2019 to 8,971 in 2020, with marked increases in 2022 (20,213) and 2023 (18,071). Among the 206 inpatients, children aged < 6 years who were treated with oseltamivir had the shortest duration to defervescence.
Collapse
Affiliation(s)
- Chunping Gu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Chen
- Department of Pharmacy, The Seventh Affiliated Hospital, Southern Medical University, Foshan, China
| | - Haobin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinshen Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China
- MOE Innovation Center for Medical Basic Research on Inflammation and Immune Related Diseases, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Grewal T, Nguyen MKL, Buechler C. Cholesterol and COVID-19-therapeutic opportunities at the host/virus interface during cell entry. Life Sci Alliance 2024; 7:e202302453. [PMID: 38388172 PMCID: PMC10883773 DOI: 10.26508/lsa.202302453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
The rapid development of vaccines to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has been critical to reduce the severity of COVID-19. However, the continuous emergence of new SARS-CoV-2 subtypes highlights the need to develop additional approaches that oppose viral infections. Targeting host factors that support virus entry, replication, and propagation provide opportunities to lower SARS-CoV-2 infection rates and improve COVID-19 outcome. This includes cellular cholesterol, which is critical for viral spike proteins to capture the host machinery for SARS-CoV-2 cell entry. Once endocytosed, exit of SARS-CoV-2 from the late endosomal/lysosomal compartment occurs in a cholesterol-sensitive manner. In addition, effective release of new viral particles also requires cholesterol. Hence, cholesterol-lowering statins, proprotein convertase subtilisin/kexin type 9 antibodies, and ezetimibe have revealed potential to protect against COVID-19. In addition, pharmacological inhibition of cholesterol exiting late endosomes/lysosomes identified drug candidates, including antifungals, to block SARS-CoV-2 infection. This review describes the multiple roles of cholesterol at the cell surface and endolysosomes for SARS-CoV-2 entry and the potential of drugs targeting cholesterol homeostasis to reduce SARS-CoV-2 infectivity and COVID-19 disease severity.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Mai Khanh Linh Nguyen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
6
|
Xie SL, Zhu X, Gao N, Lin Q, Chen C, Yang YJ, Cai JP, Hu GX, Xu RA. Genetic variations of CYP3A4 on the metabolism of itraconazole in vitro. Food Chem Toxicol 2023; 181:114101. [PMID: 37863381 DOI: 10.1016/j.fct.2023.114101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Itraconazole is a triazole anti-infective drug that has been proven to prevent and treat a variety of fungal and viral infections and has been considered to be a potential therapeutic remedy for COVID-19 treatment. In this study, we aimed to completely evaluate the impacts of Cytochrome P450 3A4 (CYP3A4) variant proteins and drug interactions on the metabolism of itraconazole in recombinant insect microsomes, and to characterize the potential mechanism of substrate selectivity. Incubations with itraconazole (0.2-15 μM) in the presence/absence of lopinavir or darunavir were assessed by CYP3A4 variants, and the metabolite hydroxyitraconazole concentrations were measured by UPLC-MS/MS. Our data showed that when compared with CYP3A4.1, 4 variants (CYP3A4.9, .10, .28 and .34) displayed no significant differences, and 3 variants (CYP3A4.14, .15 and .19) exhibited increased intrinsic clearance (CLint), whereas the remaining 17 variant proteins showed decreased enzyme activities for the catalysis of itraconazole. Moreover, the inhibitory effects of lopinavir and darunavir on itraconazole metabolism varied in different degrees. Furthermore, different changed trend of the kinetic parameters in ten variants (CYP3A4.5, .9, .10, .16, .19, .24, .28, .29, .31, and .33) were observed, especially CYP3A4.5 and CYP3A4.16, and this may be related to the metabolic site-heme iron atom distance. In the present study, we functionally analyzed the effects of 25 CYP3A4 protein variants on itraconazole metabolism for the first time, and provided comprehensive data on itraconazole metabolism in vitro. This may help to better assess the metabolism and elimination of itraconazole in clinic to improve the safety and efficacy of its clinical treatment and also provide new possibilities for the treatment of COVID-19.
Collapse
Affiliation(s)
- Sai-Li Xie
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiayan Zhu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nanyong Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianmeng Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chaojie Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yun-Jun Yang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China.
| | - Guo-Xin Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
7
|
Zhang J, Zhu Y, Wang X, Wang J. 25-hydroxycholesterol: an integrator of antiviral ability and signaling. Front Immunol 2023; 14:1268104. [PMID: 37781400 PMCID: PMC10533924 DOI: 10.3389/fimmu.2023.1268104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Cholesterol, as an important component in mammalian cells, is efficient for viral entry, replication, and assembly. Oxysterols especially hydroxylated cholesterols are recognized as novel regulators of the innate immune response. The antiviral ability of 25HC (25-Hydroxycholesterol) is uncovered due to its role as a metabolic product of the interferon-stimulated gene CH25H (cholesterol-25-hydroxylase). With the advancement of research, the biological functions of 25HC and its structural functions have been interpreted gradually. Furthermore, the underlying mechanisms of antiviral effect of 25HC are not only limited to interferon regulation. Taken up by the special biosynthetic ways and structure, 25HC contributes to modulate not only the cholesterol metabolism but also autophagy and inflammation by regulating signaling pathways. The outcome of modulation by 25HC seems to be largely dependent on the cell types, viruses and context of cell microenvironments. In this paper, we review the recent proceedings on the regulatory effect of 25HC on interferon-independent signaling pathways related to its antiviral capacity and its putative underlying mechanisms.
Collapse
Affiliation(s)
- Jialu Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| | - Xiaojia Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| |
Collapse
|
8
|
Yuan Y, Fang A, Wang Z, Wang Z, Sui B, Zhu Y, Zhang Y, Wang C, Zhang R, Zhou M, Chen H, Fu ZF, Zhao L. The CH24H metabolite, 24HC, blocks viral entry by disrupting intracellular cholesterol homeostasis. Redox Biol 2023; 64:102769. [PMID: 37285742 DOI: 10.1016/j.redox.2023.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Cholesterol-24-hydroxylase (CH24H or Cyp46a1) is a reticulum-associated membrane protein that plays an irreplaceable role in cholesterol metabolism in the brain and has been well-studied in several neuro-associated diseases in recent years. In the present study, we found that CH24H expression can be induced by several neuroinvasive viruses, including vesicular stomatitis virus (VSV), rabies virus (RABV), Semliki Forest virus (SFV) and murine hepatitis virus (MHV). The CH24H metabolite, 24-hydroxycholesterol (24HC), also shows competence in inhibiting the replication of multiple viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 24HC can increase the cholesterol concentration in multivesicular body (MVB)/late endosome (LE) by disrupting the interaction between OSBP and VAPA, resulting in viral particles being trapped in MVB/LE, ultimately compromising VSV and RABV entry into host cells. These findings provide the first evidence that brain cholesterol oxidation products may play a critical role in viral infection.
Collapse
Affiliation(s)
- Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - An Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongmei Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhihui Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baokun Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunkai Zhu
- School of Basic Medical Sciences, Fudan University, Shanghai, 200433, China
| | - Yuan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Caiqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rong Zhang
- School of Basic Medical Sciences, Fudan University, Shanghai, 200433, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Wu W, Jiang T, Lin H, Chen C, Wang L, Wen J, Wu J, Deng Y. The Specific Binding and Promotion Effect of Azoles on Human Aldo-Keto Reductase 7A2. Metabolites 2023; 13:metabo13050601. [PMID: 37233642 DOI: 10.3390/metabo13050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Human AKR 7A2 broadly participates in the metabolism of a number of exogenous and endogenous compounds. Azoles are a class of clinically widely used antifungal drugs, which are usually metabolized by CYP 3A4, CYP2C19, and CYP1A1, etc. in vivo. The azole-protein interactions that human AKR7A2 participates in remain unreported. In this study, we investigated the effect of the representative azoles (miconazole, econazole, ketoconazole, fluconazole, itraconazole, voriconazole, and posaconazole) on the catalysis of human AKR7A2. The steady-state kinetics study showed that the catalytic efficiency of AKR7A2 enhanced in a dose-dependent manner in the presence of posaconazole, miconazole, fluconazole, and itraconazole, while it had no change in the presence of econazole, ketoconazole, and voriconazole. Biacore assays demonstrated that all seven azoles were able to specifically bind to AKR7A2, among which itraconazole, posaconazole, and voriconazole showed the strongest binding. Blind docking predicted that all azoles were apt to preferentially bind at the entrance of the substrate cavity of AKR7A2. Flexible docking showed that posaconazole, located at the region, can efficiently lower the binding energy of the substrate 2-CBA in the cavity compared to the case of no posaconazole. This study demonstrates that human AKR7A2 can interact with some azole drugs, and it also reveals that the enzyme activity can be regulated by some small molecules. These findings will enable a better understanding of azole-protein interactions.
Collapse
Affiliation(s)
- Wanying Wu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Tianqing Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Haihui Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Chao Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Lingling Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Asadi Anar M, Foroughi E, Sohrabi E, Peiravi S, Tavakoli Y, Kameli Khouzani M, Behshood P, Shamshiri M, Faridzadeh A, Keylani K, Langari SF, Ansari A, Khalaji A, Garousi S, Mottahedi M, Honari S, Deravi N. Selective serotonin reuptake inhibitors: New hope in the fight against COVID-19. Front Pharmacol 2022; 13:1036093. [PMID: 36532776 PMCID: PMC9748354 DOI: 10.3389/fphar.2022.1036093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
The emerging COVID-19 pandemic led to a dramatic increase in global mortality and morbidity rates. As in most infections, fatal complications of coronavirus affliction are triggered by an untrammeled host inflammatory response. Cytokine storms created by high levels of interleukin and other cytokines elucidate the pathology of severe COVID-19. In this respect, repurposing drugs that are already available and might exhibit anti-inflammatory effects have received significant attention. With the in vitro and clinical investigation of several studies on the effect of antidepressants on COVID-19 prognosis, previous data suggest that selective serotonin reuptake inhibitors (SSRIs) might be the new hope for the early treatment of severely afflicted patients. SSRIs' low cost and availability make them potentially eligible for COVID-19 repurposing. This review summarizes current achievements and literature about the connection between SSRIs administration and COVID-19 prognosis.
Collapse
Affiliation(s)
- Mahsa Asadi Anar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elaheh Foroughi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elika Sohrabi
- Department of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Samira Peiravi
- Department of Emergency Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasaman Tavakoli
- Department of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | | | - Parisa Behshood
- Department of Microbiology, Young Researchers and Elite Club, Islamic Azad University, Shahrekord, Iran
| | - Melika Shamshiri
- School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Faride Langari
- Department of Ophthalmology, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Ansari
- Shantou University Medical College, Shantou, Guangdong, China
| | | | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Honari
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Shen S, Zhang Y, Yin Z, Zhu Q, Zhang J, Wang T, Fang Y, Wu X, Bai Y, Dai S, Liu X, Jin J, Tang S, Liu J, Wang M, Guo Y, Deng F. Antiviral activity and mechanism of the antifungal drug, anidulafungin, suggesting its potential to promote treatment of viral diseases. BMC Med 2022; 20:359. [PMID: 36266654 PMCID: PMC9585728 DOI: 10.1186/s12916-022-02558-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The severe fever with thrombocytopenia syndrome disease (SFTS), caused by the novel tick-borne SFTS virus (SFTSV), was listed among the top 10 priority infectious disease by World Health Organization due to the high fatality rate of 5-30% and the lack of effective antiviral drugs and vaccines and therefore raised the urgent need to develop effective anti-SFTSV drugs to improve disease treatment. METHODS The antiviral drugs to inhibit SFTSV infection were identified by screening the library containing 1340 FDA-approved drugs using the SFTSV infection assays in vitro. The inhibitory effect on virus entry and the process of clathrin-mediated endocytosis under different drug doses was evaluated based on infection assays by qRT-PCR to determine intracellular viral copies, by Western blot to characterize viral protein expression in cells, and by immunofluorescence assays (IFAs) to determine virus infection efficiencies. The therapeutic effect was investigated in type I interferon receptor defective A129 mice in vivo with SFTSV infection, from which lesions and infection in tissues caused by SFTSV infection were assessed by H&E staining and immunohistochemical analysis. RESULTS Six drugs were identified as exerting inhibitory effects against SFTSV infection, of which anidulafungin, an antifungal drug of the echinocandin family, has a strong inhibitory effect on SFTSV entry. It suppresses SFTSV internalization by impairing the late endosome maturation and decreasing virus fusion with the membrane. SFTSV-infected A129 mice had relieving symptoms, reduced tissue lesions, and improved disease outcomes following anidulafungin treatment. Moreover, anidulafungin exerts an antiviral effect in inhibiting the entry of other viruses including SARS-CoV-2, SFTSV-related Guertu virus and Heartland virus, Crimean-Congo hemorrhagic fever virus, Zika virus, and Herpes simplex virus 1. CONCLUSIONS The results demonstrated that the antifungal drug, anidulafungin, could effectively inhibit virus infection by interfering with virus entry, suggesting it may be utilized for the clinical treatment of infectious viral diseases, in addition to its FDA-approved use as an antifungal. The findings also suggested to further evaluate the anti-viral effects of echinocandins and their clinical importance for patients with infection of viruses, which may promote therapeutic strategies as well as treatments and improve outcomes pertaining to various viral and fungal diseases.
Collapse
Affiliation(s)
- Shu Shen
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Yaxian Zhang
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China.,State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Zhiyun Yin
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China.,State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Qiong Zhu
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Jingyuan Zhang
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Tiantian Wang
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Yaohui Fang
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Xiaoli Wu
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Yuan Bai
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Shiyu Dai
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Xijia Liu
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Jiayin Jin
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Shuang Tang
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Jia Liu
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Manli Wang
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China.,College of Life Science, Nankai University, Tianjin, 300350, China
| | - Fei Deng
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China.
| |
Collapse
|
12
|
Schreiber A, Ambrosy B, Planz O, Schloer S, Rescher U, Ludwig S. The MEK1/2 Inhibitor ATR-002 (Zapnometinib) Synergistically Potentiates the Antiviral Effect of Direct-Acting Anti-SARS-CoV-2 Drugs. Pharmaceutics 2022; 14:pharmaceutics14091776. [PMID: 36145524 PMCID: PMC9506552 DOI: 10.3390/pharmaceutics14091776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 12/17/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) represents a global public health burden. In addition to vaccination, safe and efficient antiviral treatment strategies to restrict the viral spread within the patient are urgently needed. An alternative approach to a single-drug therapy is the combinatory use of virus- and host-targeted antivirals, leading to a synergistic boost of the drugs’ impact. In this study, we investigated the property of the MEK1/2 inhibitor ATR-002’s (zapnometinib) ability to potentiate the effect of direct-acting antivirals (DAA) against SARS-CoV-2 on viral replication. Treatment combinations of ATR-002 with nucleoside inhibitors Molnupiravir and Remdesivir or 3C-like protease inhibitors Nirmatrelvir and Ritonavir, the ingredients of the drug Paxlovid, were examined in Calu-3 cells to evaluate the advantage of their combinatory use against a SARS-CoV-2 infection. Synergistic effects could be observed for all tested combinations of ATR-002 with DAAs, as calculated by four different reference models in a concentration range that was very well-tolerated by the cells. Our results show that ATR-002 has the potential to act synergistically in combination with direct-acting antivirals, allowing for a reduction in the effective concentrations of the individual drugs and reducing side effects.
Collapse
Affiliation(s)
- André Schreiber
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Benjamin Ambrosy
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
| | - Oliver Planz
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard Karls University Tuebingen, Germany and Atriva Therapeutics GmbH, 72072 Tuebingen, Germany
| | - Sebastian Schloer
- Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
- Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Ursula Rescher
- Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
- Interdisciplinary Centre of Clinical Research (IZKF), Medical Faculty, University of Muenster, 48149 Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany
- Interdisciplinary Centre of Clinical Research (IZKF), Medical Faculty, University of Muenster, 48149 Muenster, Germany
- Correspondence:
| |
Collapse
|
13
|
Schloer S, Treuherz D, Faist A, Witt MD, Wunderlich K, Wiewrodt R, Wiebe K, Barth P, Wälzlein JH, Kummer S, Balkema-Buschmann A, Ludwig S, Brunotte L, Rescher U. 3D ex vivo tissue platforms to investigate the early phases of influenza A virus- and SARS-CoV-2-induced respiratory diseases. Emerg Microbes Infect 2022; 11:2160-2175. [PMID: 36000328 PMCID: PMC9518268 DOI: 10.1080/22221751.2022.2117101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pandemic outbreaks of viruses such as influenza virus or SARS-CoV-2 are associated with high morbidity and mortality and thus pose a massive threat to global health and economics. Physiologically relevant models are needed to study the viral life cycle, describe the pathophysiological consequences of viral infection, and explore possible drug targets and treatment options. While simple cell culture-based models do not reflect the tissue environment and systemic responses, animal models are linked with huge direct and indirect costs and ethical questions. Ex vivo platforms based on tissue explants have been introduced as suitable platforms to bridge the gap between cell culture and animal models. We established a murine lung tissue explant platform for two respiratory viruses, influenza A virus (IAV) and SARS-CoV-2. We observed efficient viral replication, associated with the release of inflammatory cytokines and the induction of an antiviral interferon response, comparable to ex vivo infection in human lung explants. Endolysosomal entry could be confirmed as a potential host target for pharmacological intervention, and the potential repurposing potentials of fluoxetine and interferons for host-directed therapy previously seen in vitro could be recapitulated in the ex vivo model.
Collapse
Affiliation(s)
- Sebastian Schloer
- Institute-Associated Research Group "Regulatory Mechanisms of Inflammation", Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Center, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany.,Leibniz Institute of Virology, Martinistraße 52, 20251 Hamburg, Germany
| | - Daniel Treuherz
- Institute-Associated Research Group "Regulatory Mechanisms of Inflammation", Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Center, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| | - Aileen Faist
- Institute of Virology, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Center, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Marlous de Witt
- Institute of Virology, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Center, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Katharina Wunderlich
- Institute of Virology, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Center, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Rainer Wiewrodt
- Department of Medicine A, Hematology, Oncology and Respiratory Medicine, University Hospital Münster, Münster, Germany
| | - Karsten Wiebe
- Department of Thoracic Surgery, University Hospital Münster, Münster, Germany
| | - Peter Barth
- Gerhard-Domagk-Institute of Pathology, Westfälische Wilhelms-University, Münster, Germany
| | - Joo-Hee Wälzlein
- Center for Biological Threats and Special Pathogens, Robert Koch-Institute, Berlin, Germany
| | - Susann Kummer
- Center for Biological Threats and Special Pathogens, Robert Koch-Institute, Berlin, Germany
| | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institute, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald, Germany
| | - Stephan Ludwig
- Institute of Virology, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Center, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Linda Brunotte
- Institute of Virology, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Center, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Ursula Rescher
- Institute-Associated Research Group "Regulatory Mechanisms of Inflammation", Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Center, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
14
|
Advances in Antifungal Development: Discovery of New Drugs and Drug Repurposing. Pharmaceuticals (Basel) 2022; 15:ph15070787. [PMID: 35890086 PMCID: PMC9318969 DOI: 10.3390/ph15070787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
This Special Issue of Pharmaceuticals describes recent advances accomplished in the field of antifungal development, especially the discovery of new drugs and drug repurposing [...]
Collapse
|
15
|
Yu C, Wang ZG, Ma AX, Liu SL, Pang DW. Uncovering the F-Actin-Based Nuclear Egress Mechanism of Newly Synthesized Influenza A Virus Ribonucleoprotein Complexes by Single-Particle Tracking. Anal Chem 2022; 94:5624-5633. [PMID: 35357801 DOI: 10.1021/acs.analchem.1c05387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear trafficking of viral genome is an essential cellular process in the life cycles of viruses. Despite substantial progress in uncovering a wide variety of complicated mechanisms of virus entry, intracellular transport of viral components, virus assembly, and egress, the temporal and spatial dynamics of viral genes trafficking within the nucleus remains poorly understood. Herein, using single-particle tracking, we explored the real-time dynamic nuclear trafficking of influenza A virus (IAV) genes packaged as the viral ribonucleoprotein complexes (vRNPs) by combining a four-plasmid DNA transfection system for the reconstruction of green fluorescent protein (GFP)-labeled vRNPs and a spinning disk super-resolution fluorescence microscope. We found that IAV infection significantly induced the formation of actin microfilaments (F-actin) in the nucleus. In combination with the fluorescent protein-tagged nuclear F-actin probe, we visualized the directed movement of GFP-labeled vRNPs foci along the nuclear F-actin with a speed of 0.18 μm/s, which is similar to the microfilaments-dependent slow directed motion of IAVs in the cytoplasm. The disruption of nuclear F-actin after treatment with microfilament inhibitors caused a considerable decrease in vRNPs motility and suppressed the nuclear export of newly produced vRNPs, indicating that the slow, directed movement plays a crucial role in facilitating the nuclear egress of vRNPs. Our findings identified a nuclear F-actin-dependent pathway for IAV vRNPs transporting from the nucleus into the cytoplasm, which may in turn uncover a novel target for antiviral treatment.
Collapse
Affiliation(s)
- Cong Yu
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Ai-Xin Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China.,State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
16
|
Vanmechelen B, Stroobants J, Chiu W, Schepers J, Marchand A, Chaltin P, Vermeire K, Maes P. Identification of novel Ebola virus inhibitors using biologically contained virus. Antiviral Res 2022; 200:105294. [PMID: 35337896 DOI: 10.1016/j.antiviral.2022.105294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/09/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022]
Abstract
Despite recent advancements in the development of vaccines and monoclonal antibody therapies for Ebola virus disease, treatment options remain limited. Moreover, management and containment of Ebola virus outbreaks is often hindered by the remote nature of the locations in which the outbreaks originate. Small-molecule compounds offer the advantage of being relatively cheap and easy to produce, transport and store, making them an interesting modality for the development of novel therapeutics against Ebola virus disease. Furthermore, the repurposing of small-molecule compounds, previously developed for alternative applications, can aid in reducing the time needed to bring potential therapeutics from bench to bedside. For this purpose, the Medicines for Malaria Venture provides collections of previously developed small-molecule compounds for screening against other infectious diseases. In this study, we used biologically contained Ebola virus to screen over 4,200 small-molecule drugs and drug-like compounds provided by the Medicines for Malaria Venture (i.e., the Pandemic Response Box and the COVID Box) and the Centre for Drug Design and Discovery (CD3, KU Leuven, Belgium). In addition to confirming known Ebola virus inhibitors, illustrating the validity of our screening assays, we identified eight novel selective Ebola virus inhibitors. Although the inhibitory potential of these compounds remains to be validated in vivo, they represent interesting compounds for the study of potential interventions against Ebola virus disease and might serve as a basis for the development of new therapeutics.
Collapse
Affiliation(s)
- Bert Vanmechelen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Joren Stroobants
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Winston Chiu
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Joost Schepers
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Arnaud Marchand
- CISTIM Leuven vzw, Gaston Geenslaan 2, 3000, Leuven, Belgium
| | - Patrick Chaltin
- CISTIM Leuven vzw, Gaston Geenslaan 2, 3000, Leuven, Belgium; Centre for Drug Design and Discovery (CD3), KU Leuven, Gaston Geenslaan 2, 3000, Leuven, Belgium
| | - Kurt Vermeire
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Piet Maes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium.
| |
Collapse
|
17
|
Abdulaziz L, Elhadi E, Abdallah EA, Alnoor FA, Yousef BA. Antiviral Activity of Approved Antibacterial, Antifungal, Antiprotozoal and Anthelmintic Drugs: Chances for Drug Repurposing for Antiviral Drug Discovery. J Exp Pharmacol 2022; 14:97-115. [PMID: 35299994 PMCID: PMC8922315 DOI: 10.2147/jep.s346006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Drug repurposing process aims to identify new uses for the existing drugs to overcome traditional de novo drug discovery and development challenges. At the same time, as viral infections became a serious threat to humans and the viral organism itself has a high ability to mutate genetically, and due to serious adverse effects that result from antiviral drugs, there are crucial needs for the discovery of new antiviral drugs, and to identify new antiviral effects for the exciting approved drugs towards different types of viral infections depending on the observed antiviral activity in preclinical studies or clinical findings is one of the approaches to counter the viral infections problems. This narrative review article summarized mainly the published preclinical studies that evaluated the antiviral activity of drugs that are approved and used mainly as antibacterial, antifungal, antiprotozoal, and anthelmintic drugs, and the preclinical studies included the in silico, in vitro, and in vivo findings, additionally some clinical observations were also included while trying to relate them to the preclinical findings. Finally, the structure used for writing about the antiviral activity of the drugs was according to the families of the viruses used in the studies to form a better image for the target of antiviral activity of different drugs in the different kinds of viruses and to relate between the antiviral activity of the drugs against different strains of viruses within the same viral family.
Collapse
Affiliation(s)
- Leena Abdulaziz
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, 14415, Sudan
| | - Esraa Elhadi
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, 14415, Sudan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Ejlal A Abdallah
- Department of Pharmacology and Pharmacy Practice, Faculty of Pharmacy, Sudan University of Science and Technology, Khartoum, 11111, Sudan
| | - Fadlalbaseer A Alnoor
- Department of Pharmacology, Faculty of Pharmacy, National University, Khartoum, 11111, Sudan
| | - Bashir A Yousef
- Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, 11111, Sudan
- Correspondence: Bashir A Yousef, Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave, Khartoum, 11111, Sudan, Tel +249 912932418, Fax +249 183780696, Email
| |
Collapse
|
18
|
Repurposing Antifungals for Host-Directed Antiviral Therapy? Pharmaceuticals (Basel) 2022; 15:ph15020212. [PMID: 35215323 PMCID: PMC8878022 DOI: 10.3390/ph15020212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Because of their epidemic and pandemic potential, emerging viruses are a major threat to global healthcare systems. While vaccination is in general a straightforward approach to prevent viral infections, immunization can also cause escape mutants that hide from immune cell and antibody detection. Thus, other approaches than immunization are critical for the management and control of viral infections. Viruses are prone to mutations leading to the rapid emergence of resistant strains upon treatment with direct antivirals. In contrast to the direct interference with pathogen components, host-directed therapies aim to target host factors that are essential for the pathogenic replication cycle or to improve the host defense mechanisms, thus circumventing resistance. These relatively new approaches are often based on the repurposing of drugs which are already licensed for the treatment of other unrelated diseases. Here, we summarize what is known about the mechanisms and modes of action for a potential use of antifungals as repurposed host-directed anti-infectives for the therapeutic intervention to control viral infections.
Collapse
|
19
|
Kummer S, Lander A, Goretzko J, Kirchoff N, Rescher U, Schloer S. Pharmacologically induced endolysosomal cholesterol imbalance through clinically licensed drugs itraconazole and fluoxetine impairs Ebola virus infection in vitro. Emerg Microbes Infect 2021; 11:195-207. [PMID: 34919035 PMCID: PMC8745396 DOI: 10.1080/22221751.2021.2020598] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ebola virus disease (EVD) is a severe and frequently lethal disease caused by Ebola virus (EBOV). The latest occasional EVD outbreak (2013–2016) in Western African, which was accompanied by a high fatality rate, showed the great potential of epidemic and pandemic spread. Antiviral therapies against EBOV are very limited, strain-dependent (only antibody therapies are available) and mostly restricted to symptomatic treatment, illustrating the urgent need for novel antiviral strategies. Thus, we evaluated the effect of the clinically widely used antifungal itraconazole and the antidepressant fluoxetine for a repurposing against EBOV infection. While itraconazole, similar to U18666A, directly binds to and inhibits the endosomal membrane protein Niemann-Pick C1 (NPC1), fluoxetine, which belongs to the structurally unrelated group of weakly basic, amphiphile so-called “functional inhibitors of acid sphingomyelinase” (FIASMA) indirectly acts on the lysosome-residing acid sphingomyelinase via enzyme detachment leading to subsequent lysosomal degradation. Both, the drug-induced endolysosomal cholesterol accumulation and the altered endolysosomal pH, might interfere with the fusion of viral and endolysosomal membrane, preventing infection with EBOV. We further provide evidence that cholesterol imbalance is a conserved cross-species mechanism to hamper EBOV infection. Thus, exploring the endolysosomal host–pathogen interface as a suitable antiviral treatment may offer a general strategy to combat EBOV infection.
Collapse
Affiliation(s)
- Susann Kummer
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Angelika Lander
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Jonas Goretzko
- Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.,Interdisciplinary Centre for Clinical Research, University of Muenster, Muenster, Germany.,Cluster of Excellence "Cells in Motion", University of Muenster, Muenster, Germany
| | - Norman Kirchoff
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Ursula Rescher
- Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.,Interdisciplinary Centre for Clinical Research, University of Muenster, Muenster, Germany.,Cluster of Excellence "Cells in Motion", University of Muenster, Muenster, Germany
| | - Sebastian Schloer
- Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.,Interdisciplinary Centre for Clinical Research, University of Muenster, Muenster, Germany.,Cluster of Excellence "Cells in Motion", University of Muenster, Muenster, Germany
| |
Collapse
|
20
|
Varghese FS, Meutiawati F, Teppor M, Jacobs S, de Keyzer C, Taşköprü E, van Woudenbergh E, Overheul GJ, Bouma E, Smit JM, Delang L, Merits A, van Rij RP. Posaconazole inhibits multiple steps of the alphavirus replication cycle. Antiviral Res 2021; 197:105223. [PMID: 34856248 DOI: 10.1016/j.antiviral.2021.105223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 11/28/2022]
Abstract
Repurposing drugs is a promising strategy to identify therapeutic interventions against novel and re-emerging viruses. Posaconazole is an antifungal drug used to treat invasive aspergillosis and candidiasis. Recently, posaconazole and its structural analog, itraconazole were shown to inhibit replication of multiple viruses by modifying intracellular cholesterol homeostasis. Here, we show that posaconazole inhibits replication of the alphaviruses Semliki Forest virus (SFV), Sindbis virus and chikungunya virus with EC50 values ranging from 1.4 μM to 9.5 μM. Posaconazole treatment led to a significant reduction of virus entry in an assay using a temperature-sensitive SFV mutant, but time-of-addition and RNA transfection assays indicated that posaconazole also inhibits post-entry stages of the viral replication cycle. Virus replication in the presence of posaconazole was partially rescued by the addition of exogenous cholesterol. A transferrin uptake assay revealed that posaconazole considerably slowed down cellular endocytosis. A single point mutation in the SFV E2 glycoprotein, H255R, provided partial resistance to posaconazole as well as to methyl-β-cyclodextrin, corroborating the effect of posaconazole on cholesterol and viral entry. Our results indicate that posaconazole inhibits multiple steps of the alphavirus replication cycle and broaden the spectrum of viruses that can be targeted in vitro by posaconazole, which could be further explored as a therapeutic agent against emerging viruses.
Collapse
Affiliation(s)
- Finny S Varghese
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Febrina Meutiawati
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mona Teppor
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sofie Jacobs
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Carolien de Keyzer
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Ezgi Taşköprü
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther van Woudenbergh
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ellen Bouma
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jolanda M Smit
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leen Delang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
21
|
Al Bataineh MT, Henschel A, Mousa M, Daou M, Waasia F, Kannout H, Khalili M, Kayasseh MA, Alkhajeh A, Uddin M, Alkaabi N, Tay GK, Feng SF, Yousef AF, Alsafar HS. Gut Microbiota Interplay With COVID-19 Reveals Links to Host Lipid Metabolism Among Middle Eastern Populations. Front Microbiol 2021; 12:761067. [PMID: 34803986 PMCID: PMC8603808 DOI: 10.3389/fmicb.2021.761067] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
The interplay between the compositional changes in the gastrointestinal microbiome, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) susceptibility and severity, and host functions is complex and yet to be fully understood. This study performed 16S rRNA gene-based microbial profiling of 143 subjects. We observed structural and compositional alterations in the gut microbiota of the SARS-CoV-2-infected group in comparison to non-infected controls. The gut microbiota composition of the SARS-CoV-2-infected individuals showed an increase in anti-inflammatory bacteria such as Faecalibacterium (p-value = 1.72 × 10-6) and Bacteroides (p-value = 5.67 × 10-8). We also revealed a higher relative abundance of the highly beneficial butyrate producers such as Anaerostipes (p-value = 1.75 × 10-230), Lachnospiraceae (p-value = 7.14 × 10-65), and Blautia (p-value = 9.22 × 10-18) in the SARS-CoV-2-infected group in comparison to the control group. Moreover, phylogenetic investigation of communities by reconstructing unobserved state (PICRUSt) functional prediction analysis of the 16S rRNA gene abundance data showed substantial differences in the enrichment of metabolic pathways such as lipid, amino acid, carbohydrate, and xenobiotic metabolism, in comparison between both groups. We discovered an enrichment of linoleic acid, ether lipid, glycerolipid, and glycerophospholipid metabolism in the SARS-CoV-2-infected group, suggesting a link to SARS-CoV-2 entry and replication in host cells. We estimate the major contributing genera to the four pathways to be Parabacteroides, Streptococcus, Dorea, and Blautia, respectively. The identified differences provide a new insight to enrich our understanding of SARS-CoV-2-related changes in gut microbiota, their metabolic capabilities, and potential screening biomarkers linked to COVID-19 disease severity.
Collapse
Affiliation(s)
- Mohammad Tahseen Al Bataineh
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Genetics and Molecular Biology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Andreas Henschel
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Nuffield Department of Women's and Reproduction Health, Oxford University, Oxford, United Kingdom
| | - Marianne Daou
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fathimathuz Waasia
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Hussein Kannout
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mariam Khalili
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mohd Azzam Kayasseh
- Emirates Specialty Hospital, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Abdulmajeed Alkhajeh
- Medical Education and Research Department, Dubai Health Authority, Dubai, United Arab Emirates
| | - Maimunah Uddin
- Department of Pediatric Infectious Disease, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Nawal Alkaabi
- Department of Pediatric Infectious Disease, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Guan K Tay
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Samuel F Feng
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Mathematics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahmed F Yousef
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Habiba S Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Mathematics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
22
|
Mohanty SS, Sahoo CR, Padhy RN. Targeting Some Enzymes with Repurposing Approved Pharmaceutical Drugs for Expeditious Antiviral Approaches Against Newer Strains of COVID-19. AAPS PharmSciTech 2021; 22:214. [PMID: 34378108 PMCID: PMC8354522 DOI: 10.1208/s12249-021-02089-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
At present, global vaccination for the SARS-CoV2 virus 2019 (COVID-19) is 95% effective. Generally, viral infections are arduous to cure due to the mutating nature of viral genomes, with the consequent quick development of resistance, posing significant fatalities or hazards. The novel corona viral strains are increasingly lethal than earlier variants, as those evolve faster than imagined. Despite the emergence of several present innovative treatment options, the vaccines, and available drugs, the latter still are the needs of the time. Therefore, repurposing the approved pharmaceutical drugs of a well-known safety profile would be ascertained to provide faster antiviral approaches for the newer strains of COVID-19. Recently, a combination of remdesivir, which has a competitively inhibitory effect on the nucleotide uptake in the virus, and the merimepodibs, an inhibitor of the enzyme inosine monophosphate dehydrogenase, which has a role in the synthesis of nucleotides of guanine bases, is in use in phase 2 clinical trials. However, new investigations suggest that using remdesivir, there is no statistically significant difference with uncertain clinical importance for moderate COVID-19 patients. Herein, an intellectual selection of approved drugs based on the safety profile is described, to target any essential enzymes that are required for the virus-receptor contact, fusion, and/or different stages of the life cycle of this virus, should help to screen drugs against newer strains of COVID-19. Graphical abstract
![]()
Collapse
|
23
|
Avula K, Singh B, Kumar PV, Syed GH. Role of Lipid Transfer Proteins (LTPs) in the Viral Life Cycle. Front Microbiol 2021; 12:673509. [PMID: 34248884 PMCID: PMC8260984 DOI: 10.3389/fmicb.2021.673509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Viruses are obligate parasites that depend on the host cell machinery for their replication and dissemination. Cellular lipids play a central role in multiple stages of the viral life cycle such as entry, replication, morphogenesis, and egress. Most viruses reorganize the host cell membranes for the establishment of viral replication complex. These specialized structures allow the segregation of replicating viral RNA from ribosomes and protect it from host nucleases. They also facilitate localized enrichment of cellular components required for viral replication and assembly. The specific composition of the lipid membrane governs its ability to form negative or positive curvature and possess a rigid or flexible form, which is crucial for membrane rearrangement and establishment of viral replication complexes. In this review, we highlight how different viruses manipulate host lipid transfer proteins and harness their functions to enrich different membrane compartments with specific lipids in order to facilitate multiple aspects of the viral life cycle.
Collapse
Affiliation(s)
- Kiran Avula
- Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneshwar, India.,Regional Centre for Biotechnology, Faridabad, India
| | - Bharati Singh
- Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneshwar, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar, India
| | - Preethy V Kumar
- Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneshwar, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar, India
| | - Gulam H Syed
- Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneshwar, India
| |
Collapse
|
24
|
Van Damme E, De Meyer S, Bojkova D, Ciesek S, Cinatl J, De Jonghe S, Jochmans D, Leyssen P, Buyck C, Neyts J, Van Loock M. In vitro activity of itraconazole against SARS-CoV-2. J Med Virol 2021; 93:4454-4460. [PMID: 33666253 PMCID: PMC8014624 DOI: 10.1002/jmv.26917] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/11/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022]
Abstract
Although vaccination campaigns are currently being rolled out to prevent coronavirus disease (COVID-19), antivirals will remain an important adjunct to vaccination. Antivirals against coronaviruses do not exist, hence global drug repurposing efforts have been carried out to identify agents that may provide clinical benefit to patients with COVID-19. Itraconazole, an antifungal agent, has been reported to have activity against animal coronaviruses. Using cell-based phenotypic assays, the in vitro antiviral activity of itraconazole and 17-OH itraconazole was assessed against clinical isolates from a German and Belgian patient infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Itraconazole demonstrated antiviral activity in human Caco-2 cells (EC50 = 2.3 µM; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay). Similarly, its primary metabolite, 17-OH itraconazole, showed inhibition of SARS-CoV-2 activity (EC50 = 3.6 µM). Remdesivir inhibited viral replication with an EC50 = 0.4 µM. Itraconazole and 17-OH itraconazole resulted in a viral yield reduction in vitro of approximately 2-log10 and approximately 1-log10 , as measured in both Caco-2 cells and VeroE6-eGFP cells, respectively. The viral yield reduction brought about by remdesivir or GS-441524 (parent nucleoside of the antiviral prodrug remdesivir; positive control) was more pronounced, with an approximately 3-log10 drop and >4-log10 drop in Caco-2 cells and VeroE6-eGFP cells, respectively. Itraconazole and 17-OH itraconazole exert in vitro low micromolar activity against SARS-CoV-2. Despite the in vitro antiviral activity, itraconazole did not result in a beneficial effect in hospitalized COVID-19 patients in a clinical study (EudraCT Number: 2020-001243-15).
Collapse
Affiliation(s)
| | | | - Denisa Bojkova
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Sandra Ciesek
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany.,German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Pieter Leyssen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | | | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | | |
Collapse
|
25
|
Schloer S, Brunotte L, Mecate-Zambrano A, Zheng S, Tang J, Ludwig S, Rescher U. Drug synergy of combinatory treatment with remdesivir and the repurposed drugs fluoxetine and itraconazole effectively impairs SARS-CoV-2 infection in vitro. Br J Pharmacol 2021; 178:2339-2350. [PMID: 33825201 PMCID: PMC8251190 DOI: 10.1111/bph.15418] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/06/2023] Open
Abstract
Background and Purpose The SARS‐COV‐2 pandemic and the global spread of coronavirus disease 2019 (COVID‐19) urgently call for efficient and safe antiviral treatment strategies. A straightforward approach to speed up drug development at lower costs is drug repurposing. Here, we investigated the therapeutic potential of targeting the interface of SARS CoV‐2 with the host via repurposing of clinically licensed drugs and evaluated their use in combinatory treatments with virus‐ and host‐directed drugs in vitro. Experimental Approach We tested the antiviral potential of the antifungal itraconazole and the antidepressant fluoxetine on the production of infectious SARS‐CoV‐2 particles in the polarized Calu‐3 cell culture model and evaluated the added benefit of a combinatory use of these host‐directed drugs with the direct acting antiviral remdesivir, an inhibitor of viral RNA polymerase. Key Results Drug treatments were well‐tolerated and potently impaired viral replication. Importantly, both itraconazole–remdesivir and fluoxetine–remdesivir combinations inhibited the production of infectious SARS‐CoV‐2 particles > 90% and displayed synergistic effects, as determined in commonly used reference models for drug interaction. Conclusion and Implications Itraconazole–remdesivir and fluoxetine–remdesivir combinations are promising starting points for therapeutic options to control SARS‐CoV‐2 infection and severe progression of COVID‐19.
Collapse
Affiliation(s)
- Sebastian Schloer
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Linda Brunotte
- Institute of Virology, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Angeles Mecate-Zambrano
- Institute of Virology, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Shuyu Zheng
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Stephan Ludwig
- Institute of Virology, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Ursula Rescher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
| |
Collapse
|
26
|
Liesenborghs L, Spriet I, Jochmans D, Belmans A, Gyselinck I, Teuwen LA, ter Horst S, Dreesen E, Geukens T, Engelen MM, Landeloos E, Geldhof V, Ceunen H, Debaveye B, Vandenberk B, Van der Linden L, Jacobs S, Langendries L, Boudewijns R, Do TND, Chiu W, Wang X, Zhang X, Weynand B, Vanassche T, Devos T, Meyfroidt G, Janssens W, Vos R, Vermeersch P, Wauters J, Verbeke G, De Munter P, Kaptein SJ, Rocha-Pereira J, Delang L, Van Wijngaerden E, Neyts J, Verhamme P. Itraconazole for COVID-19: preclinical studies and a proof-of-concept randomized clinical trial. EBioMedicine 2021; 66:103288. [PMID: 33752127 PMCID: PMC7979145 DOI: 10.1016/j.ebiom.2021.103288] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The antifungal drug itraconazole exerts in vitro activity against SARS-CoV-2 in Vero and human Caco-2 cells. Preclinical and clinical studies are required to investigate if itraconazole is effective for the treatment and/or prevention of COVID-19. METHODS Due to the initial absence of preclinical models, the effect of itraconazole was explored in a clinical, proof-of-concept, open-label, single-center study, in which hospitalized COVID-19 patients were randomly assigned to standard of care with or without itraconazole. Primary outcome was the cumulative score of the clinical status until day 15 based on the 7-point ordinal scale of the World Health Organization. In parallel, itraconazole was evaluated in a newly established hamster model of acute SARS-CoV-2 infection and transmission, as soon as the model was validated. FINDINGS In the hamster acute infection model, itraconazole did not reduce viral load in lungs, stools or ileum, despite adequate plasma and lung drug concentrations. In the transmission model, itraconazole failed to prevent viral transmission. The clinical trial was prematurely discontinued after evaluation of the preclinical studies and because an interim analysis showed no signal for a more favorable outcome with itraconazole: mean cumulative score of the clinical status 49 vs 47, ratio of geometric means 1.01 (95% CI 0.85 to 1.19) for itraconazole vs standard of care. INTERPRETATION Despite in vitro activity, itraconazole was not effective in a preclinical COVID-19 hamster model. This prompted the premature termination of the proof-of-concept clinical study. FUNDING KU Leuven, Research Foundation - Flanders (FWO), Horizon 2020, Bill and Melinda Gates Foundation.
Collapse
Affiliation(s)
- Laurens Liesenborghs
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- The Outbreak Research Team, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Isabel Spriet
- Pharmacy Department University Hospitals Leuven and Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium
| | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Ann Belmans
- KU Leuven – University of Leuven & Universiteit Hasselt, I-BioStat, Leuven, Belgium
| | - Iwein Gyselinck
- Department of Respiratory Diseases, UZ Leuven and CHROMETA, Research group BREATHE, KU Leuven, Leuven, Belgium
| | - Laure-Anne Teuwen
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sebastiaan ter Horst
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Erwin Dreesen
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium
| | - Tatjana Geukens
- Department of Oncology, Laboratory for Translational Breast Cancer Research, KU Leuven, Belgium
| | | | - Ewout Landeloos
- Department of Oncology, Laboratory for molecular Cancer biology, VIB-KU Leuven, Belgium
| | - Vincent Geldhof
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Helga Ceunen
- Department of General Internal Medicine, UZ Leuven and Department of Microbiology, Immunology and Transplantation, KU Leuven, Belgium
| | - Barbara Debaveye
- Department of Cardiovascular Sciences, UZ and KU Leuven, Belgium
| | - Bert Vandenberk
- Department of Cardiovascular Sciences, UZ and KU Leuven, Belgium
| | - Lorenz Van der Linden
- Pharmacy Department University Hospitals Leuven and Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium
| | - Sofie Jacobs
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Lana Langendries
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Robbert Boudewijns
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Thuc Nguyen Dan Do
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Winston Chiu
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Xinyu Wang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Xin Zhang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Birgit Weynand
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Belgium
| | - Thomas Vanassche
- Department of Cardiovascular Sciences, UZ and KU Leuven, Belgium
| | - Timothy Devos
- Department of Hematology, UZ Leuven and Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology (Rega Institute), KU Leuven, Belgium
| | - Geert Meyfroidt
- Department and Laboratory of Intensive Care Medicine, UZ and KU Leuven, Belgium
| | - Wim Janssens
- Department of Respiratory Diseases, UZ Leuven and CHROMETA, Research group BREATHE, KU Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Respiratory Diseases, UZ Leuven and CHROMETA, Research group BREATHE, KU Leuven, Leuven, Belgium
| | - Pieter Vermeersch
- Department of Cardiovascular Sciences and Clinical Department of Laboratory Medicine, KU Leuven, Belgium
| | - Joost Wauters
- Medical Intensive Care Unit, UZ Leuven and Department of Microbiology, Immunology and Transplantation, KU Leuven, Belgium
| | - Geert Verbeke
- KU Leuven – University of Leuven & Universiteit Hasselt, I-BioStat, Leuven, Belgium
| | - Paul De Munter
- Department of General Internal Medicine, UZ Leuven and Department of Microbiology, Immunology and Transplantation, KU Leuven, Belgium
| | - Suzanne J.F. Kaptein
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Joana Rocha-Pereira
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Leen Delang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Eric Van Wijngaerden
- Department of General Internal Medicine, UZ Leuven and Department of Microbiology, Immunology and Transplantation, KU Leuven, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Peter Verhamme
- Department of Cardiovascular Sciences, UZ and KU Leuven, Belgium
| |
Collapse
|
27
|
Jheng JR, Chen YS, Horng JT. Regulation of the proteostasis network during enterovirus infection: A feedforward mechanism for EV-A71 and EV-D68. Antiviral Res 2021; 188:105019. [PMID: 33484748 DOI: 10.1016/j.antiviral.2021.105019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 10/25/2022]
Abstract
The proteostasis network guarantees successful protein synthesis, folding, transportation, and degradation. Mounting evidence has revealed that this network maintains proteome integrity and is linked to cellular physiology, pathology, and virus infection. Human enterovirus A71 (EV-A71) and EV-D68 are suspected causative agents of acute flaccid myelitis, a severe poliomyelitis-like neurologic syndrome with no known cure. In this context, further clarification of the molecular mechanisms underlying EV-A71 and EV-D68 infection is paramount. Here, we summarize the components of the proteostasis network that are intercepted by EV-A71 and EV-D68, as well as antivirals that target this network and may help develop improved antiviral drugs.
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yuan-Siao Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
28
|
Tavakoli M, Shokohi T, Lass Flörl C, Hedayati MT, Hoenigl M. Immunological response to COVID-19 and its role as a predisposing factor in invasive aspergillosis. Curr Med Mycol 2020; 6:75-79. [PMID: 34195465 PMCID: PMC8226042 DOI: 10.18502/cmm.6.4.5442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/22/2020] [Accepted: 11/07/2020] [Indexed: 12/31/2022] Open
Abstract
The world is involved with a pandemic coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2. The clinical manifestations of reported COVID-19-associated pulmonary impairments range from asymptomatic infections to a pneumonia-induced acute respiratory distress syndrome that requires mechanical ventilation. Fungal superinfections complicating the clinical course remain underexplored. Angiotensin-converting enzyme 2, the receptor for COVID-19 that is mainly expressed in airway epithelia and lung parenchyma, is considered an important regulator of innate immunity. With regard to the viral-cell interaction, imbalanced immune regulation between protective and altered responses caused by the exacerbation of inflammatory responses should be considered a major contributor to secondary pulmonary aspergillosis. In addition, the complex inherited factors, age-related changes, and lifestyle may also affect immune responses. The complication and persistence of invasive aspergillosis have been well described in patients with severe influenza or COVID-19. However, there is a scarcity of information about the immunological mechanisms predisposing patients with COVID-19 to fungal co-infections. Therefore, this study was conducted to investigate the aforementioned domain.
Collapse
Affiliation(s)
- Mahin Tavakoli
- Invasive Fungi Center, Communicable Diseases Research Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Parasitology and Mycology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tahereh Shokohi
- Invasive Fungi Center, Communicable Diseases Research Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Cornelia Lass Flörl
- nstitute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mohammad Taghi Hedayati
- Invasive Fungi Center, Communicable Diseases Research Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Martin Hoenigl
- Division of Infectious Diseases and Global Health, University of California San Diego, La Jolla, California, USA
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
29
|
Bagheri A, Moezzi SMI, Mosaddeghi P, Nadimi Parashkouhi S, Fazel Hoseini SM, Badakhshan F, Negahdaripour M. Interferon-inducer antivirals: Potential candidates to combat COVID-19. Int Immunopharmacol 2020; 91:107245. [PMID: 33348292 PMCID: PMC7705326 DOI: 10.1016/j.intimp.2020.107245] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infective disease generated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given the pandemic urgency and lack of an effective cure for this disease, drug repurposing could open the way for finding a solution. Lots of investigations are ongoing to test the compounds already identified as antivirals. On the other hand, induction of type I interferons are found to play an important role in the generation of immune responses against SARS-CoV-2. Therefore, it was opined that the antivirals capable of triggering the interferons and their signaling pathway, could rationally be beneficial for treating COVID-19. On this basis, using a database of antivirals, called drugvirus, some antiviral agents were derived, followed by searches on their relevance to interferon induction. The examined list included drugs from different categories such as antibiotics, immunosuppressants, anti-cancers, non-steroidal anti-inflammatory drugs (NSAID), calcium channel blocker compounds, and some others. The results as briefed here, could help in finding potential drug candidates for COVID-19 treatment. However, their advantages and risks should be taken into account through precise studies, considering a systemic approach. Even though the adverse effects of some of these drugs may overweight their benefits, considering their mechanisms and structures may give a clue for designing novel drugs in the future. Furthermore, the antiviral effect and IFN-modifying mechanisms possessed by some of these drugs might lead to a synergistic effect against SARS-CoV-2, which deserve to be evaluated in further investigations.
Collapse
Affiliation(s)
- Ashkan Bagheri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Iman Moezzi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pouria Mosaddeghi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadra Nadimi Parashkouhi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mostafa Fazel Hoseini
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Badakhshan
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
30
|
Khan N, Chen X, Geiger JD. Role of Endolysosomes in Severe Acute Respiratory Syndrome Coronavirus-2 Infection and Coronavirus Disease 2019 Pathogenesis: Implications for Potential Treatments. Front Pharmacol 2020; 11:595888. [PMID: 33324224 PMCID: PMC7723437 DOI: 10.3389/fphar.2020.595888] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an enveloped, single-stranded RNA virus. Humans infected with SARS-CoV-2 develop a disease known as coronavirus disease 2019 (COVID-19) with symptoms and consequences including acute respiratory distress syndrome (ARDS), cardiovascular disorders, and death. SARS-CoV-2 appears to infect cells by first binding viral spike proteins with host protein angiotensin-converting enzyme 2 (ACE2) receptors; the virus is endocytosed following priming by transmembrane protease serine 2 (TMPRSS2). The process of virus entry into endosomes and its release from endolysosomes are key features of enveloped viruses. Thus, it is important to focus attention on the role of endolysosomes in SARS-CoV-2 infection. Indeed, coronaviruses are now known to hijack endocytic machinery to enter cells such that they can deliver their genome at replication sites without initiating host detection and immunological responses. Hence, endolysosomes might be good targets for developing therapeutic strategies against coronaviruses. Here, we focus attention on the involvement of endolysosomes in SARS-CoV-2 infection and COVID-19 pathogenesis. Further, we explore endolysosome-based therapeutic strategies to restrict SARS-CoV-2 infection and COVID-19 pathogenesis.
Collapse
Affiliation(s)
| | | | - Jonathan D. Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
31
|
Schloer S, Brunotte L, Goretzko J, Mecate-Zambrano A, Korthals N, Gerke V, Ludwig S, Rescher U. Targeting the endolysosomal host-SARS-CoV-2 interface by clinically licensed functional inhibitors of acid sphingomyelinase (FIASMA) including the antidepressant fluoxetine. Emerg Microbes Infect 2020; 9:2245-2255. [PMID: 32975484 PMCID: PMC7594754 DOI: 10.1080/22221751.2020.1829082] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic caused by the Severe Acute Respiratory Syndrome Related Coronavirus 2 (SARS-CoV-2) is a global health emergency. As only very limited therapeutic options are clinically available, there is an urgent need for the rapid development of safe, effective, and globally available pharmaceuticals that inhibit SARS-CoV-2 entry and ameliorate COVID-19 severity. In this study, we explored the use of small compounds acting on the homeostasis of the endolysosomal host-pathogen interface, to fight SARS-CoV-2 infection. We find that fluoxetine, a widely used antidepressant and a functional inhibitor of acid sphingomyelinase (FIASMA), efficiently inhibited the entry and propagation of SARS-CoV-2 in the cell culture model without cytotoxic effects and also exerted potent antiviral activity against two currently circulating influenza A virus subtypes, an effect which was also observed upon treatment with the FIASMAs amiodarone and imipramine. Mechanistically, fluoxetine induced both impaired endolysosomal acidification and the accumulation of cholesterol within the endosomes. As the FIASMA group consists of a large number of small compounds that are well-tolerated and widely used for a broad range of clinical applications, exploring these licensed pharmaceuticals may offer a variety of promising antivirals for host-directed therapy to counteract enveloped viruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Sebastian Schloer
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany.,Interdisciplinary Centre for Clinical Research, University of Muenster, Muenster, Germany
| | - Linda Brunotte
- Institute of Virology, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany.,Interdisciplinary Centre for Clinical Research, University of Muenster, Muenster, Germany
| | - Jonas Goretzko
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany.,Interdisciplinary Centre for Clinical Research, University of Muenster, Muenster, Germany
| | - Angeles Mecate-Zambrano
- Institute of Virology, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany.,Interdisciplinary Centre for Clinical Research, University of Muenster, Muenster, Germany
| | - Nadia Korthals
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany.,Interdisciplinary Centre for Clinical Research, University of Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany.,Interdisciplinary Centre for Clinical Research, University of Muenster, Muenster, Germany
| | - Ursula Rescher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany.,Interdisciplinary Centre for Clinical Research, University of Muenster, Muenster, Germany
| |
Collapse
|
32
|
Kasparyan G, Poojari C, Róg T, Hub JS. Cooperative Effects of an Antifungal Moiety and DMSO on Pore Formation over Lipid Membranes Revealed by Free Energy Calculations. J Phys Chem B 2020; 124:8811-8821. [PMID: 32924486 DOI: 10.1021/acs.jpcb.0c03359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Itraconazole is a triazole drug widely used in the treatment of fungal infections, and it is in clinical trials for treatment of several cancers. However, the drug suffers from poor solubility, while experiments have shown that itraconazole delivery in liposome nanocarriers improves both circulation half-life and tissue distribution. The drug release mechanism from the nanocarrier is still unknown, and it depends on several factors including membrane stability against defect formation. In this work, we used molecular dynamics simulations and potential of mean force (PMF) calculations to quantify the influence of itraconazole on pore formation over lipid membranes, and we compared the effect by itraconazole with a pore-stabilizing effect by the organic solvent dimethyl sulfoxide (DMSO). According to the PMFs, both itraconazole and DMSO greatly reduce the free energy of pore formation, by up to ∼20 kJ mol-1. However, whereas large concentrations of itraconazole of 8 mol % (relative to lipid) were required, only small concentrations of a few mole % DMSO (relative to water) were sufficient to stabilize pores. In addition, itraconazole and DMSO facilitate pore formation by different mechanisms. Whereas itraconazole predominantly aids the formation of a partial defect with a locally thinned membrane, DMSO mainly stabilizes a transmembrane water needle by shielding it from the hydrophobic core. Notably, the two distinct mechanisms act cooperatively upon adding both itraconazole and DMSO to the membrane, as revealed by an additional reduction of the pore free energy. Overall, our simulations reveal molecular mechanisms and free energies of membrane pore formation by small molecules. We suggest that the stabilization of a locally thinned membrane as well as the shielding of a transmembrane water needle from the hydrophobic membrane core may be a general mechanism by which amphiphilic molecules facilitate pore formation over lipid membranes at sufficient concentrations.
Collapse
Affiliation(s)
- Gari Kasparyan
- Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Chetan Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Tomasz Róg
- Department of Physics, Faculty of Science, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
33
|
The Clinically Approved Antifungal Drug Posaconazole Inhibits Human Cytomegalovirus Replication. Antimicrob Agents Chemother 2020; 64:AAC.00056-20. [PMID: 32690644 DOI: 10.1128/aac.00056-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Posaconazole (PCZ) is a clinically approved drug used predominantly for prophylaxis and salvage therapy of fungal infections. Here, we report its previously undescribed anti-human cytomegalovirus (HCMV) activity. By using antiviral assays, we demonstrated that PCZ, along with other azolic antifungals, has a broad anti-HCMV activity, being active against different strains, including low-passage-number clinical isolates and strains resistant to viral DNA polymerase inhibitors. Using a pharmacological approach, we identified the inhibition of human cytochrome P450 51 (hCYP51), or lanosterol 14α demethylase, a cellular target of posaconazole in infected cells, as a mechanism of anti-HCMV activity of the drug. Indeed, hCYP51 expression was stimulated upon HCMV infection, and the inhibition of its enzymatic activity by either the lanosterol analog VFV {(R)-N-(1-(3,4'-difluoro-[1,1'-biphenyl]-4-yl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide} or PCZ decreased HCMV yield and infectivity of released virus particles. Importantly, we observed that the activity of the first-line anti-HCMV drug ganciclovir was boosted tenfold by PCZ and that ganciclovir (GCV) and PCZ act synergistically in inhibiting HCMV replication. Taken together, these findings suggest that this clinically approved drug deserves further investigation in the development of host-directed antiviral strategies as a candidate anti-HCMV drug with a dual antimicrobial effect.
Collapse
|
34
|
Napoli PE, Mangoni L, Gentile P, Braghiroli M, Fossarello M. A Panel of Broad-Spectrum Antivirals in Topical Ophthalmic Medications from the Drug Repurposing Approach during and after the Coronavirus Disease 2019 Era. J Clin Med 2020; 9:E2441. [PMID: 32751615 PMCID: PMC7463888 DOI: 10.3390/jcm9082441] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) represents a global concern of public health caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Its clinical manifestations are characterized by a heterogeneous group of symptoms and pictures (ranging from asymptomatic to lethal courses). The prevalence of conjunctivitis in patients with COVID-19 is at present controversial. Although it has been reported that only 0.9% developed signs of conjunctivitis, other report indicates that up to 31.6% of hospitalized patients had conjunctivitis. Considering the widespread use of topical ophthalmic medications (e.g., eye drops) by the general population, for various reasons (e.g., artificial tears, anti-glaucoma medications, topical antibiotics, etc.), the existence of their side effects as antiviral action should be investigated in-depth because it could possibly explain the aforementioned controversial data and represent a potential antiviral treatment for SARS-CoV-2 replication/diffusion on the ocular surface. Here, we discuss and elucidate the antiviral side effect of many eye drops and ophthalmic ointments commonly used for others purposes, thus showing that these secondary effects (not to be confused with the 'adverse effects') might be of primary importance in a number of viral infections (e.g., those for which there is no validated treatment protocol), according to a drug repurposing approach. Some active ingredients or excipients described here have activity against other types of viruses, thus suggesting potential broad-spectrum applications.
Collapse
Affiliation(s)
- Pietro Emanuele Napoli
- Clinica Oculistica, San Giovanni di Dio Hospital, Azienda Ospedaliera Universitaria di Cagliari, 09124 Cagliari, Italy; (L.M.); (P.G.); (M.B.); (M.F.)
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, 09124 Cagliari, Italy
| | - Lorenzo Mangoni
- Clinica Oculistica, San Giovanni di Dio Hospital, Azienda Ospedaliera Universitaria di Cagliari, 09124 Cagliari, Italy; (L.M.); (P.G.); (M.B.); (M.F.)
| | - Pietro Gentile
- Clinica Oculistica, San Giovanni di Dio Hospital, Azienda Ospedaliera Universitaria di Cagliari, 09124 Cagliari, Italy; (L.M.); (P.G.); (M.B.); (M.F.)
| | - Mirco Braghiroli
- Clinica Oculistica, San Giovanni di Dio Hospital, Azienda Ospedaliera Universitaria di Cagliari, 09124 Cagliari, Italy; (L.M.); (P.G.); (M.B.); (M.F.)
| | - Maurizio Fossarello
- Clinica Oculistica, San Giovanni di Dio Hospital, Azienda Ospedaliera Universitaria di Cagliari, 09124 Cagliari, Italy; (L.M.); (P.G.); (M.B.); (M.F.)
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
35
|
Abstract
The current global pandemic COVID-19 caused by the SARS-CoV-2 virus has already inflicted insurmountable damage both to the human lives and global economy. There is an immediate need for identification of effective drugs to contain the disastrous virus outbreak. Global efforts are already underway at a war footing to identify the best drug combination to address the disease. In this review, an attempt has been made to understand the SARS-CoV-2 life cycle, and based on this information potential druggable targets against SARS-CoV-2 are summarized. Also, the strategies for ongoing and future drug discovery against the SARS-CoV-2 virus are outlined. Given the urgency to find a definitive cure, ongoing drug repurposing efforts being carried out by various organizations are also described. The unprecedented crisis requires extraordinary efforts from the scientific community to effectively address the issue and prevent further loss of human lives and health.
Collapse
Affiliation(s)
- Ambrish Saxena
- Indian Institute of Technology Tirupati, Tirupati, India
| |
Collapse
|
36
|
Sturley SL, Rajakumar T, Hammond N, Higaki K, Márka Z, Márka S, Munkacsi AB. Potential COVID-19 therapeutics from a rare disease: weaponizing lipid dysregulation to combat viral infectivity. J Lipid Res 2020; 61:972-982. [PMID: 32457038 PMCID: PMC7328045 DOI: 10.1194/jlr.r120000851] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/21/2020] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has resulted in the death of more than 328,000 persons worldwide in the first 5 months of 2020. Herculean efforts to rapidly design and produce vaccines and other antiviral interventions are ongoing. However, newly evolving viral mutations, the prospect of only temporary immunity, and a long path to regulatory approval pose significant challenges and call for a common, readily available, and inexpensive treatment. Strategic drug repurposing combined with rapid testing of established molecular targets could provide a pause in disease progression. SARS-CoV-2 shares extensive structural and functional conservation with SARS-CoV-1, including engagement of the same host cell receptor (angiotensin-converting enzyme 2) localized in cholesterol-rich microdomains. These lipid-enveloped viruses encounter the endosomal/lysosomal host compartment in a critical step of infection and maturation. Niemann-Pick type C (NP-C) disease is a rare monogenic neurodegenerative disease caused by deficient efflux of lipids from the late endosome/lysosome (LE/L). The NP-C disease-causing gene (NPC1) has been strongly associated with viral infection, both as a filovirus receptor (e.g., Ebola) and through LE/L lipid trafficking. This suggests that NPC1 inhibitors or NP-C disease mimetics could serve as anti-SARS-CoV-2 agents. Fortunately, there are such clinically approved molecules that elicit antiviral activity in preclinical studies, without causing NP-C disease. Inhibition of NPC1 may impair viral SARS-CoV-2 infectivity via several lipid-dependent mechanisms, which disturb the microenvironment optimum for viral infectivity. We suggest that known mechanistic information on NPC1 could be utilized to identify existing and future drugs to treat COVID-19.
Collapse
MESH Headings
- Androstenes/therapeutic use
- Angiotensin-Converting Enzyme 2
- Anticholesteremic Agents/therapeutic use
- Antiviral Agents/therapeutic use
- Betacoronavirus/drug effects
- Betacoronavirus/metabolism
- Betacoronavirus/pathogenicity
- COVID-19
- Cholesterol/metabolism
- Coronavirus Infections/diagnosis
- Coronavirus Infections/drug therapy
- Coronavirus Infections/epidemiology
- Drug Repositioning/methods
- Humans
- Hydroxychloroquine/therapeutic use
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Lysosomes/drug effects
- Lysosomes/metabolism
- Lysosomes/virology
- Niemann-Pick C1 Protein
- Niemann-Pick Disease, Type C/drug therapy
- Niemann-Pick Disease, Type C/genetics
- Niemann-Pick Disease, Type C/metabolism
- Niemann-Pick Disease, Type C/pathology
- Pandemics
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/diagnosis
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/epidemiology
- Protein Binding
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
| | - Tamayanthi Rajakumar
- School of Biological Sciences and Centre for
Biodiscovery, Victoria University of Wellington,
Wellington 6012, New Zealand
| | - Natalie Hammond
- School of Biological Sciences and Centre for
Biodiscovery, Victoria University of Wellington,
Wellington 6012, New Zealand
| | - Katsumi Higaki
- Division of Functional Genomics,
Tottori University, Yonago 683-8503,
Japan
| | - Zsuzsa Márka
- Department of Physics,
Columbia University, New York,
NY 10027
| | - Szabolcs Márka
- Department of Physics,
Columbia University, New York,
NY 10027
| | - Andrew B. Munkacsi
- School of Biological Sciences and Centre for
Biodiscovery, Victoria University of Wellington,
Wellington 6012, New Zealand
| |
Collapse
|
37
|
Combinatory Treatment with Oseltamivir and Itraconazole Targeting Both Virus and Host Factors in Influenza A Virus Infection. Viruses 2020; 12:v12070703. [PMID: 32610711 PMCID: PMC7412427 DOI: 10.3390/v12070703] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Influenza virus infections and their associated morbidity and mortality are a major threat to global health. Vaccination is an effective influenza prevention measure; however, the effectiveness is challenged by the rapid changes in the influenza virus genome leading to viral adaptation. Emerging viral resistance to the neuraminidase inhibitor oseltamivir limits the treatment of acute influenza infections. Targeting influenza virus-host interactions is a new and emerging field, and therapies based on the combination of virus- and host-directed drugs might significantly improve treatment success. We therefore assessed the combined treatment with oseltamivir and the repurposed antifungal drug itraconazole on infection of polarized broncho-epithelial Calu-3 cells with pdm09 or Panama influenza A virus strains. We detected significantly stronger antiviral activities in the combined treatment compared to monotherapy with oseltamivir, permitting lower concentrations of the drug than required for the single treatments. Bliss independence drug interaction analysis indicated that both drugs acted independently of each other. The additional antiviral effect of itraconazole might safeguard patients infected with influenza virus strains with heightened oseltamivir resistance.
Collapse
|
38
|
Converting nanosuspension into inhalable and redispersible nanoparticles by combined in-situ thermal gelation and spray drying. Eur J Pharm Biopharm 2020; 149:238-247. [PMID: 32112895 DOI: 10.1016/j.ejpb.2020.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 11/22/2022]
Abstract
While nanoparticulate drugs for deep lung delivery hold promise for particular disease treatments, their size-related physical instability and tendency of being exhaled during breathing remain major challenges to their inhaled formulation development. Here we report a viable method for converting drug nanosuspensions into inhalable, stable and redispersible nano-agglomerates through combined in-situ thermal gelation and spray drying. Itraconazole (ITZ) nanosuspensions were prepared by flash nanoprecipitation, and co-spray dried with two different grades of the gel-forming polymer, methylcellulose (MC M20 and MC M450) as protectants. MC M20 was found superior in protecting ITZ nanoparticles against thermal stress (through nanoparticle entrapment within its gel network structure) during spray drying. In terms of redispersibility, an Sf/Si ratio (i.e., ratio of nanoparticle sizes after and before spray drying) of unity (1.02 ± 0.03), reflecting full particle size preservation, was achieved by optimizing the suspending medium content and spray drying parameters. Formulation components, nanosuspension concentration and spray drying parameters all showed a significant impact on the aerosol performance of the resulting agglomerates, but an absence of defined trends or correlations. Overall, the MC-protected nano-agglomerates displayed excellent in-vitro aerosol performance with fine particle fractions higher than 50% and mass median aerodynamic diameters within the 2-3 µm range, which are ideal for deep lung delivery.
Collapse
|