1
|
Abdel-Megeed RM. Biogenic nanoparticles as a promising drug delivery system. Toxicol Rep 2025; 14:101887. [PMID: 39867515 PMCID: PMC11762933 DOI: 10.1016/j.toxrep.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Nanotechnology has significantly influenced the worldwide medical services sector during the past few decades. Biological collection approaches for nanoparticles are economical, non-toxic, and ecologically benign. This review provides up-to-date information on nanoparticle production processes and biological sources, including algae, plants, bacteria, fungus, actinomycetes, and yeast. The biological technique of generating nanoparticles has advantages over chemical, physical, and biological methods, including low-toxicity and friendly to the environment, thereby providing a viable option for therapeutic applications as s promising drug delivery system. In addition to aiding researchers, the bio-mediated, obtained nanoparticles also modify particles to promote both health and safety. We also looked at the important medicinal uses of nanoparticles, including their antifungal, antimicrobial, antiviral, antidiabetic, anti-inflammatory, and antioxidant properties. The current study highlights the findings of recent research in this field and discusses various methods proposed to describe the bio-mediated acquisition of novel nanoparticles.. The production of nanoparticles via biogenic sources possess various benefits, such as low cost, bioavailability, and environmental friendliness. In addition to the determination of the bioactive chemicals mediated by nanoparticle as well as the examination of the biochemical pathways and enzyme reactions. The major focus of this review is highlighting on the essential role of biogenic nanoparticles as promising drug delivery system.
Collapse
|
2
|
Hou T, Sana SS, Jeyavani J, Li H, Boya VKN, Vaseeharan B, Kim SC, Zhang Z. Biomedical applications of chitosan-coated phytogenic silver nanoparticles: An alternative drug to foodborne pathogens. Int J Biol Macromol 2024; 280:135590. [PMID: 39276903 DOI: 10.1016/j.ijbiomac.2024.135590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/05/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) was performed using crude rosmarinic acid (RA) from plants as a reducing agent and coated with chitosan biopolymer. The prepared particles were characterized by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). A surface plasmon resonance peak at 430 nm indicates the emergence of AgNPs. XRD showed that the AgNPs were crystalline with an average crystalline size of 30 nm and TEM studies revelad that AgNPs were spherical without aggregation. The prepared CS-AgNPs exhibited good bactericidal properties against foodborne pathogens, such as Escherichia coli, Pseudomonas aeruginosa, and Vibrio parahaemolyticus. In particular, 100 μg/mL CS-AgNPs inhibited the growth of the selected bacteria and controlled their biofilm-forming ability. Band-aid cloth assay confirmed that the CS-AgNPs could be used in the medical field to prevent bacterial infections. The prepared CS-AgNPs increased the survival rate of Artemia species and exhibited antioxidant activity in conjunction with bactericidal properties against selected foodborne pathogens.
Collapse
Affiliation(s)
- Tianyu Hou
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jeyaraj Jeyavani
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Huizhen Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Vijaya Kumar Naidu Boya
- Department of Material Science and Nanotechnology, Yogi Vemana University, Kadapa 516005, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi 630004, Tamil Nadu, India.
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Zhijun Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China.
| |
Collapse
|
3
|
Ding X, Lin H, Zhou J, Lin Z, Huang Y, Chen G, Zhang Y, Lv J, Chen J, Liu G, Xu X, Xu D. Silver Nanocomposites with Enhanced Shelf-Life for Fruit and Vegetable Preservation: Mechanisms, Advances, and Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1244. [PMID: 39120349 PMCID: PMC11314483 DOI: 10.3390/nano14151244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
Reducing fruit and vegetable waste and maintaining quality has become challenging for everyone. Nanotechnology is a new and intriguing technology that is currently being implemented in fruit and vegetable preservation. Silver nanomaterials provide superior antibacterial qualities, biodegradability, and biocompatibility, which expands their potential applications in fruit and vegetable preservation. Silver nanomaterials include silver nanocomposites and Ag-MOF, of which silver nanocomposites are mainly composed of silver nanoparticles. Notably, not all kinds of silver nanoparticles utilized in the preservation of fruits and vegetables are thoroughly described. Therefore, the synthesis, mechanism of action, and advancements in research on silver nanocomposites for fruit and vegetable preservation were discussed in this study.
Collapse
Affiliation(s)
- Xin Ding
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Huan Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Jie Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Zhihao Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Yanyan Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Ge Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Yanguo Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Jun Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Jing Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China
| | - Xiaomin Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China
| |
Collapse
|
4
|
Abduvalov A, Kaikanov M, Tikhonov A. Solid-State Dewetting of Thin Silver Films into Spherical Nanoparticles under High-Current Pulsed Ion Beam Irradiation. ACS OMEGA 2023; 8:31954-31961. [PMID: 37692229 PMCID: PMC10483687 DOI: 10.1021/acsomega.3c03743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023]
Abstract
Noble metal nanoparticles (NPs) are important in many applications, including light trapping of photovoltaic cells, photoelectrochemical applications, etc. The present study reports the formation of silver NPs from the as-deposited silver coatings on fused silica substrates by solid-state dewetting induced by high-current intense pulsed ion beam (IPIB) irradiation. We described the effects of IPIB irradiation with different ion beam current densities and numbers of pulses on NP morphology and compared the results with conventional rapid thermal annealing (RTA). IPIB irradiation enables superfast heating (higher than 109 K/s) and cooling, providing a superfast annealing solid-state dewetting mechanism. Our results demonstrate that the sphericity of silver NPs is enhanced after IPIB irradiation relative to RTA-annealed silver NPs. Our results suggest further possibilities of shape and sphericity control of silver NPs with very fast heating/cooling annealing rates.
Collapse
Affiliation(s)
- Alshyn Abduvalov
- Physics Department, Nazarbayev University, 53 Kabanbay Batyr St., 010000 Astana, Kazakhstan
| | - Marat Kaikanov
- Physics Department, Nazarbayev University, 53 Kabanbay Batyr St., 010000 Astana, Kazakhstan
| | - Alexander Tikhonov
- Physics Department, Nazarbayev University, 53 Kabanbay Batyr St., 010000 Astana, Kazakhstan
| |
Collapse
|
5
|
Ahmad W, Jaiswal KK, Bajetha A, Naresh N, Verma R, Banerjee I. Microwave-irradiated bio-fabrication of TiO 2 nanoparticles stabilized by phytoconstituents from Phyllanthus emblica seeds and its antibacterial activities. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2184385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Waseem Ahmad
- Department of Chemistry, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, India
| | - Krishna Kumar Jaiswal
- Bioprocess Engineering Laboratory, Department of Green Energy Technology, Pondicherry University, Puducherry, India
| | - Asha Bajetha
- Department of Chemistry, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Nibagani Naresh
- Department of Physics, Pondicherry University, Puducherry, India
| | - Ravikant Verma
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, India
| | - Ishita Banerjee
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
6
|
Beus M, Pongrac IM, Capjak I, Ilić K, Vrček E, Ćurlin M, Milić M, Čermak AMM, Pavičić I. Particle surface functionalization affects mechanism of endocytosis and adverse effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicol 2023; 43:416-430. [PMID: 36065485 DOI: 10.1002/jat.4392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/11/2022]
Abstract
Silver nanoparticles (AgNPs) show a plethora of possible applications due to their antimicrobial properties. Different coatings of AgNPs are used in order to increase stability, availability, and activity. However, the question about the toxicity after prolonged exposure still remains. Here, we show that different surface coatings affect in vitro toxicity and internalization of AgNPs in porcine kidney (PK15) cells. AgNPs coated with cetyltrimethylammonium bromide (CTAB), poly(vinylpyrrolidone) (PVP), sodium bis(2-ethylhexyl)-sulfosuccinate (AOT), poly-L-lysine (PLL), and bovine serum albumin (BSA) were toxic at the concentration of 10 mg Ag/L and higher. The toxicity increased in the following manner: PVP-AgNPs < CTAB-AgNPs < PLL-AgNPs < AOT-AgNPs < BSA-AgNPs. All types of AgNPs were internalized by the PK15 cells in a dose-dependent manner with greater internalization of AgNPs bearing positive surface charge. Transmission electron microscopy (TEM) experiments showed that AgNPs were located in the lysosomal compartments, while the co-treatment with known inhibitors of endocytosis pathways suggested macropinocytosis as the preferred internalization pathway. When inside the cell, all types of AgNPs induced the formation of reactive oxygen species while decreasing the concentration of the cell's endogenous antioxidant glutathione. The comet assay indicated possible genotoxicity of tested AgNPs starting at the concentration of 2 mg Ag/L or higher, depending on the surface functionalization. This study demonstrates the toxicity of AgNPs pointing to the importance of biosafety evaluation when developing novel AgNPs-containing materials.
Collapse
Affiliation(s)
- Maja Beus
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Igor M Pongrac
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivona Capjak
- Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | - Krunoslav Ilić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ena Vrček
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Marija Ćurlin
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
7
|
Sarwer Q, Amjad MS, Mehmood A, Binish Z, Mustafa G, Farooq A, Qaseem MF, Abasi F, Pérez de la Lastra JM. Green Synthesis and Characterization of Silver Nanoparticles Using Myrsine africana Leaf Extract for Their Antibacterial, Antioxidant and Phytotoxic Activities. Molecules 2022; 27:7612. [PMID: 36364438 PMCID: PMC9656711 DOI: 10.3390/molecules27217612] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 10/05/2023] Open
Abstract
Nanotechnology is the study and control of materials at length scales between 1 and 100 nanometers (nm), where incredible phenomena enable new applications. It affects all aspects of human life and is the most active research topic in modern materials science. Among the various metallic nanoparticles used in biomedical applications, silver nanoparticles (AgNPs) are among the most important and interesting nanomaterials. The aim of this study was to synthesize AgNPs from the leaf extract of Myrsine africana to investigate their antibacterial, antioxidant, and phytotoxic activities. When the leaf extract was treated with AgNO3, the color of the reaction solution changed from light brown to dark brown, indicating the formation of AgNPs. The UV-visible spectrum showed an absorption peak at 438 nm, confirming the synthesis of AgNPs. Scanning electron microscopy (SEM) showed that the AgNPs were spherical and oval with an average size of 28.32 nm. Fourier transform infrared spectroscopy confirms the presence of bio-compound functional groups on the surface of the AgNPs. The crystalline nature of the AgNPs was confirmed by XRD pattern. These biosynthesized AgNPs showed pronounced antibacterial activity against Gram-positive and Gram-negative bacteria, with higher inhibitory activity against Escherichia coli. At 40 µg/mL AgNPs, the highest antioxidant activity was obtained, which was 57.7% and an IC50 value of 77.56 µg/mL. A significant positive effect was observed on all morphological parameters when AgNPs were applied to wheat seedlings under constant external conditions at the different concentrations. The present study provides a cost-effective and environmentally friendly method for the synthesis of AgNPs, which can be effectively used in the field of therapeutics, as antimicrobial and diagnostic agents, and as plant growth promoters.
Collapse
Affiliation(s)
- Qudsia Sarwer
- Department of Botany, Women University of Azad Jammu & Kashmir, Bagh 12500, Pakistan
| | - Muhammad Shoaib Amjad
- Department of Botany, Women University of Azad Jammu & Kashmir, Bagh 12500, Pakistan
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ansar Mehmood
- Department of Botany, University of Poonch, Rawlakot 12350, Pakistan
| | - Zakia Binish
- Department of Botany, Women University of Azad Jammu & Kashmir, Bagh 12500, Pakistan
| | - Ghazala Mustafa
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Atikah Farooq
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mirza Faisal Qaseem
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station 123 Huntington Street, New Haven, CT 06511, USA
| | - Fozia Abasi
- Department of Botany, PMAS-University of Arid Agriculture, Rawalpindi 44000, Paskistan
| | - José Manuel Pérez de la Lastra
- Biotecnología de Macromoléculas, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
| |
Collapse
|
8
|
Hossain SI, Sportelli MC, Picca RA, Gentile L, Palazzo G, Ditaranto N, Cioffi N. Green Synthesis and Characterization of Antimicrobial Synergistic AgCl/BAC Nanocolloids. ACS APPLIED BIO MATERIALS 2022; 5:3230-3240. [PMID: 35738566 PMCID: PMC9297327 DOI: 10.1021/acsabm.2c00207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All over the world, one of the major challenges is the green synthesis of potential materials against antimicrobial resistance and viruses. This study demonstrates a simple method like chemistry lab titration to synthesize green, facile, scalable, reproducible, and stable synergistic silver chloride/benzyldimethylhexadecyl-ammonium chloride (AgCl/BAC) colloidal Nanoantimicrobials (NAMs). Nanocolloidal dispersions of AgCl in an aqueous medium are prepared by using silver nitrate (AgNO3) as precursor and BAC as both sources of chloride and stabilizer, holding an asymmetric molecular structure. The synthetic approach is scalable and green. Both the morphology and stability of AgCl/BAC nanocolloids (NCs) were investigated as a function of different molar fractions of the reagents. AgCl/BAC NCs were characterized by transmission electron microscopy (TEM) and X-ray photoelectron and UV-vis spectroscopies. Zeta potential measurements revealed increasing positive potential values at every stage of the synthesis. Size distribution and hydrodynamic diameter of the particles were measured by dynamic light scattering (DLS), which predicted the formation of BAC layered structures associated with the AgCl nanoparticles (NPs). Small-angle X-ray scattering (SAXS) experiments verify the thickness of the BAC bilayer around AgCl. The produced AgCl/BAC NCs probably have synergistic antimicrobial properties from the AgCl core and the biocide BAC shell. AgCl/BAC NCs stability over months was investigated. The experimental evidence supports the morphological stability of the AgCl/BAC NCs, while higher positive zeta potential values anticipate a long-term antimicrobial effect: a higher surface charge causes NPs to be potentially more lethal to bacteria. AgCl/BAC antimicrobial aqueous colloidal suspensions will be used as additives for the industrial production of antimicrobial coatings.
Collapse
Affiliation(s)
- Syed Imdadul Hossain
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
- CSGI
(Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Maria Chiara Sportelli
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
| | - Rosaria Anna Picca
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
- CSGI
(Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Luigi Gentile
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
- CSGI
(Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Gerardo Palazzo
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
- CSGI
(Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Nicoletta Ditaranto
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
- CSGI
(Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Nicola Cioffi
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
- CSGI
(Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
9
|
Rani P, Ahmed B, Singh J, Kaur J, Rawat M, Kaur N, Matharu AS, AlKahtani M, Alhomaidi EA, Lee J. Silver nanostructures prepared via novel green approach as an effective platform for biological and environmental applications. Saudi J Biol Sci 2022; 29:103296. [PMID: 35574283 PMCID: PMC9092993 DOI: 10.1016/j.sjbs.2022.103296] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/14/2022] [Accepted: 04/17/2022] [Indexed: 02/07/2023] Open
Abstract
Silver nanoparticles play a significant role in biomedical sciences due to their unique properties allowing for their use as an effective sensing and remediation platform Herein, the green synthesis of silver nanostructures (Ag NSs), prepared via aqueous extract of waste Brassica oleracea leaves in the presence of silver nitrate solution (10-4 M), is reported. The Ag NSs are fully characterized and their efficacy with respect to 4-nitrophenol reduction, glucose sensing, and microbes is determined. Visually, the color of silver nitrate containing solution altered from colorless to yellowish, then reddish grey, confirming the formation of Ag NSs. HRTEM and SEAD studies revealed the Ag NSs to have different morphologies (triangular, rod-shaped, hexagonal, etc., within a size range of 20-40 nm) with face-centered cubic (fcc) crystal structure. The Ag NSs possess high efficacy for nitrophenol reduction (<11 min and degradation efficiency of 98.2%), glucose sensing (LOD: 5.83 µM), and antimicrobial activity (E. coli and B. subtilis with clearance zones of 18.3 and 14 mm, respectively). Thus, the current study alludes towards the development of a cost-effective, sustainable, and efficient three-in-one platform for biomedical and environmental applications.
Collapse
Affiliation(s)
- Pooja Rani
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Republic of Korea
| | - Jagpreet Singh
- Department of Chemical Engineering, Chandigarh University, Gharuan, Mohali 140413, India
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Jasmeen Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Mohit Rawat
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Navjot Kaur
- Rayat Institute of Pharmacy, Railmajra, SBS Nagar, Punjab 144533, India
| | - Avtar Singh Matharu
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Muneera AlKahtani
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Eman A.H. Alhomaidi
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Republic of Korea
| |
Collapse
|
10
|
Parmar S, Kaur H, Singh J, Matharu AS, Ramakrishna S, Bechelany M. Recent Advances in Green Synthesis of Ag NPs for Extenuating Antimicrobial Resistance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1115. [PMID: 35407234 PMCID: PMC9000675 DOI: 10.3390/nano12071115] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Combating antimicrobial resistance (AMR) is an on-going global grand challenge, as recognized by several UN Sustainable Development Goals. Silver nanoparticles (Ag NPs) are well-known for their efficacy against antimicrobial resistance, and a plethora of green synthesis methodologies now exist in the literature. Herein, this review evaluates recent advances in biological approaches for Ag NPs, and their antimicrobial potential of Ag NPs with mechanisms of action are explored deeply. Moreover, short and long-term potential toxic effects of Ag NPs on animals, the environment, and human health are briefly discussed. Finally, we also provide a summary of the current state of the research and future challenges on a biologically mediated Ag-nanostructures-based effective platform for alleviating AMR.
Collapse
Affiliation(s)
- Simerjeet Parmar
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, India; (S.P.); (H.K.)
| | - Harwinder Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, India; (S.P.); (H.K.)
| | - Jagpreet Singh
- Department of Chemical Engineering, Chandigarh University, Gharuan, Mohali 140413, India
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Avtar Singh Matharu
- Department of Chemistry, Green Chemistry Centre of Excellence, University of York, York YO10 5DD, UK;
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Centre for Nanotechnology & Sustainability, National University of Singapore, Singapore 117575, Singapore;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, ENSCM, CNRS, 34000 Montpellier, France
| |
Collapse
|
11
|
Burketová L, Martinec J, Siegel J, Macůrková A, Maryška L, Valentová O. Noble metal nanoparticles in agriculture: impacts on plants, associated microorganisms, and biotechnological practices. Biotechnol Adv 2022; 58:107929. [DOI: 10.1016/j.biotechadv.2022.107929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
|
12
|
Salem SS, Ali OM, Reyad AM, Abd-Elsalam KA, Hashem AH. Pseudomonas indica-Mediated Silver Nanoparticles: Antifungal and Antioxidant Biogenic Tool for Suppressing Mucormycosis Fungi. J Fungi (Basel) 2022; 8:jof8020126. [PMID: 35205879 PMCID: PMC8874487 DOI: 10.3390/jof8020126] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Mucormycosis is considered one of the most dangerous invasive fungal diseases. In this study, a facile, green and eco-friendly method was used to biosynthesize silver nanoparticles (AgNPs) using Pseudomonas indica S. Azhar, to combat fungi causing mucormycosis. The biosynthesis of AgNPs was validated by a progressive shift in the color of P. indica filtrate from colorless to brown, as well as the identification of a distinctive absorption peak at 420 nm using UV-vis spectroscopy. Fourier-transform infrared spectroscopy (FTIR) results indicated the existence of bioactive chemicals that are responsible for AgNP production. AgNPs with particle sizes ranging from 2.4 to 53.5 nm were discovered using transmission electron microscopy (TEM). Pattern peaks corresponding to the 111, 200, 220, 311, and 222 planes, which corresponded to face-centered cubic forms of metallic silver, were also discovered using X-ray diffraction (XRD). Moreover, antifungal activity measurements of biosynthesized AgNPs against Rhizopus Microsporus, Mucor racemosus, and Syncephalastrum racemosum were carried out. Results of antifungal activity analysis revealed that the biosynthesized AgNPs exhibited outstanding antifungal activity against all tested fungi at a concentration of 400 µg/mL, where minimum inhibitory concentrations (MIC) were 50, 50, and 100 µg/mL toward R. microsporus, S. racemosum, and M. racemosus respectively. In addition, the biosynthesized AgNPs revealed antioxidant activity, where IC50 was 31 µg/mL when compared to ascorbic acid (0.79 µg/mL). Furthermore, the biosynthesized AgNPs showed no cytotoxicity on the Vero normal cell line. In conclusion, the biosynthesized AgNPs in this study can be used as effective antifungals with safe use, particularly for fungi causing mucormycosis.
Collapse
Affiliation(s)
- Salem S. Salem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Omar M. Ali
- Department of Chemistry, Turabah University College, Turabah Branch, Taif University, Taif 21944, Saudi Arabia
- Correspondence: (O.M.A.); (K.A.A.-E.); (A.H.H.)
| | - Ahmed M. Reyad
- Biology Department, Faculty of Science, Jazan University, Jazan 82817, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Centre, Giza 12619, Egypt
- Correspondence: (O.M.A.); (K.A.A.-E.); (A.H.H.)
| | - Amr H. Hashem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
- Correspondence: (O.M.A.); (K.A.A.-E.); (A.H.H.)
| |
Collapse
|
13
|
Wang Y, Wei S. Green Fabrication of Bioactive Silver Nanoparticles Using Mentha pulegium Extract under Alkaline: An Enhanced Anticancer Activity. ACS OMEGA 2022; 7:1494-1504. [PMID: 35036812 PMCID: PMC8756582 DOI: 10.1021/acsomega.1c06267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Fabrication of silver nanoparticles (AgNPs) using Chinese herbal medicine is popular as the bioactive components included in them would generate potential synergistic effect with the metal nanoparticles. The leaf of Mentha pulegium, whose extract contains a range of phytochemicals and exhibits a wide spectrum of bioactivities, is used as Chinese herbal medicine after drying naturally. Thus, the green synthesis of AgNPs using Mentha pulegium has aroused interests from analysts. However, the biosynthesis of AgNPs under alkaline conditions and the biological activities remain elusive, where alkaline conditions may influence the physicochemical properties and the biological activities of biosynthesized AgNPs. In this study, we were stimulated to fabricate bioactive AgNPs using Mentha pulegium extract under alkaline conditions, accompanied by a systematic evaluation on the effect of biosynthesis parameters on the formation, average size, and polydispersity of AgNPs. Our results showed that alkaline conditions could accelerate the formation of AgNPs with a small average size but at a disadvantage to the polydispersity. Additionally, the as-prepared AgNPs had a hexagonal structure and spherical shape with an average size of 15.7 ± 0.1 nm, existing in the monodispersed form and revealing a high degree of stability. The AgNPs exhibited potent antioxidant and significant inhibitory activity for both bacterial and cancer cell lines. The MIC values of AgNPs for Staphylococcus aureus and Escherichia coli were both 50.0 μg·mL-1, and the IC50 values for HCT116, HepG2, and HeLa cells were 9.0, 14.5, and 31.5 μg·mL-1, respectively. The AgNPs biosynthesized using M. pulegium under alkaline conditions, which had a smaller size and more surface loads, are entirely different with those synthesized under acidic conditions, and the anticancer activity increased significantly. The internalization of AgNPs inside these five cells displayed a variant trend with variable AgNPs concentrations, suggesting the different mechanism of cell death. For two pathogens, HCT116 and HepG2 cancer cell lines, both cell wall and intracellular damage may be responsible for the cell death. However, for Hela cell line the cell death may be rooted in oxidative stress or intracellular penetration. These results confirmed that the AgNPs biosynthesized from M. pulegium extract under alkaline conditions would act as better anticancer agents in biomedicine.
Collapse
Affiliation(s)
- Yinghui Wang
- College
of Science, Chang’an University, Xi’an 710064, China
| | - Simin Wei
- State
Key Laboratory of Research & Development of Characteristic Qin
Medicine Resources (Cultivation), Co-Construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
and Education Ministry, Shaanxi University
of Chinese Medicine, Xianyang 712083, China
| |
Collapse
|
14
|
Koyande AK, Chew KW, Manickam S, Chang JS, Show PL. Emerging algal nanotechnology for high-value compounds: A direction to future food production. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Sharmin E, Batubara AS, Tamboosi BA, Al Khozay EB, Alamoudi MK, Al Aidaroos OZ, Albenayan JA, Lamfon MY, Sindi AAH, Al-Madboly LA, Shoeib NA, Alam M. PVA nanocomposite hydrogel loaded with silver nanoparticles enriched Nigella sativa oil. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1963277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Eram Sharmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Afnan S. Batubara
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Elaf Bander Al Khozay
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maha Khalid Alamoudi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ohoud Zaki Al Aidaroos
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Jana Abdullaziz Albenayan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Majd Yousuf Lamfon
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Lamiaa A. Al-Madboly
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Nagwa A. Shoeib
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Manawwer Alam
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Bamal D, Singh A, Chaudhary G, Kumar M, Singh M, Rani N, Mundlia P, Sehrawat AR. Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review. NANOMATERIALS 2021; 11:nano11082086. [PMID: 34443916 PMCID: PMC8402060 DOI: 10.3390/nano11082086] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 02/06/2023]
Abstract
Rapid advances in nanotechnology have led to its emergence as a tool for the development of green synthesized noble metal nanoparticles, especially silver nanoparticles (AgNPs), for applications in diverse fields such as human health, the environment and industry. The importance of AgNPs is because of their unique physicochemical and antimicrobial properties, with a myriad of activities that are applicable in various fields, including the pharmaceutical industry. Countries with high biodiversity require the collection and transformation of information about biological assets into processes, associations, methods and tools that must be combined with the sustainable utilization of biological diversity. Therefore, this review paper discusses the applicable studies of the biosynthesis of AgNPs and their antimicrobial activities towards microorganisms in different areas viz. medicine and agriculture. The confirmed antiviral properties of AgNPs promote their applicability for SARS-CoV-2 treatment, based on assimilating the virus’ activities with those of similar viruses via in vivo studies. In this review, an insight into the cytotoxicity and safety issues of AgNPs, along with their future prospects, is also provided.
Collapse
Affiliation(s)
- Deepak Bamal
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Anoop Singh
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Gaurav Chaudhary
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Monu Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Manjeet Singh
- Department of Genetics and Plant Breeding, Oilseeds Section, CCS Haryana Agricultural University, Hisar 125004, India;
| | - Neelam Rani
- Department of Botany and Plant Physiology, CCS Haryana Agricultural University, Hisar 125004, India;
| | - Poonam Mundlia
- Department of Biochemistry, Punjab University, Chandigarh 160014, India;
| | - Anita R. Sehrawat
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
- Correspondence:
| |
Collapse
|
17
|
Tang J, Liu X, Ge Y, Wang F. Silver Nanoparticle-Anchored Human Hair Kerateine/PEO/PVA Nanofibers for Antibacterial Application and Cell Proliferation. Molecules 2021; 26:2783. [PMID: 34066875 PMCID: PMC8125921 DOI: 10.3390/molecules26092783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
The main core of wound treatment is cell growth and anti-infection. To accelerate the proliferation of fibroblasts in the wound and prevent wound infections, various strategies have been tried. It remains a challenge to obtain good cell proliferation and antibacterial effects. Here, human hair kerateine (HHK)/poly(ethylene oxide) (PEO)/poly(vinyl alcohol) (PVA) nanofibers were prepared using cysteine-rich HHK, and then, silver nanoparticles (AgNPs) were in situ anchored in the sulfur-containing amino acid residues of HHK. After the ultrasonic degradation test, HHK/PEO/PVA nanofibrous mats treated with 0.005-M silver nitrate were selected due to their relatively complete structures. It was observed by TEM-EDS that the sulfur-containing amino acids in HHK were the main anchor points of AgNPs. The results of FTIR, XRD and the thermal analysis suggested that the hydrogen bonds between PEO and PVA were broken by HHK and, further, by AgNPs. AgNPs could act as a catalyst to promote the thermal degradation reaction of PVA, PEO and HHK, which was beneficial for silver recycling and medical waste treatment. The antibacterial properties of AgNP-HHK/PEO/PVA nanofibers were examined by the disk diffusion method, and it was observed that they had potential antibacterial capability against Gram-positive bacteria, Gram-negative bacteria and fungi. In addition, HHK in the nanofibrous mats significantly improved the cell proliferation of NIH3T3 cells. These results illustrated that the AgNP-HHK/PEO/PVA nanofibrous mats exhibited excellent antibacterial activity and the ability to promote the proliferation of fibroblasts, reaching our target applications.
Collapse
Affiliation(s)
- Jiapeng Tang
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China; (J.T.); (X.L.)
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiwen Liu
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China; (J.T.); (X.L.)
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yan Ge
- School of Textile and Clothing, Nantong University, Nantong 226019, China
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong 226019, China
| | - Fangfang Wang
- College of Fine Arts and Design, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|