1
|
Minias P, Bateson ZW, Whittingham LA, Johnson JA, Oyler-McCance S, Dunn PO. Extensive shared polymorphism at non-MHC immune genes in recently diverged North American prairie grouse. Immunogenetics 2017; 70:195-204. [PMID: 28770305 PMCID: PMC5818594 DOI: 10.1007/s00251-017-1024-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/25/2017] [Indexed: 12/23/2022]
Abstract
Gene polymorphisms shared between recently diverged species are thought to be widespread and most commonly reflect introgression from hybridization or retention of ancestral polymorphism through incomplete lineage sorting. Shared genetic diversity resulting from incomplete lineage sorting is usually maintained for a relatively short period of time, but under strong balancing selection it may persist for millions of years beyond species divergence (balanced trans-species polymorphism), as in the case of the major histocompatibility complex (MHC) genes. However, balancing selection is much less likely to act on non-MHC immune genes. The aim of this study was to investigate the patterns of shared polymorphism and selection at non-MHC immune genes in five grouse species from Centrocercus and Tympanuchus genera. For this purpose, we genotyped five non-MHC immune genes that do not interact directly with pathogens, but are involved in signaling and regulate immune cell growth. In contrast to previous studies with MHC, we found no evidence for balancing selection or balanced trans-species polymorphism among the non-MHC immune genes. No haplotypes were shared between genera and in most cases more similar allelic variants sorted by genus. Between species within genera, however, we found extensive shared polymorphism, which was most likely attributable to introgression or incomplete lineage sorting following recent divergence and large ancestral effective population size (i.e., weak genetic drift). Our study suggests that North American prairie grouse may have attained relatively low degree of reciprocal monophyly at nuclear loci and reinforces the rarity of balancing selection in non-MHC immune genes.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.
| | - Zachary W Bateson
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Linda A Whittingham
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeff A Johnson
- Department of Biological Sciences, Institute of Applied Sciences, University of North Texas, Denton, TX, USA
| | | | - Peter O Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
2
|
Sun H. Deciphering alternative splicing and nonsense-mediated decay modulate expression in primary lymphoid tissues of birds infected with avian pathogenic E. coli (APEC). BMC Genet 2017; 18:21. [PMID: 28270101 PMCID: PMC5341183 DOI: 10.1186/s12863-017-0488-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/03/2017] [Indexed: 01/04/2023] Open
Abstract
Background Avian pathogenic E. coli (APEC) can lead to a loss in millions of dollars in poultry annually because of mortality and produce contamination. Studies have verified that many immune-related genes undergo changes in alternative splicing (AS), along with nonsense mediated decay (NMD), to regulate the immune system under different conditions. Therefore, the splicing profiles of primary lymphoid tissues with systemic APEC infection need to be comprehensively examined. Results Gene expression in RNAseq data were obtained for three different immune tissues (bone marrow, thymus, and bursa) from three phenotype birds (non-challenged, resistant, and susceptible birds) at two time points. Alternative 5′ splice sites and exon skipping/inclusion were identified as the major alternative splicing events in avian primary immune organs under systemic APEC infection. In this study, we detected hundreds of differentially-expressed-transcript-containing genes (DETs) between different phenotype birds at 5 days post-infection (dpi). DETs, PSAP and STT3A, with NMD have important functions under systemic APEC infection. DETs, CDC45, CDK1, RAG2, POLR1B, PSAP, and DNASE1L3, from the same transcription start sites (TSS) indicate that cell death, cell cycle, cellular function, and maintenance were predominant in host under systemic APEC. Conclusions With the use of RNAseq technology and bioinformatics tools, this study provides a portrait of the AS event and NMD in primary lymphoid tissues, which play critical roles in host homeostasis under systemic APEC infection. According to this study, AS plays a pivotal regulatory role in the immune response in chicken under systemic APEC infection via either NMD or alternative TSSs. This study elucidates the regulatory role of AS for the immune complex under systemic APEC infection. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0488-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
3
|
Muhsinin M, Ulupi N, Gunawan A, Wibawan IWT, Sumantri C. Association of NRAMP1 Polymorphisms with Immune Traits in
Indonesian Native Chickens. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ijps.2016.401.406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Supakorn C. Genetic Polymorphisms of ApoB2, TGFβ4, LITAF, TRAIL and IAP1 Genes and their Association with Growth Trait in Thai Native Chicken. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ajpsaj.2016.141.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Van Goor A, Ashwell CM, Persia ME, Rothschild MF, Schmidt CJ, Lamont SJ. Quantitative trait loci identified for blood chemistry components of an advanced intercross line of chickens under heat stress. BMC Genomics 2016; 17:287. [PMID: 27076351 PMCID: PMC4831167 DOI: 10.1186/s12864-016-2601-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/22/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Heat stress in poultry results in considerable economic losses and is a concern for both animal health and welfare. Physiological changes occur during periods of heat stress, including changes in blood chemistry components. A highly advanced intercross line, created from a broiler (heat susceptible) by Fayoumi (heat resistant) cross, was exposed to daily heat cycles for seven days starting at 22 days of age. Blood components measured pre-heat treatment and on the seventh day of heat treatment included pH, pCO2, pO2, base excess, HCO3, TCO2, K, Na, ionized Ca, hematocrit, hemoglobin, sO2, and glucose. A genome-wide association study (GWAS) for these traits and their calculated changes was conducted to identify quantitative trait loci (QTL) using a 600 K SNP panel. RESULTS There were significant increases in pH, base excess, HCO3, TCO2, ionized Ca, hematocrit, hemoglobin, and sO2, and significant decreases in pCO2 and glucose after 7 days of heat treatment. Heritabilities ranged from 0.01-0.21 for pre-heat measurements, 0.01-0.23 for measurements taken during heat, and 0.00-0.10 for the calculated change due to heat treatment. All blood components were highly correlated within measurement days, but not correlated between measurement days. The GWAS revealed 61 QTL for all traits, located on GGA (Gallus gallus chromosome) 1, 3, 6, 9, 10, 12-14, 17, 18, 21-28, and Z. A functional analysis of the genes in these QTL regions identified the Angiopoietin pathway as significant. The QTL that co-localized for three or more traits were on GGA10, 22, 26, 28, and Z and revealed candidate genes for birds' response to heat stress. CONCLUSIONS The results of this study contribute to our knowledge of levels and heritabilities of several blood components of chickens under thermoneutral and heat stress conditions. Most components responded to heat treatment. Mapped QTL may serve as markers for genomic selection to enhance heat tolerance in poultry. The Angiopoietin pathway is likely involved in the response to heat stress in chickens. Several candidate genes were identified, giving additional insight into potential mechanisms of physiologic response to high ambient temperatures.
Collapse
Affiliation(s)
| | | | - Michael E Persia
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Max F Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| |
Collapse
|
6
|
Van Goor A, Bolek KJ, Ashwell CM, Persia ME, Rothschild MF, Schmidt CJ, Lamont SJ. Identification of quantitative trait loci for body temperature, body weight, breast yield, and digestibility in an advanced intercross line of chickens under heat stress. Genet Sel Evol 2015; 47:96. [PMID: 26681307 PMCID: PMC4683778 DOI: 10.1186/s12711-015-0176-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/01/2015] [Indexed: 12/03/2022] Open
Abstract
Background Losses in poultry production due to heat stress have considerable negative economic consequences. Previous studies in poultry have elucidated a genetic influence on response to heat. Using a unique chicken genetic resource, we identified genomic regions associated with body temperature (BT), body weight (BW), breast yield, and digestibility measured during heat stress. Identifying genes associated with a favorable response during high ambient temperature can facilitate genetic selection of heat-resilient chickens. Methods Generations F18 and F19 of a broiler (heat-susceptible) × Fayoumi (heat-resistant) advanced intercross line (AIL) were used to fine-map quantitative trait loci (QTL). Six hundred and thirty-one birds were exposed to daily heat cycles from 22 to 28 days of age, and phenotypes were measured before heat treatment, on the 1st day and after 1 week of heat treatment. BT was measured at these three phases and BW at pre-heat treatment and after 1 week of heat treatment. Breast muscle yield was calculated as the percentage of BW at day 28. Ileal feed digestibility was assayed from digesta collected from the ileum at day 28. Four hundred and sixty-eight AIL were genotyped using the 600 K Affymetrix chicken SNP (single nucleotide polymorphism) array. Trait heritabilities were estimated using an animal model. A genome-wide association study (GWAS) for these traits and changes in BT and BW was conducted using Bayesian analyses. Candidate genes were identified within 200-kb regions around SNPs with significant association signals. Results Heritabilities were low to moderate (0.03 to 0.35). We identified QTL for BT on Gallus gallus chromosome (GGA)14, 15, 26, and 27; BW on GGA1 to 8, 10, 14, and 21; dry matter digestibility on GGA19, 20 and 21; and QTL of very large effect for breast muscle yield on GGA1, 15, and 22 with a single 1-Mb window on GGA1 explaining more than 15 % of the genetic variation. Conclusions This is the first study to estimate heritabilities and perform GWAS using this AIL for traits measured during heat stress. Significant QTL as well as low to moderate heritabilities were found for each trait, and these QTL may facilitate selection for improved animal performance in hot climatic conditions.
Collapse
Affiliation(s)
| | - Kevin J Bolek
- Department of Animal Science, University of California, Davis, CA, USA.
| | - Chris M Ashwell
- Department Poultry Science, North Carolina State University, Raleigh, NC, USA.
| | - Mike E Persia
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Max F Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA.
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| |
Collapse
|
7
|
Tohidi R, Idris I, Malar Panandam J, Hair Bejo M. The effects of polymorphisms in 7 candidate genes on resistance to Salmonella Enteritidis in native chickens. Poult Sci 2013; 92:900-9. [DOI: 10.3382/ps.2012-02797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Cheng HH, Kaiser P, Lamont SJ. Integrated Genomic Approaches to Enhance Genetic Resistance in Chickens. Annu Rev Anim Biosci 2013; 1:239-60. [DOI: 10.1146/annurev-animal-031412-103701] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hans H. Cheng
- Avian Disease and Oncology Laboratory, USDA, ARS, East Lansing, Michigan 48823;
| | - Pete Kaiser
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom;
| | - Susan J. Lamont
- Department of Animal Science, Iowa State University, Ames, Iowa 50011;
| |
Collapse
|
9
|
Bollmer JL, Ruder EA, Johnson JA, Eimes JA, Dunn PO. Drift and selection influence geographic variation at immune loci of prairie-chickens. Mol Ecol 2011; 20:4695-706. [PMID: 22008237 DOI: 10.1111/j.1365-294x.2011.05319.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previous studies of immunity in wild populations have focused primarily on genes of the major histocompatibility complex (MHC); however, studies of model species have identified additional immune-related genes that also affect fitness. In this study, we sequenced five non-MHC immune genes in six greater prairie-chicken (Tympanuchus cupido) populations that have experienced varying degrees of genetic drift as a consequence of population bottlenecks and fragmentation. We compared patterns of geographic variation at the immune genes with six neutral microsatellite markers to investigate the relative effects of selection and genetic drift. Global F(ST) outlier tests identified positive selection on just one of five immune genes (IAP-1) in one population. In contrast, at other immune genes, standardized G'(ST) values were lower than those at microsatellites for a majority of pairwise population comparisons, consistent with balancing selection or with species-wide positive or purifying selection resulting in similar haplotype frequencies across populations. The effects of genetic drift were also evident as summary statistics (e.g., Tajima's D) did not differ from neutrality for the majority of cases, and immune gene diversity (number of haplotypes per gene) was correlated positively with population size. In summary, we found that both genetic drift and selection shaped variation at the five immune genes, and the strength and type of selection varied among genes. Our results caution that neutral forces, such as drift, can make it difficult to detect current selection on genes.
Collapse
Affiliation(s)
- Jennifer L Bollmer
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA.
| | | | | | | | | |
Collapse
|
10
|
Hong YH, Kim ES, Lillehoj HS, Lillehoj EP, Song KD. Association of resistance to avian coccidiosis with single nucleotide polymorphisms in the zyxin gene. Poult Sci 2009; 88:511-8. [PMID: 19211519 DOI: 10.3382/ps.2008-00344] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Our previous genetic studies demonstrated that resistance to avian coccidiosis is linked with microsatellite markers LEI0071 and LEI0101 on chromosome 1. In this study, the associations between parameters of resistance to coccidiosis and single nucleotide polymorphisms (SNP) in 3 candidate genes located between LEI0071 and LEI0101 [zyxin, CD4, and tumor necrosis factor receptor super family 1A (TNFRSF1A)] were determined. The SNP were genotyped in 24 F(1) generation and 290 F(2) generation animals. No SNP were identified in the TNFRSF1A gene, whereas 10 were located in the zyxin gene and 4 in the CD4 gene. At various times following experimental infection of the F(2) generation with Eimeria maxima, BW, fecal oocyst shedding, and plasma levels of carotenoid, nitrite plus nitrate (NO(2)(-) + NO(3)(-)), and interferon-gamma (IFN-gamma) were measured as parameters of resistance. Single marker and haplotype-based tests were applied to determine the associations between the 14 SNP and the parameters of coccidiosis resistance. None of the CD4 SNP were correlated with disease resistance. However, by single marker association, several of the zyxin SNP were significantly associated with carotenoid or NO(2)(-) + NO(3)(-) concentrations. These were the SNP at nucleotide 149 associated with carotenoid at d 3 postinfection (PI), nucleotide 187 with carotenoid at d 6 and 9 PI, and nucleotide 159 with carotenoid between d 3 and 9 PI. In addition, the zyxin SNP at nucleotide 191 was significantly associated with increased levels of NO(2)(-) + NO(3)(-) at d 3 PI. By haplotype association, the zyxin SNP also were found to be highly associated with NO(2)(-) + NO(3)(-) at d 3 PI and increased IFN-gamma at d 6 PI. These results suggest that zyxin is a candidate gene potentially associated with increased resistance to experimental avian coccidiosis.
Collapse
Affiliation(s)
- Y H Hong
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, USDA, Beltsville, MD 20705, USA.
| | | | | | | | | |
Collapse
|
11
|
Hu X, Gao Y, Feng C, Liu Q, Wang X, Du Z, Wang Q, Li N. Advanced technologies for genomic analysis in farm animals and its application for QTL mapping. Genetica 2008; 136:371-86. [DOI: 10.1007/s10709-008-9338-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 11/19/2008] [Indexed: 12/25/2022]
|
12
|
Cheeseman JH, Levy NA, Kaiser P, Lillehoj HS, Lamont SJ. Salmonella Enteritidis–Induced Alteration of Inflammatory CXCL Chemokine Messenger-RNA Expression and Histologic Changes in the Ceca of Infected Chicks. Avian Dis 2008; 52:229-34. [DOI: 10.1637/8156-102307-reg.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Cheeseman JH, Kaiser MG, Ciraci C, Kaiser P, Lamont SJ. Breed effect on early cytokine mRNA expression in spleen and cecum of chickens with and without Salmonella enteritidis infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:52-60. [PMID: 16762413 DOI: 10.1016/j.dci.2006.04.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 04/03/2006] [Accepted: 04/06/2006] [Indexed: 05/10/2023]
Abstract
We examined mRNA expression of 11 genes: BAK, Bcl-x, Interferon [IFN]-gamma, Interleukin [IL]-1beta, IL-6, IL-10, IL-12alpha, IL-12beta, IL-18, CXCLi2 [IL-8/CAF], and a MIP family chemokine, CCLi2, in the spleen and cecum of day-old chicks after oral inoculation with Salmonella enteritidis (SE) or medium. Three distinct chicken breeds (broiler, Fayoumi, and Leghorn) were evaluated for mRNA expression levels at 2 and 18h post-inoculation using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). SE exposure significantly increased splenic IL-18 and IFN-gamma expression. Breed effect was significant (P<0.05) for CXCLi2, IL-10, IL-12alpha, and CCLi2 mRNA expression in the spleen, and for IL-12alpha, IL-12beta, IL-18, and CCLi2 mRNA expression in the cecum. Generally, mRNA expression levels were higher in the spleen, and lower in the cecum, of Leghorns versus broilers. These results support a role for breed genetics influencing cytokine mRNA expression in young chickens and may potentially explain some generalized immune response differences between breeds.
Collapse
Affiliation(s)
- Jennifer H Cheeseman
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA 50011-3150, USA
| | | | | | | | | |
Collapse
|
14
|
Ye X, Avendano S, Dekkers JCM, Lamont SJ. Association of Twelve Immune-Related Genes with Performance of Three Broiler Lines in Two Different Hygiene Environments. Poult Sci 2006; 85:1555-69. [PMID: 16977841 DOI: 10.1093/ps/85.9.1555] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Elite populations of farm animals under genetic selection are often maintained in high hygiene conditions, yet the commercial populations may be raised in, and are expected to perform well in, environments of varied hygiene levels. This presents special challenges to genetically improve those traits for which genotype by environment interactions are important. Twelve immune-related genes were studied for associations with general mortality and other performance traits in 3 elite commercial broiler chicken lines raised in high and low hygiene environments. The genes were toll-like receptor 4, MD-2 (accessory' protein of TLR4), interferon-gamma, transforming growth factor-beta3, inducible nitric oxide synthase, macrophage migration inhibitory factor, interleukin-2, caspase-1, inhibitor of apoptosis protein-1, tumor necrosis factor-related apoptosis-inducing ligand, chicken B-cell marker, and bone morphogenetic protein-7. From a total of 56 identified single-nucleotide polymorphisms (SNP) in 12 genes, 14 SNP that had moderate allelic frequencies in at least 2 of the 3 lines were typed in about 100 progeny-tested sires from each of 3 elite commercial broiler chicken lines using restriction fragment length polymorphism techniques and then used in association analysis. The traits measured on the progeny (total progeny = 145,467) were: mortality from hatching to 14 d and from 14 to 40 d of age, BW at 7 and 40 d of age, feed conversion, ultrasound breast depth, percentage of breast, eviscerated carcass weight, twisted legs or evident tibial dyschondroplasia, x-ray-inspection-based subclinical or incipient development of tibial dyschondroplasia, curly or crooked toes or bowed legs, oxygen content of blood, and female's antibody titer to infectious bursal disease virus at 27 wk. Association analyses were conducted with allele and haplotype substitution effect models using progeny mean data adjusted for fixed and mate effects as sire trait records. Ten of the 12 genes had SNP associations with at least 1 trait. Most detected effects were with mortality and growth traits. Most gene-SNP trait associations varied by genetic line or with environment. These results indicate that associations of candidate genes with important broiler traits can be identified in multiple environments, and they offer a potential for the implementation of marker-assisted selection for traits expressed in the environment in which the commercial broiler needs to perform. The effects of these immune-related candidate genes, however, are complex and affected by genetic background and environment.
Collapse
Affiliation(s)
- X Ye
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
15
|
Hasenstein JR, Zhang G, Lamont SJ. Analyses of Five gallinacin genes and the Salmonella enterica serovar Enteritidis response in poultry. Infect Immun 2006; 74:3375-80. [PMID: 16714567 PMCID: PMC1479296 DOI: 10.1128/iai.00027-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 02/06/2006] [Accepted: 03/06/2006] [Indexed: 11/20/2022] Open
Abstract
Gallinacins in poultry are functional equivalents of mammalian beta-defensins, which constitute an integral component of the innate immune system. Salmonella enterica serovar Enteritidis is a gram-negative bacterium that negatively affects both human and animal health. To analyze the association of genetic variations of the gallinacin genes with the phenotypic response to S. enterica serovar Enteritidis, an F1 population of chickens was created by crossing four outbred broiler sires to dams of two highly inbred lines. The F1 chicks were evaluated for bacterial colonization after pathogenic S. enterica serovar Enteritidis inoculation and for circulating antibody levels after inoculation with S. enterica serovar Enteritidis bacterin vaccine. Five candidate genes were studied, including gallinacins 2, 3, 4, 5, and 7. Gene fragments were sequenced from the founder individuals of the resource population, and a mean of 13.2 single-nucleotide polymorphisms (SNP) per kilobase was identified. One allele-defining SNP per gene was utilized to test for statistical associations of sire alleles with progeny response to S. enterica serovar Enteritidis. Among the five gallinacin genes evaluated, the Gal3 and Gal7 SNPs in broiler sires were found to be associated with antibody production after S. enterica serovar Enteritidis vaccination. Utilization of these SNPs as molecular markers for the response to S. enterica serovar Enteritidis may result in the enhancement of the immune response in poultry.
Collapse
Affiliation(s)
- Jason R Hasenstein
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA 50011-3150, USA
| | | | | |
Collapse
|
16
|
Goodenbour JM, Kaiser MG, Lamont SJ. Linkage mapping of inhibitor of apoptosis protein-1 (IAP 1) to chicken chromosome 1. Anim Genet 2004; 35:158-9. [PMID: 15025589 DOI: 10.1111/j.1365-2052.2004.01111.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J M Goodenbour
- Department of Animal Science, Iowa State University, Ames, Iowa 50011-3150, USA
| | | | | |
Collapse
|
17
|
Malek M, Hasenstein JR, Lamont SJ. Analysis of Chicken TLR4, CD28, MIF, MD-2, and LITAF Genes in a Salmonella enteritidis Resource Population. Poult Sci 2004; 83:544-9. [PMID: 15109052 DOI: 10.1093/ps/83.4.544] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Salmonella enteritidis is a foodborne pathogen that negatively affects both animal and human health. Genetic variations in response to pathogenic SE colonization or to SE vaccination were measured in a chicken resource population. Outbred broiler sires and 3 diverse, highly inbred dam lines produced 508 F1 progeny that were evaluated for either bacterial colonization after pathogenic SE inoculation or circulating antibody level after SE vaccination. Five candidate genes were selected for study, based on their biological function as possibly affecting response to SE: toll-like receptor 4 (TLR4), T-cell specific surface protein (CD28), macrophage migration inhibitory factor (MIF), MD-2, and lipopolysaccharide-induced tumor necrosis factor (TNF)-alpha factor (LITAF). Gene fragments were sequenced from the founder lines of the resource population. The LITAF and MIF genes were homozygous for all sires. Single nucleotide polymorphisms (SNP) were identified in 3 genes (TLR4, CD28, and MD-2) and were used to test for associations of sire SNP with SE response. Linear mixed models were used for statistical analyses. The CD28 broiler sire SNP was associated with both bacterial load in the cecum (P < 0.003) and vaccine antibody response (P < 0.05). The MD-2 SNP was associated (P < 0.04) with the bacterial load in the spleen. The use of these SNP in these genes in marker-assisted selection may result in enhancement of disease resistance.
Collapse
Affiliation(s)
- M Malek
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|