1
|
Perdiguero B, Álvarez E, Marcos-Villar L, Sin L, López-Bravo M, Valverde JR, Sorzano CÓS, Falqui M, Coloma R, Esteban M, Guerra S, Gómez CE. B and T Cell Bi-Cistronic Multiepitopic Vaccine Induces Broad Immunogenicity and Provides Protection Against SARS-CoV-2. Vaccines (Basel) 2024; 12:1213. [PMID: 39591118 PMCID: PMC11598604 DOI: 10.3390/vaccines12111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic, caused by SARS-CoV-2, has highlighted the need for vaccines targeting both neutralizing antibodies (NAbs) and long-lasting cross-reactive T cells covering multiple viral proteins to provide broad and durable protection against emerging variants. METHODS To address this, here we developed two vaccine candidates, namely (i) DNA-CoV2-TMEP, expressing the multiepitopic CoV2-TMEP protein containing immunodominant and conserved T cell regions from SARS-CoV-2 structural proteins, and (ii) MVA-CoV2-B2AT, encoding a bi-cistronic multiepitopic construct that combines conserved B and T cell overlapping regions from SARS-CoV-2 structural proteins. RESULTS Both candidates were assessed in vitro and in vivo demonstrating their ability to induce robust immune responses. In C57BL/6 mice, DNA-CoV2-TMEP enhanced the recruitment of innate immune cells and stimulated SARS-CoV-2-specific polyfunctional T cells targeting multiple viral proteins. MVA-CoV2-B2AT elicited NAbs against various SARS-CoV-2 variants of concern (VoCs) and reduced viral replication and viral yields against the Beta variant in susceptible K18-hACE2 mice. The combination of MVA-CoV2-B2AT with a mutated ISG15 form as an adjuvant further increased the magnitude, breadth and polyfunctional profile of the response. CONCLUSION These findings underscore the potential of these multiepitopic proteins when expressed from DNA or MVA vectors to provide protection against SARS-CoV-2 and its variants, supporting their further development as next-generation COVID-19 vaccines.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (E.Á.); (L.M.-V.); (M.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| | - Enrique Álvarez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (E.Á.); (L.M.-V.); (M.E.)
| | - Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (E.Á.); (L.M.-V.); (M.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| | - Laura Sin
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| | - María López-Bravo
- Department of Microbial Biotechnology, CNB-CSIC, 28049 Madrid, Spain;
| | | | | | - Michela Falqui
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (M.F.); (R.C.); (S.G.)
| | - Rocío Coloma
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (M.F.); (R.C.); (S.G.)
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (E.Á.); (L.M.-V.); (M.E.)
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (M.F.); (R.C.); (S.G.)
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (E.Á.); (L.M.-V.); (M.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| |
Collapse
|
2
|
Carolin A, Frazer D, Yan K, Bishop CR, Tang B, Nguyen W, Helman SL, Horvat J, Larcher T, Rawle DJ, Suhrbier A. The effects of iron deficient and high iron diets on SARS-CoV-2 lung infection and disease. Front Microbiol 2024; 15:1441495. [PMID: 39296289 PMCID: PMC11408339 DOI: 10.3389/fmicb.2024.1441495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction The severity of Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is often dictated by a range of comorbidities. A considerable literature suggests iron deficiency and iron overload may contribute to increased infection, inflammation and disease severity, although direct causal relationships have been difficult to establish. Methods Here we generate iron deficient and iron loaded C57BL/6 J mice by feeding standard low and high iron diets, with mice on a normal iron diet representing controls. All mice were infected with a primary SARS-CoV-2 omicron XBB isolate and lung inflammatory responses were analyzed by histology, immunohistochemistry and RNA-Seq. Results Compared with controls, iron deficient mice showed no significant changes in lung viral loads or histopathology, whereas, iron loaded mice showed slightly, but significantly, reduced lung viral loads and histopathology. Transcriptional changes were modest, but illustrated widespread dysregulation of inflammation signatures for both iron deficient vs. controls, and iron loaded vs. controls. Some of these changes could be associated with detrimental outcomes, whereas others would be viewed as beneficial. Discussion Diet-associated iron deficiency or overload thus induced modest modulations of inflammatory signatures, but no significant histopathologically detectable disease exacerbations.
Collapse
Affiliation(s)
- Agnes Carolin
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David Frazer
- Molecular Nutrition, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kexin Yan
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Cameron R Bishop
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bing Tang
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wilson Nguyen
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sheridan L Helman
- Molecular Nutrition, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jay Horvat
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | | | - Daniel J Rawle
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Kim GJ, Elnaggar JH, Varnado M, Feehan AK, Tauzier D, Rose R, Lamers SL, Sevalia M, Nicholas N, Gravois E, Fort D, Crabtree JS, Miele L. A bioinformatic analysis of T-cell epitope diversity in SARS-CoV-2 variants: association with COVID-19 clinical severity in the United States population. Front Immunol 2024; 15:1357731. [PMID: 38784379 PMCID: PMC11112498 DOI: 10.3389/fimmu.2024.1357731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024] Open
Abstract
Long-term immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires the identification of T-cell epitopes affecting host immunogenicity. In this computational study, we explored the CD8+ epitope diversity estimated in 27 of the most common HLA-A and HLA-B alleles, representing most of the United States population. Analysis of 16 SARS-CoV-2 variants [B.1, Alpha (B.1.1.7), five Delta (AY.100, AY.25, AY.3, AY.3.1, AY.44), and nine Omicron (BA.1, BA.1.1, BA.2, BA.4, BA.5, BQ.1, BQ.1.1, XBB.1, XBB.1.5)] in analyzed MHC class I alleles revealed that SARS-CoV-2 CD8+ epitope conservation was estimated at 87.6%-96.5% in spike (S), 92.5%-99.6% in membrane (M), and 94.6%-99% in nucleocapsid (N). As the virus mutated, an increasing proportion of S epitopes experienced reduced predicted binding affinity: 70% of Omicron BQ.1-XBB.1.5 S epitopes experienced decreased predicted binding, as compared with ~3% and ~15% in the earlier strains Delta AY.100-AY.44 and Omicron BA.1-BA.5, respectively. Additionally, we identified several novel candidate HLA alleles that may be more susceptible to severe disease, notably HLA-A*32:01, HLA-A*26:01, and HLA-B*53:01, and relatively protected from disease, such as HLA-A*31:01, HLA-B*40:01, HLA-B*44:03, and HLA-B*57:01. Our findings support the hypothesis that viral genetic variation affecting CD8 T-cell epitope immunogenicity contributes to determining the clinical severity of acute COVID-19. Achieving long-term COVID-19 immunity will require an understanding of the relationship between T cells, SARS-CoV-2 variants, and host MHC class I genetics. This project is one of the first to explore the SARS-CoV-2 CD8+ epitope diversity that putatively impacts much of the United States population.
Collapse
Affiliation(s)
- Grace J. Kim
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jacob H. Elnaggar
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Microbiology, Immunology, and Parasitology, Lousiana State University Health Sciences Center (LSUHSC), New Orleans, LA, United States
| | - Mallory Varnado
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Amy K. Feehan
- Research and Development, Oschner Medical Center, New Orleans, LA, United States
| | - Darlene Tauzier
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rebecca Rose
- Research and Development, BioInfoExperts, LLC, Thibodaux, LA, United States
| | - Susanna L. Lamers
- Research and Development, BioInfoExperts, LLC, Thibodaux, LA, United States
| | - Maya Sevalia
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Najah Nicholas
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Elizabeth Gravois
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Daniel Fort
- Research and Development, Oschner Medical Center, New Orleans, LA, United States
| | - Judy S. Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
4
|
Costiniuk CT, Lee T, Singer J, Galipeau Y, Arnold C, Langlois MA, Needham J, Jenabian MA, Burchell AN, Samji H, Chambers C, Walmsley S, Ostrowski M, Kovacs C, Tan DHS, Harris M, Hull M, Brumme ZL, Lapointe HR, Brockman MA, Margolese S, Mandarino E, Samarani S, Lebouché B, Angel JB, Routy JP, Cooper CL, Anis AH. Correlates of Breakthrough SARS-CoV-2 Infections in People with HIV: Results from the CIHR CTN 328 Study. Vaccines (Basel) 2024; 12:447. [PMID: 38793698 PMCID: PMC11125718 DOI: 10.3390/vaccines12050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024] Open
Abstract
COVID-19 breakthrough infection (BTI) can occur despite vaccination. Using a multi-centre, prospective, observational Canadian cohort of people with HIV (PWH) receiving ≥2 COVID-19 vaccines, we compared the SARS-CoV-2 spike (S) and receptor-binding domain (RBD)-specific IgG levels 3 and 6 months post second dose, as well as 1 month post third dose, in PWH with and without BTI. BTI was defined as positivity based on self-report measures (data up to last study visit) or IgG data (up to 1 month post dose 3). The self-report measures were based on their symptoms and either a positive PCR or rapid antigen test. The analysis was restricted to persons without previous COVID-19 infection. Persons without BTI remained COVID-19-naïve until ≥3 months following the third dose. Of 289 participants, 92 developed BTI (31.5 infections per 100 person-years). The median days between last vaccination and BTI was 128 (IQR 67, 176), with the most cases occurring between the third and fourth dose (n = 59), corresponding to the Omicron wave. In analyses adjusted for age, sex, race, multimorbidity, hypertension, chronic kidney disease, diabetes and obesity, a lower IgG S/RBD (log10 BAU/mL) at 1 month post dose 3 was significantly associated with BTI, suggesting that a lower IgG level at this time point may predict BTI in this cohort of PWH.
Collapse
Affiliation(s)
- Cecilia T. Costiniuk
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital—Glen Site, Montreal, QC H4A 3J1, Canada; (S.S.); (B.L.); (J.-P.R.)
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Terry Lee
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC V6Z 1Y6, Canada; (T.L.); (J.N.); (S.M.); (E.M.); (A.H.A.)
- Centre for Advancing Health Outcomes, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Joel Singer
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC V6Z 1Y6, Canada; (T.L.); (J.N.); (S.M.); (E.M.); (A.H.A.)
- Centre for Advancing Health Outcomes, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Y.G.); (C.A.); (M.-A.L.); (J.B.A.)
| | - Corey Arnold
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Y.G.); (C.A.); (M.-A.L.); (J.B.A.)
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Y.G.); (C.A.); (M.-A.L.); (J.B.A.)
| | - Judy Needham
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC V6Z 1Y6, Canada; (T.L.); (J.N.); (S.M.); (E.M.); (A.H.A.)
- Centre for Advancing Health Outcomes, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC H2X 1Y4, Canada;
| | - Ann N. Burchell
- Department of Family and Community Medicine, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada;
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada;
| | - Hasina Samji
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (H.S.); (Z.L.B.); (M.A.B.)
- British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | - Catharine Chambers
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada;
- MAP Centre for Urban Health Solutions, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada;
| | - Sharon Walmsley
- Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada;
| | - Mario Ostrowski
- Clinical Sciences Division, Department of Immunology, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada;
| | - Colin Kovacs
- Division of Infectious Diseases, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada;
| | - Darrell H. S. Tan
- MAP Centre for Urban Health Solutions, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada;
- Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada;
- Institute of Public Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 3M6, Canada
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (M.H.); (M.H.)
| | - Mark Hull
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (M.H.); (M.H.)
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (H.S.); (Z.L.B.); (M.A.B.)
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (M.H.); (M.H.)
| | - Hope R. Lapointe
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (M.H.); (M.H.)
| | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (H.S.); (Z.L.B.); (M.A.B.)
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (M.H.); (M.H.)
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Shari Margolese
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC V6Z 1Y6, Canada; (T.L.); (J.N.); (S.M.); (E.M.); (A.H.A.)
| | - Enrico Mandarino
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC V6Z 1Y6, Canada; (T.L.); (J.N.); (S.M.); (E.M.); (A.H.A.)
| | - Suzanne Samarani
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital—Glen Site, Montreal, QC H4A 3J1, Canada; (S.S.); (B.L.); (J.-P.R.)
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Bertrand Lebouché
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital—Glen Site, Montreal, QC H4A 3J1, Canada; (S.S.); (B.L.); (J.-P.R.)
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Family Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3S 1Z1, Canada
| | - Jonathan B. Angel
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Y.G.); (C.A.); (M.-A.L.); (J.B.A.)
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada;
| | - Jean-Pierre Routy
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital—Glen Site, Montreal, QC H4A 3J1, Canada; (S.S.); (B.L.); (J.-P.R.)
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Division of Hematology, Department of Medicine, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Curtis L. Cooper
- Division of Infectious Diseases, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada;
| | - Aslam H. Anis
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC V6Z 1Y6, Canada; (T.L.); (J.N.); (S.M.); (E.M.); (A.H.A.)
- Centre for Advancing Health Outcomes, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
5
|
Shakinah S, Aini MH, Sekartini R, Soedjatmiko, Medise BE, Gunardi H, Yuniar I, Indawati W, Koesnoe S, Harimurti K, Maria S, Wirahmadi A, Sari RM, Setyaningsih L, Surachman F. Immunogenicity Assessment of the SARS-CoV-2 Protein Subunit Recombinant Vaccine (CoV2-IB 0322) in a Substudy of a Phase 3 Trial in Indonesia. Vaccines (Basel) 2024; 12:371. [PMID: 38675753 PMCID: PMC11053672 DOI: 10.3390/vaccines12040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND COVID-19 is one of the most devastating pandemics of the 21st century. Vaccination is one of the most effective prevention methods in combating COVID-19, and one type of vaccine being developed was the protein subunit recombinant vaccine. We evaluated the efficacy of the CoV2-IB 0322 vaccine in Depok, Indonesia. METHODS This study aimed to assess the humoral and cellular immune response of the CoV2-IB 0322 vaccine compared to an active control vaccine (COVOVAX™ Vaccine). A total of 120 subjects were enrolled and randomized into two groups, with 60 subjects in each group. Participants received either two doses of the CoV2-IB 0322 vaccine or two doses of the control vaccine with a 28-day interval between doses. Safety assessments were conducted through onsite monitoring and participant-reported adverse events. Immunogenicity was evaluated by measuring IgG anti-RBD SARS-CoV-2 and IgG-neutralizing antibodies. Cellular immunity was assessed by specific T-cell responses. Whole blood samples were collected at baseline, 14 days, 6 months, and 12 months after the second dose for cellular immunity evaluation. RESULTS Both vaccines showed high seropositive rates, with neutralizing antibody and IgG titers peaking 14 days after the second dose and declining by 12 months. The seroconversion rate of anti-S IgG was 100% in both groups, but the rate of neutralizing antibody seroconversion was lower in the CoV2-IB 0322 vaccine group at 14 days after the second dose (p = 0.004). The CoV2-IB 0322 vaccine showed higher IgG GMT levels 6 and 12 months after the second dose (p < 0.001 and p = 0.01). T-cell responses, evaluated by IFN-γ, IL-2, and IL-4 production by CD4+ and CD8+ T-cells, showed similar results without significant differences between both groups, except for %IL-2/CD4+ cells 6 months after the second dose (p = 0.038). CONCLUSION Both vaccines showed comparable B- and T-cell immunological response that diminish over time.
Collapse
Affiliation(s)
- Sharifah Shakinah
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (S.S.); (S.M.)
| | - Muhammad Hafiz Aini
- Department of Internal Medicine, Universitas Indonesia Hospital, Jl. Prof. DR. Bahder Djohan, Depok 16424, Indonesia
| | - Rini Sekartini
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Soedjatmiko
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Bernie Endyarni Medise
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Hartono Gunardi
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Irene Yuniar
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Wahyuni Indawati
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Sukamto Koesnoe
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (S.S.); (S.M.)
| | - Kuntjoro Harimurti
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (S.S.); (S.M.)
| | - Suzy Maria
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (S.S.); (S.M.)
| | - Angga Wirahmadi
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Rini Mulia Sari
- PT Bio Farma, Jalan Pasteur No. 28, Bandung 40161, Indonesia (L.S.); (F.S.)
| | - Lilis Setyaningsih
- PT Bio Farma, Jalan Pasteur No. 28, Bandung 40161, Indonesia (L.S.); (F.S.)
| | | |
Collapse
|
6
|
Tabarsi P, Mamishi S, Anjidani N, Shahpari R, Kafi H, Fallah N, Yazdani B, Ebrahimi A, Roshanzamir K, Ebrahimi H, Oveisi S, Soltani A, Petrovsky N, Barati S. Comparative immunogenicity and safety of SpikoGen®, a recombinant SARS-CoV-2 spike protein vaccine in children and young adults: An immuno-bridging clinical trial. Int Immunopharmacol 2024; 127:111436. [PMID: 38147778 DOI: 10.1016/j.intimp.2023.111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND SpikoGen® is a recombinant subunit spike protein ectodomain vaccine manufactured in insect cells and formulated with the novel polysaccharide-based Advax-CpG55.2 adjuvant. This study aimed to compare the immunogenicity and safety of SpikoGen® vaccine in children, adolescents and young adults. METHODS This was a non-randomized, three-arm, open-label, parallel-group, immuno-bridging, non-inferiority trial to compare the immunogenicity and safety of a primary course of two intramuscular doses of SpikoGen® vaccine in children aged 5 to < 12 years, adolescents aged 12 to < 18 years and young adults aged 18 to 40 years. Children 5-12 years received a half dose of 12.5 μg spike protein, whereas the other groups received the full vaccine dose. Vaccine immunogenicity was evaluated via assessment of serum anti-spike and neutralizing antibodies 14 days after the second dose. Solicited adverse events were recorded for 7 days after each vaccination. Safety assessments including serious adverse events were continued through six months after the second dose in children and adolescents. RESULTS Two weeks after the second dose, seroconversion rates for neutralizing antibody levels were not significantly different for children (59.50 %), adolescents (52.06 %) and adults (56.01 %). The 95 % confidence interval of the difference in seroconversion rates between children and adults was within the prespecified non-inferiority margin of 10 % (-12 % to 5 %). SpikoGen® vaccine was well tolerated in all age groups with the most common solicited adverse events being injection site pain and fatigue which were generally transient and mild. CONCLUSION SpikoGen® vaccine was shown to be safe, well tolerated and immunogenic in children as young as 5 years of age, with non-inferior responses to those seen in adults. The Iranian FDA authorisation of SpikoGen® vaccine is now extended down to 5 years of age.
Collapse
Affiliation(s)
- Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Setareh Mamishi
- Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ramin Shahpari
- Medical Department, Orchid Pharmed Company, Tehran, Iran
| | - Hamidreza Kafi
- Medical Department, Orchid Pharmed Company, Tehran, Iran
| | - Newsha Fallah
- Medical Department, Orchid Pharmed Company, Tehran, Iran
| | - Babak Yazdani
- Medical Department, Orchid Pharmed Company, Tehran, Iran
| | - Ali Ebrahimi
- Medical Department, Orchid Pharmed Company, Tehran, Iran
| | - Khashayar Roshanzamir
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hamidreza Ebrahimi
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Soudabeh Oveisi
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Adele Soltani
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Saghar Barati
- Medical Department, Orchid Pharmed Company, Tehran, Iran.
| |
Collapse
|