1
|
Li B, Khan MZ, Khan IM, Ullah Q, Cisang ZM, Zhang N, Wu D, Huang B, Ma Y, Khan A, Jiang N, Zahoor M. Genetics, environmental stress, and amino acid supplementation affect lactational performance via mTOR signaling pathway in bovine mammary epithelial cells. Front Genet 2023; 14:1195774. [PMID: 37636261 PMCID: PMC10448190 DOI: 10.3389/fgene.2023.1195774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/26/2023] [Indexed: 08/29/2023] Open
Abstract
Mammary glands are known for their ability to convert nutrients present in the blood into milk contents. In cows, milk synthesis and the proliferation of cow mammary epithelial cells (CMECs) are regulated by various factors, including nutrients such as amino acids and glucose, hormones, and environmental stress. Amino acids, in particular, play a crucial role in regulating cell proliferation and casein synthesis in mammalian epithelial cells, apart from being building blocks for protein synthesis. Studies have shown that environmental factors, particularly heat stress, can negatively impact milk production performance in dairy cattle. The mammalian target of rapamycin complex 1 (mTORC1) pathway is considered the primary signaling pathway involved in regulating cell proliferation and milk protein and fat synthesis in cow mammary epithelial cells in response to amino acids and heat stress. Given the significant role played by the mTORC signaling pathway in milk synthesis and cell proliferation, this article briefly discusses the main regulatory genes, the impact of amino acids and heat stress on milk production performance, and the regulation of mTORC signaling pathway in cow mammary epithelial cells.
Collapse
Affiliation(s)
- Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High‐Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Zhuo-Ma Cisang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Nan Zhang
- Tibet Autonomous Region Animal Husbandry Station, Lhasa, China
| | - Dan Wu
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High‐Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Nan Jiang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Sherman SB, Harberson M, Rashleigh R, Gupta N, Powers R, Talla R, Thusu A, Hill JW. Spexin modulates molecular thermogenic profile of adipose tissue and thermoregulatory behaviors in female C57BL/6 mice. Horm Behav 2022; 143:105195. [PMID: 35580373 PMCID: PMC10150790 DOI: 10.1016/j.yhbeh.2022.105195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
Thermoregulation is the physiological process by which an animal regulates body temperature in response to its environment. It is known that galanin, a neuropeptide widely distributed throughout the central nervous system and secreted by the gut, plays a role in thermoregulatory behaviors and metabolism. We tested the ability of the novel neuropeptide spexin, which shares sequence homology to galanin, to regulate these functions in female mice. Supraphysiological levels of spexin in C57BL/6 mice did not lead to weight loss after 50 days of treatment. Behavioral analysis of long-term spexin treatment showed it decreased anxiety and increased thermoregulatory nest building, which was not observed when mice were housed at thermoneutral temperatures. Treatment also disrupted the thermogenic profile of brown and white adipose tissue, decreasing mRNA expression of Ucp1 in BAT and immunodetection of β3-adrenergic receptors in gWAT. Our results reveal novel functions for spexin as a modulator of thermoregulatory behaviors and adipose tissue metabolism.
Collapse
Affiliation(s)
- Shermel B Sherman
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Center for Diabetes and Endocrine Research, Toledo, OH 43614, United States
| | - Mitchell Harberson
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Center for Diabetes and Endocrine Research, Toledo, OH 43614, United States
| | - Rebecca Rashleigh
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Center for Diabetes and Endocrine Research, Toledo, OH 43614, United States
| | - Niraj Gupta
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Department of Bioengineering, University of Toledo, Toledo, OH 43604, United States
| | - Riley Powers
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, United States
| | - Ramya Talla
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Center for Diabetes and Endocrine Research, Toledo, OH 43614, United States
| | - Ashima Thusu
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Department of Bioengineering, University of Toledo, Toledo, OH 43604, United States
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, United States; Center for Diabetes and Endocrine Research, Toledo, OH 43614, United States.
| |
Collapse
|
3
|
Oliveira TE, Castro É, Belchior T, Andrade ML, Chaves-Filho AB, Peixoto AS, Moreno MF, Ortiz-Silva M, Moreira RJ, Inague A, Yoshinaga MY, Miyamoto S, Moustaid-Moussa N, Festuccia WT. Fish Oil Protects Wild Type and Uncoupling Protein 1-Deficient Mice from Obesity and Glucose Intolerance by Increasing Energy Expenditure. Mol Nutr Food Res 2019; 63:e1800813. [PMID: 30632684 DOI: 10.1002/mnfr.201800813] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/21/2018] [Indexed: 12/22/2022]
Abstract
SCOPE The mechanisms and involvement of uncoupling protein 1 (UCP1) in the protection from obesity and insulin resistance induced by intake of a high-fat diet rich in omega-3 (n-3) fatty acids are investigated. METHODS AND RESULTS C57BL/6J mice are fed either a low-fat (control group) or one of two isocaloric high-fat diets containing either lard (HFD) or fish oil (HFN3) as fat source and evaluated for body weight, adiposity, energy expenditure, glucose homeostasis, and inguinal white and interscapular brown adipose tissue (iWAT and iBAT, respectively) gene expression, lipidome, and mitochondrial bioenergetics. HFN3 intake protected from obesity, glucose and insulin intolerances, and hyperinsulinemia. This is associated with increased energy expenditure, iWAT UCP1 expression, and incorporation of n-3 eicosapentaenoic and docosahexaenoic fatty acids in iWAT and iBAT triacylglycerol. Importantly, HFN3 is equally effective in reducing body weight gain, adiposity, and glucose intolerance and increasing energy expenditure in wild-type and UCP1-deficient mice without recruiting other thermogenic processes in iWAT and iBAT, such as mitochondrial uncoupling and SERCA-mediated calcium and creatine-driven substrate cyclings. CONCLUSION Intake of a high-fat diet rich in omega-3 fatty acids protects both wild-type and UCP1-deficient mice from obesity and insulin resistance by increasing energy expenditure through unknown mechanisms.
Collapse
Affiliation(s)
- Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Thiago Belchior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Maynara L Andrade
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Adriano B Chaves-Filho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Albert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Mayara F Moreno
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Milene Ortiz-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Rafael J Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Alex Inague
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Marcos Y Yoshinaga
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Sayuri Miyamoto
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, 79409, TX, USA
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
4
|
Affiliation(s)
- Alexandre A Steiner
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1730 São Paulo, SP 05508-000, Brazil
| |
Collapse
|
5
|
Coimbra CC, Wanner SP, Machado-Moreira CA. Brazil: What country is this? Temperature (Austin) 2016; 3:11-4. [PMID: 27227087 PMCID: PMC4861198 DOI: 10.1080/23328940.2016.1150698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 11/27/2022] Open
Affiliation(s)
- Cândido Celso Coimbra
- Laboratory of Endocrinology and Metabolism, Institute of Biological Sciences, Universidade Federal de Minas Gerais., Av. Antônio Carlos , 6627. Pampulha. Belo Horizonte (MG) , Brazil . Zip code: 31270-901
| | - Samuel Penna Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais , Belo Horizonte (MG), Brazil
| | | |
Collapse
|