1
|
Rams-Pociecha I, Mizia PC, Piprek RP. Histological and immunohistochemical analysis of gonadal development in the veiled chameleon (Chamaeleo calyptratus). Anat Rec (Hoboken) 2024. [PMID: 39719868 DOI: 10.1002/ar.25621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/20/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
Chameleons are a family of lizards distinguished by several unique features related to their arboreal lifestyles, such as a ballistic tongue, skin color changes, independent movement of both eyes, a prehensile tail, and cleft hands and feet. The veiled chameleon (Chamaeleo calyptratus) has been proposed as a promising model species for studying squamate biology. Despite its potential, the developmental biology of this species remains poorly understood, particularly in terms of gonadal development. This study aimed to elucidate the development of the gonads in the veiled chameleon, from the initial appearance of the gonadal ridges through the sexual differentiation into ovaries and testes, to the establishment of the gonadal structures in both sexes. The study showed the accelerated appearance of gonadal primordia compared to the soma in the veiled chameleon, which is unique and possibly influenced by a prolonged in ovo development period due to the slowed rate of embryonic development in this species. The undifferentiated gonads are characterized by a voluminous medulla and a thin cortex. The process of gonadal sexual differentiation mirrors that seen in other vertebrates. Ovarian differentiation involves the development of a cortex containing germ cells and the loss of these cells in the medulla. Differentiated ovaries are characterized by a thin cortex and early induction of meiosis, leading to the formation of ovarian follicles before hatching. In contrast, testis differentiation involves the loss of germ cells from the cortex, its transformation into a thin epithelium, and the development of germ cell-containing testis cords in the medulla. The testis cords originate from invagination and remain without forming a lumen during embryogenesis. This comprehensive examination of gonadal development in the veiled chameleon provides important insights into sexual differentiation processes in this species. Moreover, it may stimulate further, broader studies in vertebrate developmental biology.
Collapse
Affiliation(s)
- Izabela Rams-Pociecha
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Paulina C Mizia
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Rafal P Piprek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
2
|
Rams-Pociecha I, Mizia PC, Piprek RP. Histological Analysis of Gonadal Ridge Development and Sex Differentiation of Gonads in Three Gecko Species. BIOLOGY 2023; 13:7. [PMID: 38248438 PMCID: PMC10813461 DOI: 10.3390/biology13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Reptiles constitute a highly diverse group of vertebrates, with their evolutionary lineages having diverged relatively early. The types of sex determination exemplify the diversity of reptiles; however, there are limited data regarding the gonadal development in squamate reptiles. Geckos constitute a group that is increasingly used in research and that serves as a potential reptilian model organism. The aim of this study was to trace the changes in the structure of developing gonads in the embryos of three gecko species: the crested gecko, leopard gecko, and mourning gecko. These species represent different families of the Gekkota infraorder and exhibit different types of sex determination. Gonadal development was examined from the formation of the earliest gonadal ridges through the development of undifferentiated gonadal structures, sex differentiation of gonads, and the formation of testicular and ovarian structures. The study showed that the gonadal primordia of these three gecko species formed on the most dorsally located surface of the dorsal mesentery, and both the coelomic epithelium and the nephric mesenchyme contributed to their development. As in other reptile species, primordial germ cells settled in the gonadal ridges, and the undifferentiated gonad was composed of a cortex and a medulla. Ovarian differentiation started with the thickening of the gonadal cortex and proliferation of germ cells in this region. A characteristic feature of the developing gecko ovaries was the thickened crescent-shaped cortex on the medial and ventral surfaces of the ovaries. The ovarian medulla also grew and exhibited diverse tendencies to form cords. In the leopard gecko, advanced cord-like structures with lumens were observed in the ovaries, which were not seen in the crested gecko. Testicular differentiation was characterized by cortical thinning and the disappearance of germ cells in this region. In the medulla, the development of distinct cords with early lumen formation was noted. A characteristic feature of embryonic gonads was their growth in a horizontal plane. In this study, gonadal development was characterized by several features that are shared by geckos and other reptiles, along with features that are specific only to geckos.
Collapse
Affiliation(s)
- Izabela Rams-Pociecha
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (I.R.-P.); (P.C.M.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Paulina C. Mizia
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (I.R.-P.); (P.C.M.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Rafal P. Piprek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (I.R.-P.); (P.C.M.)
| |
Collapse
|
3
|
Smaga CR, Bock SL, Johnson JM, Parrott BB. Sex Determination and Ovarian Development in Reptiles and Amphibians: From Genetic Pathways to Environmental Influences. Sex Dev 2022; 17:99-119. [PMID: 36380624 DOI: 10.1159/000526009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Reptiles and amphibians provide untapped potential for discovering how a diversity of genetic pathways and environmental conditions are incorporated into developmental processes that can lead to similar functional outcomes. These groups display a multitude of reproductive strategies, and whereas many attributes are conserved within groups and even across vertebrates, several aspects of sexual development show considerable variation. SUMMARY In this review, we focus our attention on the development of the reptilian and amphibian ovary. First, we review and describe the events leading to ovarian development, including sex determination and ovarian maturation, through a comparative lens. We then describe how these events are influenced by environmental factors, focusing on temperature and exposure to anthropogenic chemicals. Lastly, we identify critical knowledge gaps and future research directions that will be crucial to moving forward in our understanding of ovarian development and the influences of the environment in reptiles and amphibians. KEY MESSAGES Reptiles and amphibians provide excellent models for understanding the diversity of sex determination strategies and reproductive development. However, a greater understanding of the basic biology of these systems is necessary for deciphering the adaptive and potentially disruptive implications of embryo-by-environment interactions in a rapidly changing world.
Collapse
Affiliation(s)
- Christopher R Smaga
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Samantha L Bock
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Josiah M Johnson
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Benjamin B Parrott
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| |
Collapse
|
4
|
Zhang H, Liu X, Lin C, Li X, Zhou Z, Fan G, Ma J. Peroxymonosulfate activation by hydroxylamine-drinking water treatment residuals for the degradation of atrazine. CHEMOSPHERE 2019; 224:689-697. [PMID: 30849630 DOI: 10.1016/j.chemosphere.2019.02.186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/26/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Drinking water treatment residuals (WTRs) have been applied in organic pollutants degradation in water by generating reactive oxygen species from peroxymonosulfate (PMS), however, the slow transformation of Fe(III) to Fe(II) may limit its widespread application. Hydroxylamine (HA) was introduced into the system to enhance the degradation efficiency of atrazine (ATZ) and several key reaction parameters (HA concentration, PMS concentration, pH and temperature) were concerned to study their influence on ATZ degradation. The results revealed that ATZ degradation efficiency was enhanced in the HA/WTRs/PMS system. Effects of some basic inorganic ions (Cl-, SO42- and NO3-) and natural organic matter on ATZ degradation were investigated and results showed that both have an inhibitory effect on ATZ removal. In addition to the reduction role, HA can also react directly with PMS to produce free radicals that helpful for ATZ degradation. Sulfate radical and hydroxyl radicals were generated and sulfate radical was identified as primary radicals in the HA/WTRs/PMS system by alcohol quenching experiments. Moreover, the HA/WTRs/PMS system also showed good performance for ATZ degradation in authentic water like surface water and groundwater. Introduction of hydroxylamine into the system may promote organic pollutant degradation and use of WTRs as an iron source for PMS activation provides new ideas for sludge treatment.
Collapse
Affiliation(s)
- Huijuan Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xiaowan Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Zhou Zhou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Guoxuan Fan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Jun Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Development Research Center of the Ministry of Water Resources of PR China, Beijing, 100038, China
| |
Collapse
|
5
|
Saalfeld GQ, Varela Junior AS, Castro T, Pereira FA, Gheller SMM, da Silva AC, Corcini CD, da Rosa CE, Colares EP. Low atrazine dosages reduce sperm quality of Calomys laucha mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2924-2931. [PMID: 29147981 DOI: 10.1007/s11356-017-0657-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Reproductive effects caused by the exposure to environmentally relevant dosages of atrazine on wild animals are poorly understood. This study evaluated the effects of three dosages of atrazine on sperm parameters of adult Calomys laucha males. Adult mice were orally exposed to dosages of 0 (water and vehicle control), 0.1, 1, and 10 mg/kg of animal weight for a 21-day period. Following exposure, analyses were performed to determine sperm motility parameters, plasma membrane integrity and fluidity, mitochondrial functionality, acrosome integrity, DNA damage, lipid peroxidation, and production of reactive oxygen species (ROS) in the sperm samples. Total and progressive motility were reduced in all dosages in comparison to control groups. Membrane integrity and mitochondrial functionality of sperm were reduced in all dosages, and the sperm membrane fluidity increased in the higher dosages of atrazine (1 and 10 mg/kg), in comparison with the vehicle control. A decrease in the acrosome integrity was noted at 10 mg/kg of atrazine, compared to the control groups. The integrity of DNA, ROS generation, and lipid peroxidation of sperm showed no significant differences when compared with the control groups. These results suggest that exposure to low dosages of atrazine can affect sperm parameters of Calomys laucha and therefore reduce the reproductive capacity of wild rodent species.
Collapse
Affiliation(s)
- Graciela Quintana Saalfeld
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Avenida Itália, km 08 s/n, Caixa Postal 474, Rio Grande, RS, 96201-900, Brazil.
| | - Antônio Sergio Varela Junior
- Reprodução Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Tiane Castro
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Avenida Itália, km 08 s/n, Caixa Postal 474, Rio Grande, RS, 96201-900, Brazil
| | - Fernanda Alves Pereira
- Reprodução Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Stela Mari Meneghello Gheller
- Reprodução Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil
- ReproPel, Faculdade de Veterinária, Campus Capão do Leão, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Alessandra Cardoso da Silva
- ReproPel, Faculdade de Veterinária, Campus Capão do Leão, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Carine Dahl Corcini
- Reprodução Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil
- ReproPel, Faculdade de Veterinária, Campus Capão do Leão, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Carlos Eduardo da Rosa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Avenida Itália, km 08 s/n, Caixa Postal 474, Rio Grande, RS, 96201-900, Brazil
| | - Elton Pinto Colares
- Reprodução Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil
| |
Collapse
|
6
|
Jones SM. Variations upon a theme: Australian lizards provide insights into the endocrine control of vertebrate reproductive cycles. Gen Comp Endocrinol 2017; 244:60-69. [PMID: 26342969 DOI: 10.1016/j.ygcen.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 08/13/2015] [Accepted: 09/01/2015] [Indexed: 11/28/2022]
Abstract
Australian lizards exhibit a broad array of different reproductive strategies and provide an extraordinary diversity and range of models with which to address fundamental problems in reproductive biology. Studies on lizards have frequently led to new insights into hormonal regulatory pathways or mechanisms of control, but we have detailed knowledge of the reproductive cycle in only a small percentage of known species. This review provides an overview and synthesis of current knowledge of the hormonal control of reproductive cycles in Australian lizards. Agamid lizards have provided useful models with which to test hypotheses about the hormonal regulation of the expression of reproductive behaviors, while research on viviparous skinks is providing insights into the evolution of the endocrine control of gestation. However, in order to better understand the potential risks that environmental factors such as climate change and endocrine disrupting chemicals pose to our fauna, better knowledge is required of the fundamental characteristics of the reproductive cycle in a broader range of lizard species.
Collapse
Affiliation(s)
- Susan M Jones
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| |
Collapse
|
7
|
Yatsu R, Katsu Y, Kohno S, Mizutani T, Ogino Y, Ohta Y, Myburgh J, van Wyk JH, Guillette LJ, Miyagawa S, Iguchi T. Characterization of evolutionary trend in squamate estrogen receptor sensitivity. Gen Comp Endocrinol 2016; 238:88-95. [PMID: 27072832 DOI: 10.1016/j.ygcen.2016.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/08/2016] [Indexed: 11/29/2022]
Abstract
Steroid hormones are a key regulator of reproductive biology in vertebrates, and are largely regulated via nuclear receptor families. Estrogen signaling is regulated by two estrogen receptor (ER) subtypes alpha and beta in the nucleus. In order to understand the role of estrogen in vertebrates, these ER from various species have been isolated and were functionally analyzed using luciferase reporter gene assays. Interestingly, species difference in estrogen sensitivity has been noted in the past, and it was reported that snake ER displayed highest estrogen sensitivity. Here, we isolated additional ER from three lizards: chameleon (Bradypodion pumilum), skink (Plestiodon finitimus), and gecko (Gekko japonicus). We have performed functional characterization of these ERs using reporter gene assay system, and found high estrogen sensitivity in all three species. Furthermore, comparison with results from other tetrapod ER revealed a seemingly uniform gradual pattern of ligand sensitivity evolution. In silico 3D homology modeling of the ligand-binding domain revealed structural variation at three sites, helix 2, and juncture between helices 8 and 9, and caudal region of helix 10/11. Docking simulations indicated that predicted ligand-receptor interaction also correlated with the reporter assay results, and overall squamates displayed highest stabilized interactions. The assay system and homology modeling system provides tool for in-depth comparative analysis of estrogen function, and provides insight toward the evolution of ER among vertebrates.
Collapse
Affiliation(s)
- Ryohei Yatsu
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| | - Yoshinao Katsu
- Graduate School of Life Science and Department of Biological Sciences, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
| | - Satomi Kohno
- Department of Obstetrics and Gynecology, Medical University of South Carolina, and Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Charleston, SC 29412, USA.
| | - Takeshi Mizutani
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| | - Yukiko Ogino
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| | - Yasuhiko Ohta
- Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Koyama, Tottori 680-8553, Japan.
| | - Jan Myburgh
- Department of Paraclinical Sciences, University of Pretoria, Private Bag 04, Onderstepoort 0110, South Africa.
| | - Johannes H van Wyk
- Department of Botany & Zoology, University of Stellenbosch, Stellenbosch 7600, South Africa.
| | - Louis J Guillette
- Department of Obstetrics and Gynecology, Medical University of South Carolina, and Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - Shinichi Miyagawa
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| | - Taisen Iguchi
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
8
|
Mizoguchi BA, Valenzuela N. Ecotoxicological Perspectives of Sex Determination. Sex Dev 2016; 10:45-57. [DOI: 10.1159/000444770] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2015] [Indexed: 11/19/2022] Open
|